Browsing by Author "Cornejo, Rodrigo"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Publication Continuous prolonged prone positioning in COVID‑19‑related ARDS: a multicenter cohort study from Chile(2022) Cornejo, Rodrigo; Montoya, Jorge; Gajardo, Abraham; Graf, Jerónimo; Alegría, Leyla; Baghetti, Romyna; Irarrázaval, Anita; Santis, César; Pavez, Nicolás; Leighton, Sofía; Tomicic, Vinko; Morales, Daniel; Ruiz, Carolina; Navarrete, Pablo; Vargas, Patricio; Gálvez, Roberto; Espinosa, Victoria; Lazo, Marioli; Pérez Araos, Rodrigo; Garay, Osvaldo; Sepúlveda, Patrick; Martínez, Edgardo; Bruhn, Alejandro; SOCHIMI Prone-COVID-19 GroupBackground: Prone positioning is currently applied in time-limited daily sessions up to 24 h which determines that most patients require several sessions. Although longer prone sessions have been reported, there is scarce evidence about the feasibility and safety of such approach. We analyzed feasibility and safety of a continuous prolonged prone positioning strategy implemented nationwide, in a large cohort of COVID-19 patients in Chile. Methods: Retrospective cohort study of mechanically ventilated COVID-19 patients with moderate-to-severe acute respiratory distress syndrome (ARDS), conducted in 15 Intensive Care Units, which adhered to a national protocol of continuous prone sessions ≥ 48 h and until PaO2:FiO2 increased above 200 mm Hg. The number and extension of prone sessions were registered, along with relevant physiologic data and adverse events related to prone positioning. The cohort was stratified according to the first prone session duration: Group A, 2-3 days; Group B, 4-5 days; and Group C, > 5 days. Multivariable regression analyses were performed to assess whether the duration of prone sessions could impact safety. Results: We included 417 patients who required a first prone session of 4 (3-5) days, of whom 318 (76.3%) received only one session. During the first prone session the main adverse event was grade 1-2 pressure sores in 97 (23.9%) patients; severe adverse events were infrequent with 17 non-scheduled extubations (4.2%). 90-day mortality was 36.2%. Ninety-eight patients (24%) were classified as group C; they exhibited a more severe ARDS at baseline, as reflected by lower PaO2:FiO2 ratio and higher ventilatory ratio, and had a higher rate of pressure sores (44%) and higher 90-day mortality (48%). However, after adjustment for severity and several relevant confounders, prone session duration was not associated with mortality or pressure sores. Conclusions: Nationwide implementation of a continuous prolonged prone positioning strategy for COVID-19 ARDS patients was feasible. Minor pressure sores were frequent but within the ranges previously described, while severe adverse events were infrequent. The duration of prone session did not have an adverse effect on safety.Item Near-apneic ventilation decreases lung injury and fibroproliferation in an ARDS model with ECMO(2019) Araos, Joaquín; Alegría, Leyla; Garcia, Patricio; Cruces, Pablo; Soto, Dagoberto; Erranz, Benjamín; Amthauer, Macarena; Salomon, Tatiana; Medina, Tania; Rodríguez, Felipe; Ayala, Pedro; Borzone, Gisella R.; Meneses, Manuel; Damiani, Felipe; Retamal, Jaime; Cornejo, Rodrigo; Bugedo, Guillermo; Bruhn, AlejandroRationale: There is wide variability in mechanical ventilation settings during ECMO in ARDS patients. Although lung rest is recommended to prevent further injury, there is no evidence to support it. Objectives: To determine whether near-apneic ventilation decreases lung injury in a pig model of ARDS supported with ECMO. Methods: Pigs (26-36kg; n=24) were anesthetized and connected to mechanical ventilation. In 18 animals lung injury was induced by a double-hit consisting in repeated saline lavages followed by 2 hours of injurious ventilation. Then, animals were connected to high-flow veno-venous ECMO, and randomized into 3 groups: Non-protective (PEEP 5 cmH2O, tidal volume 10 ml/kg, respiratory rate 20 bpm); Conventional-protective (PEEP 10 cmH2O, tidal volume 6 ml/kg, respiratory rate 20 bpm); Near-apneic (PEEP 10 cmH2O, driving pressure 10 cmH2O, respiratory rate 5 bpm). Six other pigs were used as Sham. All groups were maintained during the 24-hour study period. Measurements and Main Results: Minute ventilation and mechanical power were lower in the Near-apneic group, but no differences were observed in oxygenation or compliance. Lung histology revealed less injury in the Near-apneic group. Extensive immunohistochemical staining for myofibroblasts and pro-collagen III was observed in the Non-protective group, with the Near-apneic group exhibiting the least alterations. Near- apneic group showed significantly less matrix-metalloproteinase-2 and -9 activity. Histological lung injury and fibroproliferation scores were positively correlated with driving pressure and mechanical power.