Browsing by Author "Lemke, Johannes"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Publication CNV-ClinViewer: enhancing the clinical interpretation oflarge copy-number variants online(2023) Macnee, Marie; Pérez Palma, Eduardo; Brünger, Tobias; Klöckner, Chiara; Platzer, Konrad; Stefansk, Arthur; Montanucci, Ludovica; Bayat, Allan; Radtke, Maximilian; Collins, Ryan; Talkowski, Michael; Blankenberg, Daniel; Møller, Rikke; Lemke, Johannes; Nothnagel, Michael; May, Patrick; Lal, DennisMotivation: Pathogenic copy-number variants (CNVs) can cause a heterogeneous spectrum of rare and severe disorders. However, most CNVs are benign and are part of natural variation in human genomes. CNV pathogenicity classification, genotype-phenotype analyses, and therapeutic target identification are challenging and time-consuming tasks that require the integration and analysis of information from multiple scattered sources by experts. Results: Here, we introduce the CNV-ClinViewer, an open-source web application for clinical evaluation and visual exploration of CNVs. The application enables real-time interactive exploration of large CNV datasets in a user-friendly designed interface and facilitates semi-automated clinical CNV interpretation following the ACMG guidelines by integrating the ClassifCNV tool. In combination with clinical judgment, the application enables clinicians and researchers to formulate novel hypotheses and guide their decision-making process. Subsequently, the CNV-ClinViewer enhances for clinical investigators' patient care and for basic scientists' translational genomic research.Publication Conserved patterns across ion channels correlate with variant pathogenicity and clinical phenotypes(2022) Brünger, Tobias; Pérez, Eduardo; Montanucci, Ludovica; Nothnagel, Michael; Møller, Rikke; Schorge, Stephanie; Zuberi, Sameer; Symonds, Joseph; Lemke, Johannes; Brunklaus, Andreas; Traynelis, Stephen; May, Patrick; Lal, DennisClinically identified genetic variants in ion channels can be benign or cause disease by increasing or decreasing the protein function. As a consequence, therapeutic decision-making is challenging without molecular testing of each variant. Our biophysical knowledge of ion-channel structures and function is just emerging, and it is currently not well understood which amino acid residues cause disease when mutated. We sought to systematically identify biological properties associated with variant pathogenicity across all major voltage and ligand-gated ion-channel families. We collected and curated 3049 pathogenic variants from hundreds of neurodevelopmental and other disorders and 12 546 population variants for 30 ion channel or channel subunits for which a high-quality protein structure was available. Using a wide range of bioinformatics approaches, we computed 163 structural features and tested them for pathogenic variant enrichment. We developed a novel 3D spatial distance scoring approach that enables comparisons of pathogenic and population variant distribution across protein structures. We discovered and independently replicated that several pore residue properties and proximity to the pore axis were most significantly enriched for pathogenic variants compared to population variants. Using our 3D scoring approach, we showed that the strongest pathogenic variant enrichment was observed for pore-lining residues and alpha-helix residues within 5Å distance from the pore axis centre and not involved in gating. Within the subset of residues located at the pore, the hydrophobicity of the pore was the feature most strongly associated with variant pathogenicity. We also found an association between the identified properties and both clinical phenotypes and functional in vitro assays for voltage-gated sodium channels (SCN1A, SCN2A, SCN8A) and N-methyl-D-aspartate receptor (GRIN1, GRIN2A, GRIN2B) encoding genes. In an independent expert-curated dataset of 1422 neurodevelopmental disorder pathogenic patient variants and 679 electrophysiological experiments, we show that pore axis distance is associated with seizure age of onset and cognitive performance as well as differential gain versus loss-of-channel function. In summary, we identified biological properties associated with ion-channel malfunction and show that these are correlated with in vitro functional readouts and clinical phenotypes in patients with neurodevelopmental disorders. Our results suggest that clinical decision support algorithms that predict variant pathogenicity and function are feasible in the future.Publication SLC6A1 variant pathogenicity, molecular function and phenotype: a genetic and clinical