Browsing by Author "Kushan, Leila"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Genome-Wide Association Study to Find Modifiers for Tetralogy of Fallot in the 22q11.2 Deletion Syndrome Identifies Variants in the GPR98 Locus on 5q14.3(Lippincott Williams & Wilkins, 2017) Guo, Tingwei; Repetto, Gabriela; McDonald, Donna; Chung, Jonathan; Nomaru, Hiroko; Campbell, Christopher; Blonska, Anna; Bassett, Anne; Chow, Eva; Mlynarski, Elisabeth; Swillen, Ann; Vermeesch, Joris; Devriendt, Koen; Gothelf, Doron; Carmel, Miri; Michaelovsky, Elena; Schneider, Maude; Eliez, Stephan; Antonarakis, Stylianos; Coleman, Karlene; Tomita, Aoy; Mitchell, Michael; Digilio, Cristina; Dallapiccola, Bruno; Marino, Bruno; Philip, Nicole; Busa, Tiffany; Kushan, Leila; Bearden, Carrie; Piotrowicz, Małgorzata; Hawuła, Wanda; Roberts, Amy; Tassone, Flora; Simon, Tony; van Duin, Esther; van Amelsvoort, Thérèse; Kates, Wendy; Zackai, Elaine; Johnston, Richard; Cutler, David; Agopian, A; Goldmuntz, Elizabeth; Mitchell, Laura; Wang, Tao; Emanuel, Beverly; Morrow, Bernice; the International 22q11.2 Consortium/Brain and Behavior ConsortiumBACKGROUND: The 22q11.2 deletion syndrome (22q11.2DS; DiGeorge syndrome/velocardiofacial syndrome) occurs in 1 of 4000 live births, and 60% to 70% of affected individuals have congenital heart disease, ranging from mild to severe. In our cohort of 1472 subjects with 22q11.2DS, a total of 62% (n=906) have congenital heart disease and 36% (n=326) of these have tetralogy of Fallot (TOF), comprising the largest subset of severe congenital heart disease in the cohort. METHODS AND RESULTS: To identify common genetic variants associated with TOF in individuals with 22q11.2DS, we performed a genome-wide association study using Affymetrix 6.0 array and imputed genotype data. In our cohort, TOF was significantly associated with a genotyped single-nucleotide polymorphism (rs12519770, P=2.98×10-8) in an intron of the adhesion GPR98 (G-protein-coupled receptor V1) gene on chromosome 5q14.3. There was also suggestive evidence of association between TOF and several additional single-nucleotide polymorphisms in this region. Some genome-wide significant loci in introns or noncoding regions could affect regulation of genes nearby or at a distance. On the basis of this possibility, we examined existing Hi-C chromatin conformation data to identify genes that might be under shared transcriptional regulation within the region on 5q14.3. There are 6 genes in a topologically associated domain of chromatin with GPR98, including MEF2C (Myocyte-specific enhancer factor 2C). MEF2C is the only gene that is known to affect heart development in mammals and might be of interest with respect to 22q11.2DS. CONCLUSIONS: In conclusion, common variants may contribute to TOF in 22q11.2DS and may function in cardiac outflow tract development.Item Mapping Subcortical Brain Alterations in 22q11.2 Deletion Syndrome: Effects of Deletion Size and Convergence With Idiopathic Neuropsychiatric Illness(2020) Ching, Christopher R.K.; Gutman, Boris A.; Sun, Daqiang; Villalon Reina, Julio; Ragothaman, Anjanibhargavi; Isaev, Dmitry; Zavaliangos-Petropulu, Artemis; Lin, Amy; Jonas, Rachel K.; Kushan, Leila; Pacheco-Hansen, Laura; Vajdi, Ariana; Forsyth, Jennifer K.; Jalbrzikowski, Maria; Bakker, Geor; Amelsvoort, Therese van; Antshel, Kevin M.; Fremont, Wanda; Kates, Wendy R.; Campbell, Linda E.; McCabe, Kathryn L.; Craig, Michael C.; Daly, Eileen; Gudbrandsen, Maria; Murphy, Clodagh M.; Murphy, Declan G.; Murphy, Kieran C.; Fiksinski, Ania; Koops, Sanne; Vorstman, Jacob; Crowley, Blaine; Emanuel, Beverly S.; Gur, Raquel E.; McDonald-McGinn, Donna M.; Roalf, David R.; Ruparel, Kosha; Schmitt, J. Eric; Zackaile, Elaine H.; Durdle, Courtney A.; Goodrich-Hunsaker, Naomi J.; Simon, Tony J.; Bassett, Anne S.; Butcher, Nancy J.; Chow, Eva W.C.; Vila-Rodriguez, Fidel; Cunningham, Adam; Doherty, Joanne; Linden, David E.; Moss, Hayley; Owen, Michael J.; Bree, Marianne van den; Crossley, Nicolas