Browsing by Author "Rosa, Lorena"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Publication A Novel Gemcitabine-Resistant Gallbladder Cancer Model Provides Insights into Molecular Changes Occurring during Acquired Resistance(2023) Vergara, Luis; Bizama, Carolina; Zhong, Jun; Buchegger, Kurt; Suárez, Felipe; Rosa, Lorena; Ili, Carmen; Weber, Helga; Obreque, Javiera; Espinoza, Karena; Repetto, Gabriela; Roa, Juan; Leal, Pamela; García, PatriciaTreatment options for advanced gallbladder cancer (GBC) are scarce and usually rely on cytotoxic chemotherapy, but the effectiveness of any regimen is limited and recurrence rates are high. Here, we investigated the molecular mechanisms of acquired resistance in GBC through the development and characterization of two gemcitabine-resistant GBC cell sublines (NOZ GemR and TGBC1 GemR). Morphological changes, cross-resistance, and migratory/invasive capabilities were evaluated. Then, microarray-based transcriptome profiling and quantitative SILAC-based phosphotyrosine proteomic analyses were performed to identify biological processes and signaling pathways dysregulated in gemcitabine-resistant GBC cells. The transcriptome profiling of parental and gemcitabine-resistant cells revealed the dysregulation of protein-coding genes that promote the enrichment of biological processes such as epithelial-to-mesenchymal transition and drug metabolism. On the other hand, the phosphoproteomics analysis of NOZ GemR identified aberrantly dysregulated signaling pathways in resistant cells as well as active kinases, such as ABL1, PDGFRA, and LYN, which could be novel therapeutic targets in GBC. Accordingly, NOZ GemR showed increased sensitivity toward the multikinase inhibitor dasatinib compared to parental cells. Our study describes transcriptome changes and altered signaling pathways occurring in gemcitabine-resistant GBC cells, which greatly expands our understanding of the underlying mechanisms of acquired drug resistance in GBC.Item Evaluation of the chemopreventive potentials of ezetimibeand aspirin in a novel mouse model of gallbladderpreneoplasia(2020) Rosa, Lorena; Lobos-González, Lorena; Munoz Durango, Natalia; Garcıa, Patricia; Bizama, Carolina; Gomez, Natalia; Gonzalez, Ximena; Wichmann, Ignacio A.; Saavedra, Nicolas; Guevara, Francisca; Villegas, Jaime; Arrese, Marco; Ferreccio, Catterina; Alexis M. Kalergis, Alexis M.; Miquel, Juan Francisco; Espinoza, Jaime A.; Roa, Juan C.Gallbladder stones (cholecystolithiasis) are the main risk factor for gallbladder cancer (GBC), a lethal biliary malignancy with poor survival rates worldwide. Gallbladder stones are thought to damage the gallbladder epithelium and trigger chronic inflammation. Preneoplastic lesions that arise in such an inflammatory microenvironment can eventually develop into invasive carcinoma, through mechanisms that are not fully understood. Here, we developed a novel gallbladder preneoplasia mouse model through the administration of two lithogenic diets (a low- or a high-cholesterol diet) in wild-type C57BL/6 mice over a period of 9 months. Additionally, we evaluated the chemopreventive potentials of the anti-inflammatory drug aspirin and the cholesterol absorption inhibitor ezetimibe. Both lithogenic diets induced early formation of gallbladder stones, together with extensive inflammatory changes and widespread induction of metaplasia, an epithelial adaptation to tissue injury. Dysplastic lesions were presented only in mice fed with high-cholesterol diet (62.5%) in late stages (9th month), and no invasive carcinoma was observed at any stage. The cholesterol absorption inhibitor ezetimibe inhibited gallbladder stone formation and completely prevented the onset of metaplasia and dysplasia in both lithogenic diets, whereas aspirin partially reduced metaplasia development only in the low-cholesterol diet setting. This model recapitulates several of the structural and inflammatory findings observed in human cholecystolithiasic gallbladders, making it relevant for the study of gallbladder carcinogenesis. In addition, our results suggest that the use of cholesterol absorption inhibitors and anti-inflammatory drugs can be evaluated as chemopreventive strategies to reduce the burden of GBC among high-risk populations.