Browsing by Author "McGinn, Daniel"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Publication Chromatin regulators in the TBX1 network confer risk for conotruncal heart defects in 22q11.2DS(2023) Repetto, Gabriela; Zhao, Yingjie; Wang, Yujue; Shi, Lijie; McDonald, Donna; Crowley, Blaine; McGinn, Daniel; Tran, Oanh; Miller, Daniella; Lin, Jhih-Rong; Zacka, Elaine; Johnston, Richard; Chow, Eva; Vorstman, Jacob; Vingerhoets, Claudia; Van Amelsvoort, Therese; Gothelf, Doron; Swillen, Ann; Breckpot, Jeroen; Vermeesch, Joris; Eliez, Stephan; Schneider, Maude; Van den Bree, Marianne; Owen, Michael; Kates, Wendy; Shashi, Vandana; Schoch, Kelly; Bearden, Carrie; Digili, M. Cristina; Unolt, Marta; Putotto, Carolina; Marino, Bruno; Pontillo, Maria; Armando, Marco; Vicar, Stefano; Angkustsiri, Kathleen; Campbell, Linda; Busa, Tiffany; Heine, Damian; Murphy, Kieran; Murphy, DeclanCongenital heart disease (CHD) affecting the conotruncal region of the heart, occurs in 40-50% of patients with 22q11.2 deletion syndrome (22q11.2DS). This syndrome is a rare disorder with relative genetic homogeneity that can facilitate identification of genetic modifiers. Haploinsufficiency of TBX1, encoding a T-box transcription factor, is one of the main genes responsible for the etiology of the syndrome. We suggest that genetic modifiers of conotruncal defects in patients with 22q11.2DS may be in the TBX1 gene network. To identify genetic modifiers, we analyzed rare, predicted damaging variants in whole genome sequence of 456 cases with conotruncal defects and 537 controls, with 22q11.2DS. We then performed gene set approaches and identified chromatin regulatory genes as modifiers. Chromatin genes with recurrent damaging variants include EP400, KAT6A, KMT2C, KMT2D, NSD1, CHD7 and PHF21A. In total, we identified 37 chromatin regulatory genes, that may increase risk for conotruncal heart defects in 8.5% of 22q11.2DS cases. Many of these genes were identified as risk factors for sporadic CHD in the general population. These genes are co-expressed in cardiac progenitor cells with TBX1, suggesting that they may be in the same genetic network. The genes KAT6A, KMT2C, CHD7 and EZH2, have been previously shown to genetically interact with TBX1 in mouse models. Our findings indicate that disturbance of chromatin regulatory genes impact the TBX1 gene network serving as genetic modifiers of 22q11.2DS and sporadic CHD, suggesting that there are some shared mechanisms involving the TBX1 gene network in the etiology of CHDItem Complete Sequence of the 22q11.2 Allele in 1,053 Subjects with 22q11.2 Deletion Syndrome Reveals Modifiers of Conotruncal Heart Defects(American Society of Human Genetics by Elsevier Inc., 2020-01) Zhao, Yingjie; Diacou, Alexander; Johnston, Richard; Musfee, Fadi; McDonald-McGinn, Donna; McGinn, Daniel; Crowley, Blaine; Repetto, Gabriela; Swillen, Ann; Breckpot, Jeroen; Vermeesch, Joris; Kates, Wendy; Digilio, Cristina; Unolt, Marta; Marino, Bruno; Pontillo, Maria; Armando, Marco; Di Fabio, Fabio; Vicari, Stefano; van den Bree, Marianne; Moss, Hayley; Owen, Michael; Murphy, Kieran; Murphy, Clodagh; Murphy, Declan; Schoch, Kelly; Shashi, Vandana; Tassone, FloraThe 22q11.2 deletion syndrome (22q11.2DS) results from non-allelic homologous recombination between low-copy repeats termed LCR22. About 60%-70% of individuals with the typical 3 megabase (Mb) deletion from LCR22A-D have congenital heart disease, mostly of the conotruncal type (CTD), whereas others have normal cardiac anatomy. In this study, we tested whether variants in the hemizygous LCR22A-D region are associated with risk for CTDs on the basis of the sequence of the 22q11.2 region from 1,053 22q11.2DS individuals. We found a significant association (FDR p < 0.05) of the CTD subset with 62 common variants in a single linkage disequilibrium (LD) block in a 350 kb interval harboring CRKL. A total of 45 of the 62 variants were associated with