Browsing by Author "Khoury, Maroun"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Exosome-like vesicles in Apis mellifera bee pollen, honey and royal jelly contribute to their antibacterial and pro-regenerative activity(2019) Schuh, Christina; Aguayo, Sebastian; Zavala, Gabriela; Khoury, MarounMicrovesicles are key players in cellular communication. As glandular secretions present a rich source of active exosomes, we hypothesized that exosome-like vesicles are present in Apis mellifera hypopharyngeal gland secretomal products (honey, royal jelly and bee pollen), and participate in their known antibacterial and pro-regenerative effects. We developed an isolation protocol based on serial centrifugation and ultracentrifugation steps and demonstrated the presence of protein-containing exosome-like vesicles in all three bee-derived products. Assessing their antibacterial properties, we found that exosome-like vesicles had bacteriostatic, bactericidal and biofilm-inhibiting effects on Staphylococcus aureus. Furthermore, we demonstrated that mesenchymal stem cells (MSCs) internalize bee-derived exosome- like vesicles and that these vesicles influence the migration potential of the MSCs. In an in vitro wound-healing assay, honey and royal jelly exosome-like vesicles increased migration of human MSCs, demonstrating their inter-kingdom activity. In summary, we have discovered exosome-like vesicles as a new, active compound in bee pollen, honey and royal jelly.Item Exosomes on the border of species and kingdom intercommunication(2019-08) Schuh, Christina; Cuenca, Jimena; Alcayaga-Miranda, Francisca; Khoury, MarounOver the last decades exosomes have become increasingly popular in the field of medicine. While until recently they were believed to be involved in the removal of obsolete particles from the cell, it is now known that exosomes are key players in cellular communication, carrying source-specific molecules such as proteins, growth factors, miRNA/mRNA, among others. The discovery that exosomes are not bound to intraspecies interactions, but are also capable of interkingdom communication, has once again revolutionized the field of exosomes research. A rapidly growing body of literature is shedding light at novel sources and participation of exosomes in physiological or regenerative processes, infection and disease. For the purpose of this review we have categorized 6 sources of interest (animal products, body fluids, plants, bacteria, fungus and parasites) and linked their innate roles to the clinics and potential medical applications, such as cell-based therapy, diagnostics or drug delivery.Item Stem cell exosomes inhibit angiogenesis and tumor growth of oral squamous cell carcinoma(2019) Rosenberger, Leonie; Ezquer, Marcelo; Lillo-Vera, Fernando; Pedraza, Paulina L.; Ortúzar, María Ignacia; González, Paz L.; Figueroa-Valdés, Aliosha I.; Cuenca, Jimena; Ezquer, Fernando; Khoury, Maroun; Alcayaga-Miranda, FranciscaRecently, exosomes secreted by menstrual mesenchymal stem cells have been identified as inhibitory agents of tumor angiogenesis and modulators of the tumor cell secretome in prostate and breast cancer. However, their direct effect on endothelial cells and paracrine mediators have not yet been investigated. Using a carrier-based cell culture system to test the scalability for exosome production, we showed that different types of endothelial cells present specific kinetics for exosomes internalization. Exosome-treatment of endothelial cells increased cytotoxicity and reduced VEGF secretion and angiogenesis in a dose-dependent manner. Using the hamster buccal pouch carcinoma as a preclinical model for human oral squamous cell carcinoma, we demonstrated a significant antitumor effect of intra-tumoral injection of exosomes associated with a loss of tumor vasculature. These results address up-scaling of exosome production, a relevant issue for their clinical application, and also assess menstrual stem cell exosomes as potential anti-angiogenic agents for the treatment of neoplastic conditions.Item The Reparative Abilities of Menstrual Stem Cells Modulate the Wound Matrix Signals and Improve Cutaneous Regeneration(2018) Cuenca, Jimena; Le-Gatt, Alice; Castillo, Valentina; Belletti, José; Díaz, Macarena; Kurte, Mónica; González, Paz; Alcayaga, Francisca; Schuh, Christina; Ezquer, Fernando; Ezquer, Marcelo; Khoury, MarounConsiderable advances have been made toward understanding the cellular and molecular mechanism of wound healing, however, treatments for chronic wounds remain elusive. Emerging concepts utilizing mesenchymal stem cells (MSCs) from umbilical cord, adipose tissue and bone marrow have shown therapeutical advantages for wound healing. Based on this positive