Browsing by Author "Rovegno, Maximiliano"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Publication Cardiac function in critically ill patients with severe COVID: A prospective cross-sectional study in mechanically ventilated patients(2022) Valenzuela, Emilio Daniel; Mercado, Pablo; Pairumani, Ronald; Medel, Juan Nicolás; Petruska, Edward; Ugalde, Diego; Morales, Felipe; Eisen, Daniela; Araya, Carla; Montoya, Jorge; González, Alejandra; Rovegno, Maximiliano; Ramirez, Javier; Aguilera, Javiera; Hernández, Glenn; Bruhn, Alejandro; Slama, Michel; Bakker, JanPurpose: To evaluate cardiac function in mechanically ventilated patients with COVID-19. Materials and methods: Prospective, cross-sectional multicenter study in four university-affiliated hospitals in Chile. All consecutive patients with COVID-19 ARDS requiring mechanical ventilation admitted between April and July 2020 were included. We performed systematic transthoracic echocardiography assessing right and left ventricular function within 24 h of intubation. Results: 140 patients aged 57 ± 11, 29% female were included. Cardiac output was 5.1 L/min [IQR 4.5-6.2] and 86% of the patients required norepinephrine. ICU mortality was 29% (40 patients). Fifty-four patients (39%) exhibited right ventricle dilation out of whom 20 patients (14%) exhibited acute cor pulmonale (ACP). Eight out of the twenty patients with ACP exhibited pulmonary embolism (40%). Thirteen patients (9%) exhibited left ventricular systolic dysfunction (ejection fraction <45%). In the multivariate analysis acute cor pulmonale and PaO2/FiO2 ratio were independent predictors of ICU mortality. Conclusions: Right ventricular dilation is highly prevalent in mechanically ventilated patients with COVID-19 ARDS. Acute cor pulmonale was associated with reduced pulmonary function and, in only 40% of patients, with co-existing pulmonary embolism. Acute cor pulmonale is an independent risk factor for ICU mortality.Publication SARS-CoV-2 spike protein S1 activates Cx43 hemichannels and disturbs intracellular Ca2+ dynamics(2023) Prieto, Juan; Lucero, Claudia; Rovegno, Maximiliano; Gómez, Gonzalo; Retamal, Mauricio A.; Orellana, JuanBackground: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the ongoing coronavirus disease 2019 (COVID-19). An aspect of high uncertainty is whether the SARS-CoV-2 per se or the systemic inflammation induced by viral infection directly affects cellular function and survival in different tissues. It has been postulated that tissue dysfunction and damage observed in COVID-19 patients may rely on the direct effects of SARS-CoV-2 viral proteins. Previous evidence indicates that the human immunodeficiency virus and its envelope protein gp120 increase the activity of connexin 43 (Cx43) hemichannels with negative repercussions for cellular function and survival. Here, we evaluated whether the spike protein S1 of SARS-CoV-2 could impact the activity of Cx43 hemichannels. Results: We found that spike S1 time and dose-dependently increased the activity of Cx43 hemichannels in HeLa-Cx43 cells, as measured by dye uptake experiments. These responses were potentiated when the angiotensin-converting enzyme 2 (ACE2) was expressed in HeLa-Cx43 cells. Patch clamp experiments revealed that spike S1 increased unitary current events with conductances compatible with Cx43 hemichannels. In addition, Cx43 hemichannel opening evoked by spike S1 triggered the release of ATP and increased the [Ca2+]i dynamics elicited by ATP. Conclusions: We hypothesize that Cx43 hemichannels could represent potential pharmacological targets for developing therapies to counteract SARS-CoV-2 infection and their long-term consequences.