Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Español
  • Português do Brasil
  • Log In
    New user? Click here to register. Have you forgotten your password?
  • English
  • Español
  • Português do Brasil
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Meza, Luis"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Kinin Receptors B1 and B2 Mediate Breast Cancer Cell Migrationand Invasion by Activating the FAK-Src Axis
    (2024) González, Felipe; Lobos, Lorena; Riquelme, Alexander; Ibacache, Andrés; Meza, Luis; Droguett, Alexandra; Alveal, Camila; Carrillo, Bastián; Gutiérrez, Javiera; Ehrenfeld, Pamela; Cárdenas, Areli
    Kinin receptors B1 and B2 are involved in migration and invasion in gastric, glioma, and cervical cancer cells, among others. However, the role of kinin receptors in breast cancer cells has been poorly studied. We aimed to reveal the impact of B1 and B2 receptors on migration and invasion in breast cancer cells and demonstrate their capacity to modulate in vivo tumor growth. MDA-MB-231, MCF-7, and T47D cells treated with Lys-des[Arg9]bradykinin (LDBK) or bradykinin (BK) were used to evaluate migration and invasion. Des-[Arg9]-Leu8-BK and HOE-140 were used as antagonists for the B1 and B2 receptors. MDA-MB-231 cells incubated or not with antagonists were subcutaneously inoculated in BALBc NOD/SCID mice to evaluate tumor growth. LDBK and BK treatment significantly increased migration and invasion in breast cancer cells, effects that were negated when antagonists were used. The use of antagonists in vivo inhibited tumor growth. Moreover, the migration and invasion induced by kinins in breast cancer cells were inhibited when focal adhesion kinase (FAK) and Src inhibitors were used. The novelty revealed in our work is that B1 and B2 receptors activated by LDBK and BK induce migration and invasion in breast cancer cells via a mechanism that involves the FAK-Src signaling pathway, and the antagonism of both receptors in vivo impairs breast tumor growth.

Santiago

Av. La Plaza Nº 680, Las Condes

Concepción

Ainavillo Nº 456, Concepción

Logo Universidad del Desarrollo

Implementado por OpenGeek Services