Browsing by Author "Salomón, Tatiana"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Consecuencias hemodinámicas y respiratorias del síndrome compartimental abdominal en un modelo experimental(2012) Díaz, Franco; Donso, Alejandro; Carvajal, Cristóbal; Salomón, Tatiana; Torres, María Fernanda; Erranz, Benjamín; Cruces, PabloIntroducción: El síndrome compartimental abdominal (SCA) es una entidad grave, de escaso reporte en población pediátrica por una inadecuada alerta y reconocimiento. Puede ser originado por causas médicas y quirúrgicas, presentando una elevada mortalidad. Objetivo: Determinar la magnitud de las consecuencias hemodinámicas y respiratorias iniciales desencadenadas por la inducción de un SCA en un modelo experimental. Método: Doce cerdos anestesiados (4,8 ± 0,1 kg). El SCA fue inducido con instilación de solución coloide en cavidad peritoneal para obtener una presión intra-abdominal (PIA) de 25 ± 5 mmHg. En condiciones basales y posterior a inducción del SCA se realizó monitorización hemodinámica convencional y termodilución transpulmonar. Paralelamente se midió gasometría arterial y análisis de mecánica pulmonar. Resultados: Hubo una reducción del gasto cardíaco en 16% (5,19 ± 0,33 a 4,34 ± 0,28 l/min/m2, p = 0,01) y de la presión de perfusión abdominal en 20% (72,3 ± 3,2 a 57,3 ± 4,0 mmHg, p < 0,001) sin cambios en frecuencia cardiaca, presión arterial y venosa central. Además ocurrió un deterioro de la compliance del sistema respiratorio cercana al 50% (1,28 ± 0,09 a 0,62 ± 0,04 ml/cmH2O/kg, p = 0,002) asociado a un incremento significativo en las presiones intratorácicas y disminución leve de la oxigenación. Discusión: En este modelo experimental se pudo apreciar el desarrollo temprano de disfunción hemodinámica y pulmonar. Se evidenció una reducción de gasto cardiaco no detectado por la monitorización convencional y un deterioro substancial de la mecánica pulmonar, propia de una enfermedad restrictiva, asociado a alteraciones leves del intercambio gaseoso. Creemos que es fundamental monitorizar la PIA en pacientes predispuestos a desarrollar un SCA, más aún ante empeoramiento de disfunciones orgánicas dado que la hipotensión e hipoxemia grave son signos tardíos de esta complicación.Item Decreased lung compliance increases preload dynamic tests in a pediatric acute lung injury model(Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U., 2015) Erranz, Benjamín; Díaz, Franco; Donoso, Alejandro; Salomón, Tatiana; Carvajal, Cristóbal; Torres, María Fernanda; Cruces, PabloBACKGROUND: Preload dynamic tests, pulse pressure variation (PPV) and stroke volume variation (SVV) have emerged as powerful tools to predict response to fluid administration. The influence of factors other than preload in dynamic preload test is currently poorly understood in pediatrics. The aim of our study was to assess the effect of tidal volume (VT) on PPV and SVV in the context of normal and reduced lung compliance in a piglet model. MATERIAL AND METHOD: Twenty large-white piglets (5.2±0.4kg) were anesthetized, paralyzed and monitored with pulse contour analysis. PPV and SVV were recorded during mechanical ventilation with a VT of 6 and 12mL/kg (low and high VT, respectively), both before and after tracheal instillation of polysorbate 20. RESULTS: Before acute lung injury (ALI) induction, modifications of VT did not significantly change PPV and SVV readings. After ALI, PPV and SVV were significantly greater during ventilation with a high VT compared to a low VT (PPV increased from 8.9±1.2 to 12.4±1.1%, and SVV from 8.5±1.0 to 12.7±1.2%, both P<0.01). CONCLUSIONS: This study found that a high VT and reduced lung compliance due to ALI increase preload dynamic tests, with a greater influence of the latter. In subjects with ALI, lung compliance should be considered when interpreting the preload dynamic tests.Item Diferencia veno-arterial de dióxido de carbono como predictor de gasto cardiaco disminuido en modelo pediátrico experimental(Sociedad Medica de Santiago, 2012) Díaz, Franco; Donoso, Alejandro; Carvajal, Cristóbal; Salomón, Tatiana; Torres, María; Erranz, Benjamín; Cruces, PabloBackground: Cardiac output (CO) measurement is not a standard of care for critically ill children, but it can be estimated by indirect methods such as veno-arterial pCO2 difference (ΔVACO2). Aim: To determine the correlation between CO and ΔVACO2 and evaluate the usefulness of ΔVACO2 in the diagnosis of low CO in an experimental pediatric model. Materials and Methods: Thirty piglets weighing 4.8 ± 0.35 kg were anesthetized and monitored with transpulmonary thermodilution. Lung injury was induced with tracheal instillation of Tween 20®. Serial measurements of central venous and arterial blood gases, as well as CO, were obtained at baseline, 1, 2 and 4 h after lung injury induction. Low cardiac output (LCO) was defined as CO lower than 2.5 Llminlm2. Results: There was an inverse correlation between CO and ΔVACO2 (r = -0.36, p < 0.01). ΔVACO2 was 14 ± 8 mmHg in LCO state and 8 ± 6 mmHg when this condition was not present (p < 0.01). Area under the receiver operating characteristic (ROC) curves of ΔVACO2 and LCO state was 0.78 (0.68-0.86). The best cut-point was 