Browsing by Author "Magna-Verdugo, Carolina"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A New State-of-the-Art Platform for Probabilistic and Deterministic Seismic Hazard Assessment(2019) Candia, Gabriel; Macedo, Jorge; Jaimes, Miguel A.; Magna-Verdugo, CarolinaA new computational platform for seismic hazard assessment is presented. The platform, named SeismicHazard, allows characterizing the intensity, uncertainty, and likelihood of ground motions from subduction-zone (shallow interface and intraslab) and crustal-zone earthquakes, considering site-specific as well as regional-based assessments. The platform is developed as an object-oriented MATLAB graphical user interface, and it features several state-of-the-art capabilities for probabilistic and deterministic (scenario-based) seismic hazard assessment. The platform integrates the latest developments in performancebased earthquake engineering for seismic hazard assessment, including seismic zonation models, ground-motion models (GMMs), ground-motion correlation structures, and the estimation of design spectra (uniform hazard spectra, classical conditional mean spectrum (CMS) for a unique tectonic setting). In addition to these standard capabilities, the platform supports advanced features, not commonly found in existing seismic hazard codes, such as (a) computation of source parameters from earthquake catalogs, (b) vector-probabilistic seismic hazard assessment, (c) hazard evaluation based on conditional GMMs and user-defined GMMs, (d) uncertainty treatment in the median ground motions through continuous GMM distributions, (e) regional shaking fields, and (f ) estimation of CMS considering multiple GMMs and multiple tectonic settings. The results from the platform have been validated against accepted and well-documented benchmark solutions.Publication Effects of Using High-Strength Reinforcement in the Seismic Performance of a Tall RC Shear Wall Building(2023) Puentes, Juan; Parra, Pablo F.; Magna-Verdugo, Carolina; Cendoya, Patricio; Avudaiappan, SivaChile’s reinforced concrete (RC) design is based on ACI 318-08, where high-strength reinforcement is not allowed in seismic force-resistant members. In 2019, new requirements adopted by ACI 318 permitted the incorporation of high-strength reinforcement in walls. This study compared the seismic performance of two Chilean 20-story residential buildings on soft soil, one designed with traditional Grade 60 and the other with high-strength Grade 80 reinforcement. The performance was assessed in terms of the probability of exceeding the ASCE 41 limit states during a 50-year lifecycle. Analyses showed that both buildings had similar seismic performance. However, the reduction in reinforcement in the Grade 80 building was close to 18%. It is concluded that using high-strength reinforcement in a typical wall building implies a significant reduction in the reinforcement used without affecting the seismic performance.