A.; Repetto, Gabriela; Thompson, Paul M.; Bearden, Carrie E.Objective: 22q11.2 deletion syndrome (22q11DS) is among the strongest known genetic risk factors for schizophrenia. Previous studies have reported variable alterations in subcortical brain structures in 22q11DS. To better characterize subcortical alterations in 22q11DS, including modulating effects of clinical and genetic heterogeneity, the authors studied a large multicenter neuroimaging cohort from the ENIGMA 22q11.2 Deletion Syndrome Working Group. Methods: Subcortical structures were measured using harmonized protocols for gross volume and subcortical shape morphometry in 533 individuals with 22q11DS and 330 matched healthy control subjects (age range, 6–56 years; 49% female). Results: Compared with the control group, the 22q11DS group showed lower intracranial volume (ICV) and thalamus, putamen, hippocampus, and amygdala volumes and greater lateral ventricle, caudate, and accumbens volumes (Cohen’s d values, 20.90 to 0.93). Shape analysis revealed complex differences in the 22q11DS group across all structures. The larger A-D deletion was associated with more extensive shape alterations compared with the smaller A-B deletion. Participants with 22q11DS with psychosis showed lower ICV and hippocampus, amygdala, and thalamus volumes (Cohen’s d values, 20.91 to 0.53) compared with participants with 22q11DS without psychosis. Shape analysis revealed lower thickness and surface area across subregions of these structures. Compared with subcortical findings from other neuropsychiatric disorders studied by the ENIGMA consortium, significant convergence was observed between participants with 22q11DS with psychosis and participants with schizophrenia, bipolar disorder, major depressive disorder, and obsessive-compulsive disorder. Conclusions: In the largest neuroimaging study of 22q11DS to date, the authors found widespread alterations to subcortical brain structures, which were affected by deletion size and psychotic illness. Findings indicate significant overlap between 22q11DS-associated psychosis, idiopathic schizophrenia, and other severe neuropsychiatric illnesses.Item Rare Genome-Wide Copy Number Variation and Expression of Schizophrenia in 22q11.2 Deletion Syndrome(American Psychiatric Association, 2017) Bassett, Anne; Lowther, Chelsea; Merico, Daniele; Costain, Gregory; Chow, Eva; van Amelsvoort, Therese; McDonald-McGinn, Donna; Gur, Raquel; Swillen, Ann; Van den Bree, Marianne; Murphy, Kieran; Gothelf, Doron; Bearden, Carrie; Eliez, Stephan; Kates, Wendy; Philip, Nicole; Sashi, Vandana; Campbell, Linda; Vorstman, Jacob; Cubells, Joseph; Repetto, Gabriela; Simon, Tony; Boot, Erik; Heung, Tracy; Evers, Rens; Vingerhoets, Claudia; van Duin, Esther; Zackai, Elaine; Vergaelen, Elfi; Devriendt, Koen; Vermeesch, Joris; Owen, Michael; Murphy, Clodagh; Michaelovosky, Elena; Kushan, Leila; Schneider, Maude; Fremont, Wanda; Busa, Tiffany; Hooper, Stephen; McCabe, Kathryn; Duijff, Sasja; Isaev, Karin; Pellecchia, Giovanna; Wei, John; Gazzellone, Matthew; Scherer, Stephen; Emanuel, Beverly; Guo, Tingwei; Morrow, Bernice; Marshall, Christian; International 22q11.2DS Brain and Behavior ConsortiumOBJECTIVE: Chromosome 22q11.2 deletion syndrome (22q11.2DS) is associated with a more than 20-fold increased risk for developing schizophrenia. The aim of this study was to identify additional genetic factors (i.e., "second hits") that may contribute to schizophrenia expression. METHOD: Through an international consortium, the authors obtained DNA samples from 329 psychiatrically phenotyped subjects with 22q11.2DS. Using a high-resolution microarray platform and established methods to assess copy number variation (CNV), the authors compared the genome-wide burden of rare autosomal CNV, outside of the 22q11.2 deletion region, between two groups: a schizophrenia group and those with no psychotic disorder at age ≥25 years. The authors assessed whether genes overlapped by rare CNVs were overrepresented in functional pathways