Browsing by Author "Fiksinski, Ania"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item A normative chart for cognitive development in a genetically selected population(2021) Fiksinski, Ania; Bearden, Carrie; Bassett, Anne; Kahn, René; Zinkstok, Janneke; Hooper, Stephen R; Tempelaar, Wanda; McDonald, Donna; Swillen, Ann; Emanuel, Beverly; Morrow, Bernice; Gur, Raquel; Chow, Eva; Van den Bree, Marianne; Vermeesch, Joris; Warren, Stephen; Owen, Michael; Van Amelsvoort, Therese; Eliez, Stephan; Gothelf, Doron; Arango, Celso; Kates, Wendy; Simon, Tony; Murphy, Kieran; Repetto, Gabriela; Heine, Damian; Vicari, Stefano; Cubells, Joseph; Armando, Marco; Philip, Nicole; Campbell, Linda; García, Sixto; Schneider, Maude; Shashi, Vandana; 22q11DS International Consortium on Brain and Behavior; Vorstman, Jacob; Breetvelt, ElemiCertain pathogenic genetic variants impact neurodevelopment and cause deviations from typical cognitive trajectories. Understanding variant-specific cognitive trajectories is clinically important for informed monitoring and identifying patients at risk for comorbid conditions. Here, we demonstrate a variant-specific normative chart for cognitive development for individuals with 22q11.2 deletion syndrome (22q11DS). We used IQ data from 1365 individuals with 22q11DS to construct variant-specific normative charts for cognitive development (Full Scale, Verbal, and Performance IQ). This allowed us to calculate Z-scores for each IQ datapoint. Then, we calculated the change between first and last available IQ assessments (delta Z-IQ-scores) for each individual with longitudinal IQ data (n = 708). We subsequently investigated whether using the variant-specific IQ-Z-scores would decrease required sample size to detect an effect with schizophrenia risk, as compared to standard IQ-scores. The mean Z-IQ-scores for FSIQ, VIQ, and PIQ were close to 0, indicating that participants had IQ-scores as predicted by the normative chart. The mean delta-Z-IQ-scores were equally close to 0, demonstrating a good fit of the normative chart and indicating that, as a group, individuals with 22q11DS show a decline in IQ-scores as they grow into adulthood. Using variant-specific IQ-Z-scores resulted in 30% decrease of required sample size, as compared to the standard IQ-based approach, to detect the association between IQ-decline and schizophrenia (p < 0.01). Our findings suggest that using variant-specific normative IQ data significantly reduces required sample size in a research context, and may facilitate a more clinically informative interpretation of IQ data. This approach allows identification of individuals that deviate from their expected, variant-specific, trajectory. This group may be at increased risk for comorbid conditions, such as schizophrenia in the case of 22q11DS.Item Mapping Subcortical Brain Alterations in 22q11.2 Deletion Syndrome: Effects of Deletion Size and Convergence With Idiopathic Neuropsychiatric Illness(2020) Ching, Christopher R.K.; Gutman, Boris A.; Sun, Daqiang; Villalon Reina, Julio; Ragothaman, Anjanibhargavi; Isaev, Dmitry; Zavaliangos-Petropulu, Artemis; Lin, Amy; Jonas, Rachel K.; Kushan, Leila; Pacheco-Hansen, Laura; Vajdi, Ariana; Forsyth, Jennifer K.; Jalbrzikowski, Maria; Bakker, Geor; Amelsvoort, Therese van; Antshel, Kevin M.; Fremont, Wanda; Kates, Wendy R.; Campbell, Linda E.; McCabe, Kathryn L.; Craig, Michael C.; Daly, Eileen; Gudbrandsen, Maria; Murphy, Clodagh M.; Murphy, Declan G.; Murphy, Kieran C.; Fiksinski, Ania; Koops, Sanne; Vorstman, Jacob; Crowley, Blaine; Emanuel, Beverly S.; Gur, Raquel E.; McDonald-McGinn, Donna M.; Roalf, David R.; Ruparel, Kosha; Schmitt, J. Eric; Zackaile, Elaine H.; Durdle, Courtney A.; Goodrich-Hunsaker, Naomi J.; Simon, Tony J.; Bassett, Anne S.; Butcher, Nancy J.; Chow, Eva W.C.; Vila-Rodriguez, Fidel; Cunningham, Adam; Doherty, Joanne; Linden, David E.; Moss, Hayley; Owen, Michael J.; Bree, Marianne van den; Crossley, Nicolas A.; Repetto, Gabriela; Thompson, Paul M.; Bearden, Carrie E.Objective: 22q11.2 deletion syndrome (22q11DS) is among the strongest known genetic risk factors for schizophrenia. Previous studies have reported variable alterations in subcortical brain structures in 22q11DS. To better characterize subcortical alterations in 22q11DS, including modulating effects of clinical and genetic heterogeneity, the authors studied a large multicenter neuroimaging cohort from the ENIGMA 22q11.2 Deletion Syndrome Working Group. Methods: Subcortical structures were measured using harmonized protocols for gross volume and subcortical shape morphometry in 533 individuals with 22q11DS and 330 matched healthy control subjects (age range, 6–56 years; 49% female). Results: Compared with the control group, the 22q11DS group showed lower intracranial volume (ICV) and thalamus, putamen, hippocampus, and amygdala volumes and greater lateral ventricle, caudate, and accumbens volumes (Cohen’s d values, 20.90 to 0.93). Shape analysis revealed complex differences in the 22q11DS group across all structures. The larger A-D deletion was associated with more extensive shape alterations compared with the smaller A-B deletion. Participants with 22q11DS with psychosis showed lower ICV and hippocampus, amygdala, and thalamus volumes (Cohen’s d values, 20.91 to 0.53) compared with participants with 22q11DS without psychosis. Shape analysis revealed lower thickness and surface area across subregions of these structures. Compared with subcortical findings from other