Browsing by Author "Morales, Cristian"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Publication Characterization of microbial communities from gut microbiota of hypercholesterolemic and control subjects(2022) Morales, Cristian; Rojas, Gabriel; Rebolledo, Camilo; Rojas, Marcelo; Arias, Raúl; Cuadros, Sara; Maracaja, Vinicius; Saavedra, Kathleen; Leal, Pamela; Lanas, Fernando; Salazar, Luis; Saavedra, NicolasIntroduction: In recent years, several studies have evidenced the importance of the microbiome to host physiology as metabolism regulator, along with its potential role in triggering various diseases. In this study, we analyzed the gut microbiota in hypercholesterolemic (cases) and normocholesterolemic (controls) individuals to identify characteristic microbial signature for each condition. Methods: Stool samples were obtained from 57 adult volunteers (27 hypercholesterolemic and 30 controls). The taxonomic profiling of microbial communities was performed using high-throughput sequencing of 16S rRNA V3-V4 amplicons, followed by data analysis using Quantitative Insights Into Microbial Ecology 2 (QIIME2) and linear discriminant analysis (LDA) effect size (LEfSe). Results: Significant differences were observed in weight, height, body mass index (BMI) and serum levels of triglycerides, total cholesterol and low-density lipoprotein cholesterol (LDL-C) between the groups (p<0.05). LEfSe showed differentially abundant prokaryotic taxa (α=0.05, LDA score > 2.0) in the group of hypercholesterolemic individuals (Methanosphaera, Rothia, Chromatiales, Clostridiales, Bacillaceae and Coriobacteriaceae) and controls (Faecalibacterium, Victivallis and Selenomonas) at various taxonomic levels. In addition, through the application of Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt2), the predominance of pathways related to biosynthesis in hypercholesterolemic patients was established, compared to controls in which degradation pathways were predominant. Finally, in the analysis of co-occurrence networks, it was possible to identify associations between the microorganisms present in both studied groups. Conclusion: Our results point out to unique microbial signatures, which likely play a role on the cholesterol metabolism in the studied population.Publication Dominance hierarchy regulates social behavior during spatial movement(2024) Lara-Vasquez, Ariel; Espinosa, Nelson; Morales, Cristian; Moran, Constanza; Billeke, Pablo; Gallagher, Joseph; Strohl, Joshua J.; Huerta, Patricio T.; Fuentealba, PabloRodents establish dominance hierarchy as a social ranking system in which one subject acts as dominant over all the other subordinate individuals. Dominance hierarchy regulates food access and mating opportunities, but little is known about its significance in other social behaviors, for instance during collective navigation for foraging or migration. Here, we implemented a simplified goal-directed spatial task in mice, in which animals navigated individually or collectively with their littermates foraging for food. We compared between conditions and found that the social condition exerts significant influence on individual displacement patterns, even when efficient navigation rules leading to reward had been previously learned. Thus, movement patterns and consequent task performance were strongly dependent on contingent social interactions arising during collective displacement, yet their influence on individual behavior was determined by dominance hierarchy. Dominant animals did not behave as leaders during collective displacement; conversely, they were most sensitive to the social environment adjusting their performance accordingly. Social ranking in turn was associated with specific spontaneous neural activity patterns in the prefrontal cortex and hippocampus, with dominant mice showing higher firing rates, larger ripple oscillations, and stronger neuronal entrainment by ripples than subordinate animals. Moreover, dominant animals selectively increased their cortical spiking activity during collective movement, while subordinate mice did not modify their firing rates, consistent with dominant animals being more sensitive to the social context. These results suggest that dominance hierarchy influences behavioral performance during contingent social interactions, likely supported by the coordinated activity in the hippocampal-prefrontal circuit.