relevant to schizophrenia. RESULTS: Rare CNVs overlapping one or more protein-coding genes revealed significant between-group differences. For rare exonic duplications, six of 19 gene sets tested were enriched in the schizophrenia group; genes associated with abnormal nervous system phenotypes remained significant in a stepwise logistic regression model and showed significant interactions with 22q11.2 deletion region genes in a connectivity analysis. For rare exonic deletions, the schizophrenia group had, on average, more genes overlapped. The additional rare CNVs implicated known (e.g., GRM7, 15q13.3, 16p12.2) and novel schizophrenia risk genes and loci. CONCLUSIONS: The results suggest that additional rare CNVs overlapping genes outside of the 22q11.2 deletion region contribute to schizophrenia risk in 22q11.2DS, supporting a multigenic hypothesis for schizophrenia. The findings have implications for understanding expression of psychotic illness and herald the importance of whole-genome sequencing to appreciate the overall genomic architecture of schizophrenia.Publication Source-based morphometry reveals structural brain pattern abnormalities in 22q11.2 deletion syndrome(2024) Repetto, Gabriela; Ge, Ruiyang; Ching, Christopher; Bassett, Anne; Kushan, Leila; Antshe, Kevin; Van Amelsvoort, Therese; Bakker, Geor; Butcher, Nancy; Campbell, Linda; Chow, Eva; Craig, Michael; Crossley, Nicolas; Cunningham, Adam; Daly, Eileen; Doherty, Joanne; Durdle, Courtney; Emanuel, Beverly; Fiksinski, Ania; Forsyth, Jennifer; Fremont, Wanda; Goodrich-Hunsaker, Naomi; Gudbrandsen, Maria; Gur, Raquel; Jalbrzikowski, Maria; Kates, Wendy; Lin, Amy; Linden, David; McCabe, Kathryn; McDonald, Donna; Moss, Hayley; Murphy, Declan; Murphy, Kieran; Owen, Michael; Villalon, Julio; Roalf, David; Ruparel, Kosha; Schmitt, J. Eric; Schuite, Sanne; Angkustsiri, Kathleen22q11.2 deletion syndrome (22q11DS) is the most frequently occurring microdeletion in humans. It is associated with a significant impact on brain structure, including prominent reductions in gray matter volume (GMV), and neuropsychiatric manifestations, including cognitive impairment and psychosis. It is unclear whether GMV alterations in 22q11DS occur according to distinct structural patterns. Then, 783 participants (470 with 22q11DS: 51% females, mean age [SD] 18.2 [9.2]; and 313 typically developing [TD] controls: 46% females, mean age 18.0 [8.6]) from 13 datasets were included in the present study. We segmented structural T1-weighted brain MRI scans and extracted GMV images, which were then utilized in a novel source-based morphometry (SBM) pipeline (SS-Detect) to generate structural brain patterns (SBPs) that capture co-varying GMV. We investigated the impact of the 22q11.2 deletion, deletion size, intelligence quotient, and psychosis on the SBPs. Seventeen GMV-SBPs were derived, which provided spatial patterns of GMV covariance associated with a quantitative metric (i.e., loading score) for analysis. Patterns of topographically widespread differences in GMV covariance, including the cerebellum, discriminated individuals with 22q11DS from healthy controls. The spatial extents of the SBPs that revealed disparities between individuals with 22q11DS and controls were consistent with the findings of the univariate voxel-based morphometry analysis. Larger deletion size was associated with significantly lower GMV in frontal and occipital SBPs; however, history of psychosis did not show a strong relationship with these covariance patterns. 22q11DS is associated with distinct structural abnormalities captured by topographical GMV covariance patterns that include the cerebellum. Findings indicate that structural anomalies in 22q11DS manifest in a nonrandom manner and in distinct covarying anatomical patterns, rather than a diffuse global process. These SBP abnormalities converge with previously reported cortical surface area abnormalities, suggesting disturbances of early neurodevelopment as the most likely underlying mechanism.