Browsing by Author "De la Varga, Igor"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Evaluating the hydration of high volume fly ash mixtures using chemically inert fillers(2018) De la Varga, Igor; Castro, Javier; Bentz, Dale P.; Zunino, Franco; Weiss, JasonFly ash is frequently used as a replacement for cement in concrete. However, questions remain regarding the influence that fly ash has on the hydration of cement. This paper examines physical aspects (e.g., surface nucleation, cement particle spacing) and chemical aspects (e.g., pozzolanic and hydraulic reactions) of the fly ash and cement in mixtures containing high volumes of fly ash. In addition to using fly ash, a chemically inert filler was used consisting of a blend of fine silica sands with approximately the same particle size distribution as that of the fly ash. The paper compares reactivity results from 1) cement, 2) cement-fly ash and 3) cement-inert filler systems. Isothermal calorimetry measurements are used to quantitatively evaluate the role played by the fly ash in hydration of high volume fly ash mixtures. The results provide a decoupling of the physical and chemical effects of high volume fly ash on cement hydration. (C) 2017 Elsevier Ltd. All rights reserved.Item Fluid transport in high volume fly ash mixtures with and without internal curing(2014) De la Varga, Igor; Spragg, Robert P.; Di Bella, Carmelo; Castro, Javier; Bentz, Dale P.; Weiss, JasonThe transport of fluid and ions in concrete mixtures is central to many aspects of concrete deterioration. As a result, transport properties are frequently measured as an indication of the durability that a concrete mixture may be expected to have. This paper is the second in a series investigating the performance of high volume fly ash (HVFA) mixtures with low water-to-cementitious ratios (w/cm) that are internally cured. While the first paper focused on strength and shrinkage, this paper presents the evaluation of the transport properties of these mixtures. Specifically, the paper presents results from: rapid chloride migration (RCM), rapid chloride penetration test (RCPT), apparent chloride diffusion coefficient, surface electrical resistivity, and water absorption. The test matrix consisted of mortar samples with two levels of class C fly ash replacement (40% and 60% by volume) with and without internal curing provided with pre-wetted lightweight fine aggregates (LWA). These mixtures are compared to plain ordinary portland cement (OPC) mortars. The results indicate that HVFA mixtures with and without internal curing provide benefits in terms of reduced transport coefficients compared to the OPC mixtures