8.9 mmHg to determine LCO with a sensibility 0.78, specificity 0.7, positive predictive value 0.27 and negative predictive value 0.96. Conclusions: In this model there was an inverse correlation between ΔVACO2 and CO. The best cutoff value to discard LCO was ΔVACO2 of 8.9 mmHg, indicating that under this value the presence of LCO is very unlikely.Item Extracorporeal membrane oxygenation improves survival in a novel 24-hour pig model of severe acute respiratory distress syndrome(e-Century Pub. Corp, 2016) Araos, Joaquín; Alegría, Leyla; García, Patricio; Damiani, Felipe; Tapia, Pablo; Soto, Dagoberto; Salomón, Tatiana; Rodríguez, Felipe; Amthauer, Macarena; Erranz, Benjamín; Castro, Gabriel; Carreño, Pamela; Medina, Tania; Retamal, Jaime; Cruces, Pablo; Bugedo, Guillermo; Bruhn, AlejandroExtracorporeal membrane oxygenation (ECMO) is increasingly being used to treat severe acute respiratory distress syndrome (ARDS). However, there is limited clinical evidence about how to optimize the technique. Experimental research can provide an alternative to fill the actual knowledge gap. The purpose of the present study was to develop and validate an animal model of acute lung injury (ALI) which resembled severe ARDS, and which could be successfully supported with ECMO. Eighteen pigs were randomly allocated into three groups: sham, ALI, and ALI + ECMO. ALI was induced by a double-hit consisting in repeated saline lavage followed by a 2-hour period of injurious ventilation. All animals were followed up to 24 hours while being ventilated with conventional ventilation (tidal volume 10 ml/kg). The lung injury model resulted in severe hypoxemia, increased airway pressures, pulmonary hypertension, and altered alveolar membrane barrier function, as indicated by an increased protein concentration in bronchoalveolar fluid, and increased wet/dry lung weight ratio. Histologic examination revealed severe diffuse alveolar damage, characteristic of ARDS. Veno-venous ECMO was started at the end of lung injury induction with a flow > 60 ml/kg/min resulting in rapid reversal of hypoxemia and pulmonary hypertension. Mortality was 0, 66.6 and 16.6% in the SHAM, ALI and ALI + ECMO groups, respectively (p < 0.05). This is a novel clinically relevant animal model that can be used to optimize the approach to ECMO and foster translational research in extracorporeal lung support.Item Influence of tidal volume on pulse pressure variation and stroke volume variation during experimental intra-abdominal hypertension(BioMed Central Ltd., 2015) Díaz, Franco; Erranz, Benjamín; Donoso, Alejandro; Salomón, Tatiana; Cruces, PabloBACKGROUND: Pulse pressure variation (PPV) and stroke volume variation (SVV) are frequently used to assess fluid responsiveness in critically ill patients on mechanical ventilation (MV). There are many factors, in addition to preload that influence the magnitude of these cyclic variations. We sought to investigate the effect of tidal volume (V(T)) on PPV and SVV, and prediction of fluid responsiveness in a model of intra-abdominal hypertension (IAH). METHODS: Twelve anesthetized and mechanically ventilated piglets on continuous pulse contour cardiac output monitoring. Hypovolemia was ruled out with 2 consecutive fluid boluses after instrumentation. IAH was induced by intraperitoneal instillation of colloid solution with a goal of reducing respiratory system compliance by 50 %. Subjects were classified as fluid responders if stroke volume increased >15 % after each fluid challenge. SVV and PPV were recorded with tidal volumes (VT) of 6, 12 and 18 ml/kg before IAH after IAH induction and after a fluid challenge during IAH. RESULTS: V(T) influenced PPV and SVV at baseline and during IAH, being significantly larger with higher V(T). These differences were attenuated after fluid administration in both conditions. After IAH induction, there was a significant increase in SVV with the three-tested V(T), but the magnitude of that change was larger with high V(T): with 6 ml/kg from 3 % (3, 4) to 5 % (4, 6.25) (p = 0.05), with 12 ml/kg from 5 % (4, 6) to 11 % (8.75, 17) (p = 0.02) and 18 ml/kg from 5 % (4,7.5) to 15 % (8.75, 19.5) (p = 0.02). Similarly, PPV increased with all the tested VT after IAH induction, being this increase larger with high VT: with 6 ml/kg from 3 % (2, 4.25) to 6 % (4.75, 7) (p = 0.05), with 12 ml/kg from 5 % (4, 6) to 13.5 % (10.25, 15.5) (p = 0.02) and 18 ml/kg from 7 % (5.5, 8.5) to 24 % (13.5, 30.25) (p = 0.02). One third of subjects responded to fluid administration after IAH, but neither SVV nor PPV were able to identify the fluid responders with the tested V(T). CONCLUSION: IAH induction in non-hypovolemic subjects significantly increased SVV and PPV with the three tested V(T), but the magnitude of that change was higher with larger V(T). This observation reveals the dependence of functional hemodynamic markers on intrathoracic as well intra-abdominal pressures, in addition to volemic status. Also, PPV and SVV were unable to predict fluid responsiveness after IAH induction. Future studies should take into consideration these findings when exploring relationships between dynamic preload indicators and fluid responsiveness during IAH.