Browsing by Author "Coban-Akdemir, Zeynep"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Publication Decoding complex inherited phenotypes in rare disorders: the DECIPHERD initiative for rare undiagnosed diseases in Chile(2024) Poli Harlowe, María Cecilia; Rebolledo Jaramillo, Boris; Lagos, Catalina; Orellana, Joan; Moreno, Gabriela; Martín, Luz M.; Encina, Gonzalo; Böhme, Daniela; Faundes, Víctor; Zavala, M. Jesús; Hasbún, María Trinidad; Fischer, Sara; Brito, Florencia; Araya, Diego; Lira, Manuel; Cruz, Javiera de la; Astudillo, Camila; Lay-Son, Guillermo; Cares, Carolina; Aracena, Mariana; San Martín, Esteban; Coban-Akdemir, Zeynep; Posey, Jennifer E.; Lupski, James R.; Repetto, GabrielaRare diseases affect millions of people worldwide, and most have a genetic etiology. The incorporation of next-generation sequencing into clinical settings, particularly exome and genome sequencing, has resulted in an unprecedented improvement in diagnosis and discovery in the past decade. Nevertheless, these tools are unavailable in many countries, increasing health care gaps between high- and low-and-middle-income countries and prolonging the “diagnostic odyssey” for patients. To advance genomic diagnoses in a setting of limited genomic resources, we developed DECIPHERD, an undiagnosed diseases program in Chile. DECIPHERD was implemented in two phases: training and local development. The training phase relied on international collaboration with Baylor College of Medicine, and the local development was structured as a hybrid model, where clinical and bioinformatics analysis were performed in-house and sequencing outsourced abroad, due to lack of high-throughput equipment in Chile. We describe the implementation process and findings of the first 103 patients. They had heterogeneous phenotypes, including congenital anomalies, intellectual disabilities and/or immune system dysfunction. Patients underwent clinical exome or research exome sequencing, as solo cases or with parents using a trio design. We identified pathogenic, likely pathogenic or variants of unknown significance in genes related to the patients´ phenotypes in 47 (45.6%) of them. Half were de novo informative variants, and half of the identified variants have not been previously reported in public databases. DECIPHERD ended the diagnostic odyssey for many participants. This hybrid strategy may be useful for settings of similarly limited genomic resources and lead to discoveries in understudied populations.Item Identifying Genes Whose Mutant Transcripts Cause Dominant Disease Traits by Potential Gain-of-Function Alleles(2018) Coban-Akdemir, Zeynep; White, Janson J.; Song, Xiaofei; Jhangiani, Shalini N.; Fatih, Jawid M.; Gambin, Tomasz; Bayram, Yavuz; Chinn, Ivan K.; Karaca, Ender; Punetha, Jaya; Poli, Cecilia; Baylor-Hopkins Center for Mendelian Genomics; Boerwinkle, Eric; Shaw, Chad A.; Orange, Jordan S.; Gibbs, Richard A.; Lappalainen, Tuuli; Lupski, James R.; Carvalho, Claudia M.B.Premature termination codon (PTC)-bearing transcripts are often degraded by nonsense-mediated decay (NMD) resulting in loss-of-function (LoF) alleles. However, not all PTCs result in LoF mutations, i.e., some such transcripts escape NMD and are translated to truncated peptide products that result in disease due to gain-of-function (GoF) effects. Since the location of the PTC is a major factor determining transcript fate, we hypothesized that depletion of protein-truncating variants (PTVs) within the gene region predicted to escape NMD in control databases could provide a rank for genic susceptibility for disease through GoF versus LoF. We developed an NMD escape intolerance score to rank genes based on the depletion of PTVs that would render them able to escape NMD using the Atherosclerosis Risk in Communities Study (ARIC) and the Exome Aggregation Consortium (ExAC) control databases, which was further used to screen the Baylor-Center for Mendelian Genomics disease database. This analysis revealed 1,996 genes significantly depleted for PTVs that are predicted to escape from NMD, i.e., PTVesc; further studies provided evidence that revealed a subset as candidate genes underlying Mendelian phenotypes. Importantly, these genes have characteristically low pLI scores, which can cause them to be overlooked as candidates for dominant diseases. Collectively, we demonstrate that this NMD escape intolerance score is an effective and efficient tool for gene discovery in Mendelian diseases due to production of truncated or altered proteins. More importantly, we provide a complementary analytical tool to aid identification of genes associated with dominant traits through a mechanism distinct from LoF.Item Novel Heterozygous Mutation in NFKB2 Is Associated With Early Onset CVID and a Functional Defect in NK Cells Complicated by Disseminated CMV Infection and Severe Nephrotic Syndrome(2019) Aird, Alejandra; Lagos, Macarena; Vargas-Hernández, Alexander; Posey, Jennifer; Coban-Akdemir, Zeynep; Jhangiani, Shalini; Mace, Emily; Reyes, Anaid; King, Alejandra; Cavagnaro, Felipe; Forbes, Lisa; Chinn, Iván; Lupski, James; Orange, Jordan; Poli, CeciliaNuclear factor kappa-B subunit 2 (NF-κB2/p100/p52), encoded by NFKB2 (MIM: 164012) belongs to the NF-κB family of transcription factors that play a critical role in inflammation, immunity, cell proliferation, differentiation and survival. Heterozygous C-terminal mutations in NFKB2 have been associated with early-onset common variable immunodeficiency (CVID), central adrenal insufficiency and ectodermal dysplasia. Only two previously reported cases have documented decreased natural killer (NK) cell cytotoxicity, and little is known about the role of NF-κB2 in NK cell maturation and function. Here we report a 13-year-old female that presented at 6 years of age with a history of early onset recurrent sinopulmonary infections, progressive hair loss, and hypogamaglobulinemia consistent with a clinical diagnosis of CVID. At 9 years of age she had cytomegalovirus (CMV) pneumonia that responded to ganciclovir treatment. Functional NK cell testing demonstrated decreased NK cell cytotoxicity despite normal NK cell numbers, consistent with a greater susceptibility to systemic CMV infection. Research exome sequencing (ES) was performed and revealed a novel de novo heterozygous nonsense mutation in NFKB2 (c.2611C>T, p.Gln871*) that was not carried by either of her parents. The variant was Sanger sequenced and confirmed to be de novo in the patient. At age 12, she presented with a reactivation of the systemic CMV infection that was associated with severe and progressive nephrotic syndrome with histologic evidence of pedicellar effacement and negative immunofluorescence. To our knowledge, this is the third NF-κB2 deficient patient in which an abnormal NK cell function has been observed, suggesting a role for non-canonical NF-κB2 signaling in NK cell cytotoxicity. NK cell function should be assessed in patients with mutations in the non-canonical NF-κB pathway to explore the risk for systemic viral infections that may lead to severe complications and impact patient survival. Similarly NF-κB2 should be considered in patients with combined immunodeficiency who have aberrant NK cell function. Further studies are needed to characterize the role of NF-κB2 in NK cell cytotoxic function.