increased risk for CTDs (odds ratio [OR) ranges: 1.64-4.75). Associations of four variants were replicated in a meta-analysis of three genome-wide association studies of CTDs in affected individuals without 22q11.2DS. One of the replicated variants, rs178252, is located in an open chromatin region and resides in the double-elite enhancer, GH22J020947, that is predicted to regulate CRKL (CRK-like proto-oncogene, cytoplasmic adaptor) expression. Approximately 23% of patients with nested LCR22C-D deletions have CTDs, and inactivation of Crkl in mice causes CTDs, thus implicating this gene as a modifier. Rs178252 and rs6004160 are expression quantitative trait loci (eQTLs) of CRKL. Furthermore, set-based tests identified an enhancer that is predicted to target CRKL and is significantly associated with CTD risk (GH22J020946, sequence kernal association test (SKAT) p = 7.21 × 10-5) in the 22q11.2DS cohort. These findings suggest that variance in CTD penetrance in the 22q11.2DS population can be explained in part by variants affecting CRKL expression.Item Complete Sequence of the 22q11.2 Allele in 1,053 Subjects with 22q11.2 Deletion Syndrome Reveals Modifiers of Conotruncal Heart Defects(2020) Zhao, Yingjie; Diacou, Alexander; Johnston, H. Richard; Musfee, Fadi I; McDonald-McGinn, Donna M.; McGinn, Daniel; Crowley, T. Blaine; Repetto, Gabriela; Swillen, Ann; Breckpot, Jeroen; Vermeesch, Joris R; Kates, Wendy R.; Digilio, M. Cristina; Unolt, Marta; Marino, Bruno; Pontillo, Maria; Armando, Marco; Di Fabio, Fabio; Vicari, Stefano; Bree, Marianne van den; Moss, Hayley; Owen, Michael J.; Murphy, Kieran C.; Murphy, Clodagh M.; Murphy, Declan; Schoch, Kelly; Shashi, Vandana; Tassone, Flora; Simon, Tony J.; Shprintzen, Robert J.; Campbell, Linda; Philip, Nicole; Heine-Suñer, Damian; García-Miñaúr, Sixto; Fernández, Luis; Bearden, Carrie E.; Vingerhoets, Claudia; Amelsvoort, Therese van; Eliez, Stephan; Schneider, Maude; Vorstman, Jacob A. S.; Gothelf, Doron; Zackai, Elaine; Agopian, A. J.; Gur, Raquel E.; Bassett, Anne S.; Emanuel, Beverly S.; Goldmuntz, Elizabeth; Mitchell, Laura E.; Wang, Tao; Morrow, Bernice E.The 22q11.2 deletion syndrome (22q11.2DS) results from non-allelic homologous recombination between low-copy repeats termed LCR22. About 60%-70% of individuals with the typical 3 megabase (Mb) deletion from LCR22A-D have congenital heart disease, mostly of the conotruncal type (CTD), whereas others have normal cardiac anatomy. In this study, we tested whether variants in the hemizygous LCR22A-D region are associated with risk for CTDs on the basis of the sequence of the 22q11.2 region from 1,053 22q11.2DS individuals. We found a significant association (FDR p < 0.05) of the CTD subset with 62 common variants in a single linkage disequilibrium (LD) block in a 350 kb interval harboring CRKL. A total of 45 of the 62 variants were associated with increased risk for CTDs (odds ratio [OR) ranges: 1.64-4.75). Associations of four variants were replicated in a meta-analysis of three genome-wide association studies of CTDs in affected individuals without 22q11.2DS. One of the replicated variants, rs178252, is located in an open chromatin region and resides in the double-elite enhancer, GH22J020947, that is predicted to regulate CRKL (CRK-like proto-oncogene, cytoplasmic adaptor) expression. Approximately 23% of patients with nested LCR22C-D deletions have CTDs, and inactivation of Crkl in mice causes CTDs, thus implicating this gene as a modifier. Rs178252 and rs6004160 are expression quantitative trait loci (eQTLs) of CRKL. Furthermore, set-based tests identified an enhancer that is predicted to target CRKL and is significantly associated with CTD risk (GH22J020946, sequence kernal association test (SKAT) p = 7.21 × 10-5) in the 22q11.2DS cohort. These findings suggest that variance in CTD penetrance in the 22q11.2DS population can be explained in part by variants affecting CRKL expression.