Browsing by Author "Crempien, Jorge G.F."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Consistently Processed Strong-Motion Database for Chilean Earthquakes(2022) Castro, Sebastián; Benavente, Roberto; Crempien, Jorge G.F.; Candia, Gabriel; Llera, Juan Carlos de laSince the 1985 M 8.0 central Chile earthquake, national strong‐motion seismic networks have recorded ten megathrust earthquakes with magnitudes greater than M 7.5 at the convergent margin, defined by the contact between the Nazca and South American plates. The analysis of these earthquake records have led to improved hazard analyses and design codes for conventional and seismically protected structures. Although strong‐motion baseline correction is required for a meaningful interpretation of these records, correction methods have not been applied consistently in time. The inconsistencies between correction methods have been neglected in the practical use of these records in practice. Consequently, this work aims to provide a new strong‐motion database for researchers and engineers, which has been processed by traceable and consistent data processing techniques. The record database comes from three uncorrected strong motion Chilean databases. All the records are corrected using a four‐step novel methodology, which detects the P‐wave arrival and introduces a baseline correction based on the reversible‐jump Markov chain Monte Carlo method. The resulting strong motion database has more than 2000 events from 1985 to the date, and it is available to download at the Simulation Based Earthquake Risk and Resilience of Interdependent Systems and Networks (SIBER‐RISK) project website.Item Correlations of spectral accelerations in the Chilean subduction zone(2020) Candia, Gabriel; Poulos, Alan; Llera, Juan Carlos de la; Crempien, Jorge G.F.; Macedo, JorgeThe correlation between spectral accelerations is key in the construction of conditional mean spectra, the computation of vector-valued seismic hazard, and the assessment of seismic risk of spatially distributed systems, among other applications. Spectral correlations are highly dependent on the earthquake database used, and thus, region-specific correlation models have been developed mainly for earthquakes in western United States, Europe, Middle East, and Japan. Correlation models based on global data sets for crustal and subduction zones have also become available, but there is no consensus about their applicability on a specific region. This study proposes a new correlation model for 5% damped spectral accelerations and peak ground velocity in the Chilean subduction zone. The correlations obtained were generally higher than those observed from shallow crustal earthquakes and subduction zones such as Japan and Taiwan. The study provides two illustrative applications of the correlation model: (1) computation of conditional spectra for a firm soil site located in Santiago, Chile and (2) computation of bivariate hazard for spectral accelerations at two structural periods.