neuropsychiatric disorders studied by the ENIGMA consortium, significant convergence was observed between participants with 22q11DS with psychosis and participants with schizophrenia, bipolar disorder, major depressive disorder, and obsessive-compulsive disorder. Conclusions: In the largest neuroimaging study of 22q11DS to date, the authors found widespread alterations to subcortical brain structures, which were affected by deletion size and psychotic illness. Findings indicate significant overlap between 22q11DS-associated psychosis, idiopathic schizophrenia, and other severe neuropsychiatric illnesses.Publication Source-based morphometry reveals structural brain pattern abnormalities in 22q11.2 deletion syndrome(2024) Repetto, Gabriela; Ge, Ruiyang; Ching, Christopher; Bassett, Anne; Kushan, Leila; Antshe, Kevin; Van Amelsvoort, Therese; Bakker, Geor; Butcher, Nancy; Campbell, Linda; Chow, Eva; Craig, Michael; Crossley, Nicolas; Cunningham, Adam; Daly, Eileen; Doherty, Joanne; Durdle, Courtney; Emanuel, Beverly; Fiksinski, Ania; Forsyth, Jennifer; Fremont, Wanda; Goodrich-Hunsaker, Naomi; Gudbrandsen, Maria; Gur, Raquel; Jalbrzikowski, Maria; Kates, Wendy; Lin, Amy; Linden, David; McCabe, Kathryn; McDonald, Donna; Moss, Hayley; Murphy, Declan; Murphy, Kieran; Owen, Michael; Villalon, Julio; Roalf, David; Ruparel, Kosha; Schmitt, J. Eric; Schuite, Sanne; Angkustsiri, Kathleen22q11.2 deletion syndrome (22q11DS) is the most frequently occurring microdeletion in humans. It is associated with a significant impact on brain structure, including prominent reductions in gray matter volume (GMV), and neuropsychiatric manifestations, including cognitive impairment and psychosis. It is unclear whether GMV alterations in 22q11DS occur according to distinct structural patterns. Then, 783 participants (470 with 22q11DS: 51% females, mean age [SD] 18.2 [9.2]; and 313 typically developing [TD] controls: 46% females, mean age 18.0 [8.6]) from 13 datasets were included in the present study. We segmented structural T1-weighted brain MRI scans and extracted GMV images, which were then utilized in a novel source-based morphometry (SBM) pipeline (SS-Detect) to generate structural brain patterns (SBPs) that capture co-varying GMV. We investigated the impact of the 22q11.2 deletion, deletion size, intelligence quotient, and psychosis on the SBPs. Seventeen GMV-SBPs were derived, which provided spatial patterns of GMV covariance associated with a quantitative metric (i.e., loading score) for analysis. Patterns of topographically widespread differences in GMV covariance, including the cerebellum, discriminated individuals with 22q11DS from healthy controls. The spatial extents of the SBPs that revealed disparities between individuals with 22q11DS and controls were consistent with the findings of the univariate voxel-based morphometry analysis. Larger deletion size was associated with significantly lower GMV in frontal and occipital SBPs; however, history of psychosis did not show a strong relationship with these covariance patterns. 22q11DS is associated with distinct structural abnormalities captured by topographical GMV covariance patterns that include the cerebellum. Findings indicate that structural anomalies in 22q11DS manifest in a nonrandom manner and in distinct covarying anatomical patterns, rather than a diffuse global process. These SBP abnormalities converge with previously reported cortical surface area abnormalities, suggesting disturbances of early neurodevelopment as the most likely underlying mechanism.Publication Updated clinical practice recommendations for managing adults with 22q11.2 deletion syndrome(2023) Boot, Erik; Óskarsdóttir, Sólveig; C Y Loo, Joanne; Crowley, Terrence; Orchanian, Ani; Andrade, Danielle; Arganbright, Jill; Castelein, René; Cserti-Gazdewich, Christine; De Reuver, Steven; Fiksinski, Ania; Klingberg, Gunilla; Lang, Anthony; Mascarenhas, Maria; Moss, Edward; Anna, Beata; Oechslin, Erwin; Palmer, Lisa; Repetto, Gabriela; D Reyes, Nikolai; Schneider, Maude; Silversides, Candice; Sullivan, Kathleen; Swillen, Ann; Van Amelsvoort, Therese; Van Batavia, Jason; Vingerhoets, Claudia; McDonald, Donna; Bassett, AnneThis review aimed to update the clinical practice guidelines for managing adults with 22q11.2 deletion syndrome (22q11.2DS). The 22q11.2 Society recruited expert clinicians worldwide to revise the original clinical practice guidelines for adults in a stepwise process according to best practices: (1) a systematic literature search (1992-2021), (2) study selection and synthesis by clinical experts from 8 countries, covering 24 subspecialties, and (3) formulation of consensus recommendations based on the literature and further shaped by patient advocate survey results. Of 2441 22q11.2DS-relevant publications initially identified, 2344 received full-text review, with 2318 meeting inclusion criteria (clinical care relevance to 22q11.2DS) including 894 with potential relevance to adults. The evidence base remains limited. Thus multidisciplinary recommendations represent statements of current best practice for this evolving field, informed by the available literature. These recommendations provide guidance for the recognition, evaluation, surveillance, and management of the many emerging and chronic 22q11.2DS-associated multisystem morbidities relevant to adults. The recommendations also address key genetic counseling and psychosocial considerations for the increasing numbers of adults with this complex condition.