outcome, efforts to determine the optimal sources for MSCs are required in order to improve their migratory, angiogenic, immunomodulatory, and reparative abilities. An alternative source suitable for repetitive, non-invasive collection of MSCs is from the menstrual fluid (MenSCs), displaying a major practical advantage over other sources. This study aims to compare the biological functions and the transcriptomic pattern of MenSCs with umbilical cord MSCs in conditions resembling the wound microenvironment. Consequently, we correlate the specific gene expression signature from MenSCs with changes of the wound matrix signals in vivo. The direct comparison revealed a superior clonogenic and migratory potential of MenSCs as well as a beneficial effect of their secretome on human dermal fibroblast migration in vitro. Furthermore, MenSCs showed increased immunomodulatory properties, inhibiting T-cell proliferation in co-culture. We further, investigated the expression of selected genes involved in wound repair (growth factors, cytokines, chemokines, AMPs, MMPs) and found considerably higher expression levels in MenSCs (ANGPT1 1.5-fold; PDGFA 1.8-fold; PDGFB 791-fold; MMP3 21.6-fold; ELN 13.4-fold; and MMP10 9.2-fold). This difference became more pronounced under a pro-inflammatory stimulation, resembling wound bed conditions. Locally applied in a murine excisional wound splinting model, MenSCs showed a significantly improved wound closure after 14 days, as well as enhanced neovascularization, compared to the untreated group. Interestingly, analysis of excised wound tissue revealed a significantly higher expression of VEGF (1.42-fold) among other factors, translating an important conversion of the matrix signals in the wound site. Furthermore, histological analysis of the wound tissue from MenSCs-treated group displayed a more mature robust vascular network and a genuinely higher collagen content confirming the pro-angiogenic and reparative effect of MenSCs treatment. In conclusion, the superior clonogenicity, immunosuppressive and migration potential in combination with specific paracrine signature of MenSCs, resulted in an enhanced wound healing and cutaneous regeneration process.Item Time-dependent LPS exposure commands MSC immunoplasticity through TLR4 activation leading to opposite therapeutic outcome in EAE(2020) Kurte, Mónica; Vega-Letter, Ana María; Luz-Crawford, Patricia; Djouad, Farida; Noël, Danièle; Khoury, Maroun; Carrión, FlavioBackground: Mesenchymal stem cells (MSCs) have been recognized for their regenerative and anti-inflammatory capacity which makes them very attractive to cell therapy, especially those ones to treat inflammatory and autoimmune disease. Two different immune-phenotypes have been described for MSCs depending on which Tolllike receptor (TLR) is activated. MSC1 is endowed with a pro-inflammatory phenotype following TLR4 activation with LPS. On the other hand, anti-inflammatory MSC2 is induced by the activation of TLR3 with Poly(I:C). High immunoplasticity of MSCs is a matter of concern in cell-based therapies. In this study, we investigated whether a single stimulus can induce both types of MSCs through a differential activation of TLR4 with LPS. Methods: MSCs were activated with LPS following a short exposure of 1-h (MSCs-LPS1h) or long-time exposure for 48 h (MSCs-LPS48h), and then, we evaluated the biological response in vitro, the immunosuppressive capacity of MSCs in vitro, and the therapeutic potential of MSCs in an experimental autoimmune encephalomyelitis (EAE) mouse model. Results: Our results showed that 1-h LPS exposure induced a MSC1 phenotype. Indeed, MSCs-LPS1h expressed low levels of NO/iNOS and decreased immunosuppressive capacity in vitro without therapeutic effect in the EAE model. In contrast, MSCs-LPS48h achieved a MSC2-like phenotype with significant increase in the immunosuppressive capacity on T cell proliferation in vitro, together with an improved in the therapeutic effect and higher Treg, compared to unstimulated MSCs. Furthermore, we determine through the MSCs-TLR4KO that the expression of TLR4 receptor is essential for MSCs’ suppressive activity since TLR4 deletion was associated with a diminished suppressive effect in vitro and a loss of therapeutic effect in vivo. Conclusions: We demonstrate that MSCs display a high immunoplasticity commanded by a single stimulus, where LPS exposure time regulated the MSC suppressive effect leading into either an enhanced or an impairment therapeutic activity. Our results underscore the importance of phenotype conversion probably related to the TLR4 expression and activation, in the design of future clinical protocols to treat patients with inflammatory and autoimmune diseases.