Browsing by Author "Leodori, Giorgio"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item A novel exaggerated "Spino-bulbo-spinal like" reflex of lower brainstem origin(2019) Merchant, Shabbir Hussain; Vial Undurraga, Felipe; Leodori, Giorgio; Fahn, Stanley; Pullman, Seth; Hallett, MarkBackground: Many different oligosynaptic reflexes are known to originate in the lower brainstem which share phenomenological and neurophysiological similarities. Objective: To evaluate and discuss the differences and aberrancies among these reflexes, which are hard to discern clinically using neurophysiological investigations with the help of a case report. Methods: We describe the clinical and neurophysiological assessment of a young man who had a childhood history of opsoclonus-myoclonus syndrome with residual mild ataxia and myoclonic jerks in the distal extremities presenting with subacute onset total body jerks sensitive to sound and touch (in a limited dermatomal distribution), refractory to medications. Results: Based on clinical characteristics and insights gained from neurophysiological testing we could identify a novel reflex of caudal brainstem origin. Conclusions: The reflex described is likely an exaggerated normal reflex, likely triggered by a dolichoectatic vertebral arterial compression and shares characteristics of different reflexes known to originate in caudal brainstem, which subserve distinctive roles in human postural controlPublication Identifying transcranial magnetic stimulation induced EEG signatures of different neuronal elements in primary motor cortex(2022) Ni, Zhen; Pajevic, Sinisa; Chen, Li; Leodori, Giorgio; Vial Undurraga, Felipe; Avram, Alexandru V.; Zhang, Yong; Mc Gurrin, Patrick; Cohen, Leonardo G.; Basser, Peter J.; Hallett, MarkObjective: To investigate the neuronal elements involved in the activation of corticospinal neurons in the primary motor cortex (M1). Methods: We studied 10 healthy subjects. Cortical evoked potentials with different components induced by monophasic transcranial magnetic stimulation (TMS) in anterior-posterior and posterior-anterior currents recorded with electroencephalography (EEG) were analyzed. Results: EEG signatures with P25 and N45 components recorded at the C3 electrode with posterior-anterior current were larger than those with anterior-posterior current, while the signatures with P180 and N280 components recorded at the FC1 electrode with anterior-posterior current were larger than those with posterior-anterior current. The source localization analysis revealed that the cortical evoked potential with anterior-posterior current distributed both in the M1 and premotor cortex while that with posterior-anterior current only located in the M1. Conclusions: We conclude that the activation of corticospinal pyramidal neurons in the M1 is affected by various neuronal elements including the local intracortical circuits in the M1 and inputs from premotor cortex with different sensitivities to TMS in opposite current directions. Significance: Our finding helped answer a longstanding question about how the corticospinal pathway from the M1 is functionally organized and activated.Item Measuring conduction velocity distributions in peripheral nerves using neurophysiological techniques(2020) Ni, Zhen; Vial Undurraga, Felipe; V. Avram, Alexandru; Leodori, Giorgio; Pajevic, Sinisa; J. Basser, Peter; Hallett, MarkObjective: To determine how long it takes for neural impulses to travel along peripheral nerve fibers in living humans. Methods: A collision test was performed to measure the conduction velocity distribution of the ulnar nerve. Two stimuli at the distal and proximal sites were used to produce the collision. Compound muscle or nerve action potentials were recorded to perform the measurements on the motor or mixed nerve, respectively. Interstimulus interval was set at 1–5 ms. A quadri-pulse technique was used to measure the refractory period and calibrate the conduction time. Results: Compound muscle action potential produced by the proximal stimulation started to emerge at the interstimulus interval of about 1.5 ms and increased with the increment in interstimulus interval. Two groups of motor nerve fibers with different conduction velocities were identified. The mixed nerve showed a wider conduction velocity distribution with identification of more subgroups of nerve fibers than the motor nerve. Conclusions: The conduction velocity distributions in high resolution on a peripheral motor and mixed nerve are different and this can be measured with the collision test. Significance: We provided ground truth data to verify the neuroimaging pipelines for the measurements of latency connectome in the peripheral nervous system.Item Measuring latency distribution of transcallosal fibers using transcranial magnetic stimulation(2020) Ni, Zhen; Leodori, Giorgio; Vial Undurraga, Felipe; Zhang, Yong; V. Avram, Alexandru; Pajevic, Sinisa; J. Basser, Peter; Hallett, MarkBackground: Neuroimaging technology is being developed to enable non-invasive mapping of the latency distribution of cortical projection pathways in white matter, and correlative clinical neurophysiological techniques would be valuable for mutual verification. Interhemispheric interaction through the corpus callosum can be measured with interhemispheric facilitation and inhibition using transcranial magnetic stimulation. Objective: To develop a method for determining the latency distribution of the transcallosal fibers with transcranial magnetic stimulation. Methods: We measured the precise time courses of interhemispheric facilitation and inhibition with a conditioning-test paired-pulse magnetic stimulation paradigm. The conditioning stimulus was applied to the right primary motor cortex and the test stimulus was applied to the left primary motor cortex. The interstimulus interval was set at 0.1 ms resolution. The proportions of transcallosal fibers with different conduction velocities were calculated by measuring the changes in magnitudes of interhemispheric facilitation and inhibition with interstimulus interval. Results: Both interhemispheric facilitation and inhibition increased with increment in interstimulus interval. The magnitude of interhemispheric facilitation was correlated with that of interhemispheric inhibition. The latency distribution of transcallosal fibers measured with interhemispheric facilitation was also correlated with that measured with interhemispheric inhibition. Conclusions: The data can be interpreted as latency distribution of transcallosal fibers. Interhemispheric interaction