analysis(2023) Stefanski, Arthur; Pérez Palma, Eduardo; Brünger, Tobias; Montanucci, Ludovica; Gati, Cornelius; Klöckner, Chiara; Johannesen, Katrine; Goodspeed, Kimberly; Macnee, Marie; Deng, Alexander; Aledo, Ángel; Borovikov,Artem; Kava, Maina; Bouman, Arjan; Hajianpour, M.; Pal, Deb; Engelen, Marc; Hagebeuk, Eveline; Shinawi, Marwan; Heidlebaugh, Alexis; Oetjens, Kathryn; Hoffman, Trevor; Striano, Pasquale; Freed, Amanda; Futtrup, Line; Balslev, Thomas; Abulí, Anna; Danvoye, Leslie; Lederer, Damien; Balci, Tugce; Nabavi, Maryam; Butler, Elizabeth; Drewes, Sarah; Van Engelen, Kalene; Howell, Katherine; Khoury, Jean; May, Patrick; Trinidad, Marena; Froelich, Steven; Lemke, JohannesGenetic variants in the SLC6A1 gene can cause a broad phenotypic disease spectrum by altering the protein function. Thus, systematically curated clinically relevant genotype-phenotype associations are needed to understand the disease mechanism and improve therapeutic decision-making. We aggregated genetic and clinical data from 172 individuals with likely pathogenic/pathogenic (lp/p) SLC6A1 variants and functional data for 184 variants (14.1% lp/p). Clinical and functional data were available for a subset of 126 individuals. We explored the potential associations of variant positions on the GAT1 3D structure with variant pathogenicity, altered molecular function and phenotype severity using bioinformatic approaches. The GAT1 transmembrane domains 1, 6 and extracellular loop 4 (EL4) were enriched for patient over population variants. Across functionally tested missense variants (n = 156), the spatial proximity from the ligand was associated with loss-of-function in the GAT1 transporter activity. For variants with complete loss of in vitro GABA uptake, we found a 4.6-fold enrichment in patients having severe disease versus non-severe disease (P = 2.9 × 10-3, 95% confidence interval: 1.5-15.3). In summary, we delineated associations between the 3D structure and variant pathogenicity, variant function and phenotype in SLC6A1-related disorders. This knowledge supports biology-informed variant interpretation and research on GAT1 function. All our data can be interactively explored in the SLC6A1 portal (https://slc6a1-portal.broadinstitute.org/).Publication Structural mapping of GABRB3 variants reveals genotype-phenotype correlations(2021) Johannesen, Katrine; Iqba, Sumaiya; Guazz, Milena; Mohammadi, Nazanin; Pérez, Eduardo; Schaefer, Elise; De Saint Martin, Anne; Abiwarde, Marie; McTague, Amy; Pons, Roser; Piton, Amelie; Kurian, Manju; Ambegaonkar, Gautam; Firth, Helen; Sanchis, Alba; Deprez, Marie; Jansen, Katrien; De Waele, Liesbeth; Briltra, Eva; Verbeek, Nienke; Van Kempen, Marjan; Fazeli, Walid; Striano, Pasquale; Zara, Federico; Visser, Gerhard; Braakman, Hilde; Haeusle, Martin; Elbracht, Miriam; Vahe, Ulvi; Smol, Thomas; Lemke, Johannes; Platzer, Konrad; Kennedy, Joanna; Martin, Karl; Ping, Billie; Smyth, Kimberly; Kaplan, Julie; Thomas, Morgan; Dewenter, Malin; Dinopoulos, Argirios; Campbell, Arthur; Lal, Dennis; Lederer, Damien; Liao, Vivian; Ahring, Philip; Møller, Rikke; Gardella, ElenaPurpose: Pathogenic variants in GABRB3 have been associated with a spectrum of phenotypes from severe developmental disorders and epileptic encephalopathies to milder epilepsy syndromes and mild intellectual disability (ID). In this study, we analyzed a large cohort of individuals with GABRB3 variants to deepen the phenotypic understanding and investigate genotype-phenotype correlations. Methods: Through an international collaboration, we analyzed electro-clinical data of unpublished individuals with variants in GABRB3, and we reviewed previously published cases. All missense variants were mapped onto the 3-dimensional structure of the GABRB3 subunit, and clinical phenotypes associated with the different key structural domains were investigated. Results: We characterized 71 individuals with GABRB3 variants, including 22 novel subjects, expressing a wide spectrum of phenotypes. Interestingly, phenotypes correlated with structural locations of the variants. Generalized epilepsy, with a median age at onset of 12 months, and mild-to-moderate ID were associated with variants in the extracellular domain. Focal epilepsy with earlier onset (median: age 4 months) and severe ID were associated with variants in both the pore-lining helical transmembrane domain and the extracellular domain. Conclusion: These genotype-phenotype correlations will aid the genetic counseling and treatment of individuals affected by GABRB3-related disorders. Future studies may reveal whether functional differences underlie the phenotypic differences.