measured with transcranial magnetic stimulation is a promising technique to determine the latency distribution of the transcallosal fibers. Similar techniques could be developed for other cortical pathways.Item Myoclonus: An Electrophysiological Diagnosis(2020) Merchant, Shabbir Hussain I.; Vial Undurraga, Felipe; Leodori, Giorgio; Gerpen, Jay A. van; Hallett, MarkBackground: Background Many different movement disorders have similar “jerk-like” phenomenology and can be misconstrued as myoclonus. Different types of myoclonus also share similar phenomenological characteristics that can be difficult to distinguish solely based on clinical exam. However, they have distinctive physiologic characteristics that can help refine categorization of jerk-like movements. Objectives: Objectives In this review, we briefly summarize the clinical, physiologic, and pathophysiologic characteristics of different types of myoclonus. The methodology and technical considerations for the electrophysiologic assessment of jerk-like movements are reviewed. A simplistic pragmatic approach for the classification of myoclonus and other jerk-like movements based on objective electrophysiologic characteristics is proposed. Conclusions: Conclusions Clinical neurophysiology is an underutilized tool in the diagnosis and treatment of movement disorders. Various jerk-like movements have distinguishing physiologic characteristics, differentiated in the milliseconds range, which is beyond human capacity. We argue that the categorization of movement disorders as myoclonus can be refined based on objective physiology that can have important prognostic and therapeutic implications.Item Re-emergent Tremor in Parkinson’s Disease: The Role of the Motor Cortex(2020) Leodori, Giorgio; Belvisi, Daniele; De Bartolo, Maria I.; Fabbrini, Andrea; Costanzo, Matteo; Vial Undurraga, Felipe; Conte, Antonella; Hallett, Mark; Berardelli, AlfredoBackground: Parkinson’s disease patients may show a tremor that appears after a variable delay while the arms are kept outstretched (re-emergent tremor). The objectives of this study were to investigate re-emergent tremor pathophysiology by studying the role of the primary motor cortex in this tremor and making a comparison with rest tremor. Methods: We enrolled 10 Parkinson’s disease patients with both re-emergent and rest tremor. Tremor was assessed by spectral analysis, corticomuscular coherence and tremor-resetting produced by transcranial magnetic stimulation over the primary motor cortex. We also recorded transcranial magnetic stimulation-evoked potentials generated by motor cortex stimulation during rest tremor, tremor suppression during wrist extension, and re-emergent tremor. Spectral analysis, corticomuscular coherence, and tremor resetting were compared between re-emergent tremor and rest tremor. Results: Re-emergent tremor showed significant corticomuscular coherence, causal relation between motor cortex activity and tremor muscle and tremor resetting. The P60 component of transcranial magnetic stimulation-evoked potentials reduced in amplitude during tremor suppression, recovered before re-emergent tremor, was facilitated at re-emergent tremor onset, and returned to values similar to those of rest tremor during re-emergent tremor. Compared with rest tremor, re-emergent tremor showed similar corticomuscular coherence and tremor resetting, but slightly higher frequency. Conclusions: Re-emergent tremor is causally related with the activity of the primary motor cortex, which is likely a convergence node in the network that generates re-emergent tremor. Re-emergent tremor and rest tremor share common pathophysiological mechanisms in which the motor cortex plays a crucial role.Item The role of the inferior parietal lobule in writer’s cramp(2020) Merchant, Shabbir Hussain I.; Frangos, Eleni; Parker, Jacob; Bradson, Megan; Wu, Tianxia; Vial-Undurraga, Felipe; Leodori, Giorgio; Bushnell, M.C.; Horovitz, Silvina G.; Hallett, Mark; Popa, TraianHumans have a distinguishing ability for fine motor control that is subserved by a highly evolved cortico-motor neuronal network. The acquisition of a particular motor skill involves a long series of practice movements, trial and error, adjustment and refinement. At the cortical level, this acquisition begins in the parieto-temporal sensory regions and is subsequently consolidated and stratified in the premotor-motor cortex. Task-specific dystonia can be viewed as a corruption or loss of motor control confined to a single motor skill. Using a multimodal experimental approach combining neuroimaging and non-invasive brain stimulation, we explored interactions between the principal nodes of the fine motor control network in patients with writer’s cramp and healthy matched controls. Patients and healthy volunteers underwent clinical assessment, diffusion-weighted MRI for tractography, and functional MRI during a finger tapping task. Activation maps from the task-functional MRI scans were used for target selection and neuronavigation of the transcranial magnetic stimulation. Single- and double-pulse TMS evaluation included measurement of the inputoutput recruitment curve, cortical silent period, and amplitude of the motor evoked potentials conditioned by cortico-cortical interactions between premotor ventral (PMv)-motor cortex (M1), anterior inferior parietal lobule (aIPL)-M1, and dorsal inferior parietal lobule (dIPL)-M1 before and after inducing a long term depression-like plastic change to dIPL node with continuous thetaburst transcranial magnetic stimulation in a randomized, sham-controlled design. Baseline dIPL-M1 and aIPL-M1 cortico-cortical interactions were facilitatory and inhibitory, respectively, in healthy volunteers, whereas the interactions were converse and significantly different in writer’s cramp. Baseline PMv-M1 interactions were inhibitory and similar between the groups. The dIPL-PMv resting state functional connectivity was increased in patients compared to controls, but no differences in structural connectivity between the nodes were observed. Cortical silent period was significantly prolonged in writer’s cramp. Making a long term depression- like plastic change to dIPL node transformed the aIPL-M1 interaction to inhibitory (similar to healthy volunteers) and cancelled the PMv-M1 inhibition only in the writer’s cramp group. These findings suggest that the parietal multimodal sensory association region could have an aberrant downstream influence on the fine motor control network in writer’s cramp, which could be artificially restored to its normal function.