Browsing by Author "Carrasco, Ximena"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Irrelevant stimulus processing in ADHD: catecholamine dynamics and attentional networks(2014) Aboitiz, Francisco; Ossandón, Tomás; Zamorano, Francisco; Palma, Bárbara; Carrasco, XimenaA cardinal symptom of attention deficit and hyperactivity disorder (ADHD) is a general distractibility where children and adults shift their attentional focus to stimuli that are irrelevant to the ongoing behavior. This has been attributed to a deficit in dopaminergic signaling in cortico-striatal networks that regulate goal-directed behavior. Furthermore, recent imaging evidence points to an impairment of large scale, antagonistic brain networks that normally contribute to attentional engagement and disengagement, such as the task-positive networks and the default mode network (DMN). Related networks are the ventral attentional network (VAN) involved in attentional shifting, and the salience network (SN) related to task expectancy. Here we discuss the tonic–phasic dynamics of catecholaminergic signaling in the brain, and attempt to provide a link between this and the activities of the large-scale cortical networks that regulate behavior. More specifically, we propose that a disbalance of tonic catecholamine levels during task performance produces an emphasis of phasic signaling and increased excitability of the VAN, yielding distractibility symptoms. Likewise, immaturity of the SN may relate to abnormal tonic signaling and an incapacity to build up a proper executive system during task performance. We discuss different lines of evidence including pharmacology, brain imaging and electrophysiology, that are consistent with our proposal. Finally, restoring the pharmacodynamics of catecholaminergic signaling seems crucial to alleviate ADHD symptoms; however, the possibility is open to explore cognitive rehabilitation strategies to top-down modulate network dynamics compensating the pharmacological deficits.Item Lateral prefrontal activity as a compensatory strategy for deficits of cortical processing in Attention Deficit Hyperactivity Disorder(2017) Zamorano, Francisco; Aboitiz, Francisco; Carrasco, Ximena; López, Vladimir; Hurtado, José M.; Stecher, Ximena; Larraín, Josefina; Kausel, Leonie; Billeke, PabloAttention Deficit Hyperactivity Disorder (ADHD) is the most common neuropsychiatric disorder in childhood and is characterized by a delay of cortical maturation in frontal regions. In order to investigate interference control, which is a key function of frontal areas, a functional MRI study was conducted on 17 ADHD boys and 17 typically developing (TD) boys, while solving the multi source interference task (MSIT). This task consists of two conditions, a "congruent condition" and an "incongruent condition". The latter requires to inhibit information that interferes with task-relevant stimuli. Behavioral results showed that ADHD subjects committed more errors than TD children. In addition, TD children presented a larger MSIT effect -a greater difference in reaction times between the incongruent and the congruent conditions- than ADHD children. Associated to the MSIT effect, neuroimaging results showed a significant enhancement in the activation of the right lateral prefrontal cortex (rlPFC) in ADHD than in TD subjects. Finally, ADHD subjects presented greater functional connectivity between rlPFC and bilateral orbitofrontal cortex than the TD group. This difference in connectivity correlated with worse performance in both groups. Our results could reflect a compensatory strategy of ADHD children resulting from their effort to maintain an adequate performance during MSIT.Item Lateral Prefrontal Theta Oscillations Reflect Proactive Cognitive Control Impairment in Males With Attention Deficit Hyperactivity Disorder(2020-06) Zamorano, Francisco; Kausel, Leonie; Albornoz, Carlos; Lavin, Claudio; Figueroa-Vargas, Alejandra; Stecher, Ximena; Aragón-Caqueo, Diego; Carrasco, Ximena; Aboitiz, Francisco; Billeke, Pablottention Deficit Hyperactivity Disorder (ADHD) is a common neuropsychiatric disorder in which children present prefrontal cortex (PFC) related functions deficit. Proactive cognitive control is a process that anticipates the requirement of cognitive control and crucially depends on the maturity of the PFC. Since this process is important to ADHD symptomatology, we here test the hypothesis that children with ADHD have proactive cognitive control impairments and that these impairments are reflected in the PFC oscillatory activity. We recorded EEG signals from 29 male children with ADHD and 25 typically developing (TD) male children while they performed a Go-Nogo task, where the likelihood of a Nogo stimulus increased while a sequence of consecutive Go stimuli elapsed. TD children showed proactive cognitive control by increasing their reaction time (RT) concerning the number of preceding Go stimuli, whereas children with ADHD did not. This adaptation was related to modulations in both P3a potential and lateral prefrontal theta oscillation for TD children. Children with ADHD as a group did not demonstrate either P3a or theta modulation. But, individual variation in theta activity was correlated with the ADHD symptomatology. The results depict a neurobiological mechanism of proactive cognitive control impairments in children with ADHD.Item Temporal Constraints of Behavioral Inhibition: Relevance of Inter-stimulus Interval in a Go-Nogo Task(2014) Zamorano, Francisco; Billeke, Pablo; Hurtado, José M.; López, Vladimir; Carrasco, Ximena; Ossandón, Tomás; Aboitiz, FranciscoThe capacity to inhibit prepotent and automatic responses is crucial for proper cognitive and social development, and inhibitory impairments have been considered to be key for some neuropsychiatric conditions. One of the most used paradigms to analyze inhibitory processes is the Go-Nogo task (GNG). This task has been widely used in psychophysical and cognitive EEG studies, and more recently in paradigms using fMRI. However, a technical limitation is that the time resolution of fMRI is poorer than that of the EEG technique. In order to compensate for these temporal constraints, it has become common practice in the fMRI field to use longer inter-stimulus intervals (ISI) than those used in EEG protocols. Despite the noticeable temporal differences between these two techniques, it is currently assumed that both approaches assess similar inhibitory processes. We performed an EEG study using a GNG task with both short ISI (fast-condition, FC, as in EEG protocols) and long ISI (slow-condition, SC, as in fMRI protocols). We found that in the FC there was a stronger Nogo-N2 effect than in the SC. Moreover, in the FC, but not in the SC, the number of preceding Go trials correlated positively with the Nogo-P3 amplitude and with the Go trial reaction time; and negatively with commission errors. In addition, we found significant topographical differences for the Go-P3 elicited in FC and SC, which is interpreted in terms of different neurotransmitter dynamics. Taken together, our results provide evidence that frequency of stimulus presentation in the GNG task strongly modulates the behavioral response and the evoked EEG activity. Therefore, it is likely that short-ISI EEG protocols and long-ISI fMRI protocols do not assess equivalent inhibitory processesItem Theta and Alpha Oscillation Impairments in Autistic Spectrum Disorder Reflect Working Memory Deficit(2017) Larraín-Valenzuela, Josefina; Zamorano, Francisco; Soto-Icaza, Patricia; Carrasco, Ximena; Herrera, Claudia; Daiber, Francisca; Aboitiz, Francisco; Billeke, PabloA dysfunction in the excitatory–inhibitory (E/I) coordination in neuronal assembly has been proposed as a possible neurobiological mechanism of Autistic Spectrum Disorder (ASD). However, the potential impact of this mechanism in cognitive performance is not fully explored. Since the main consequence of E/I dysfunction is an impairment in oscillatory activity and its underlying cognitive computations, we assessed the electroencephalographic activity of ASD and typically developing (TD) subjects during a working-memory task. We found that ASD subjects committed more errors than TD subjects. Moreover, TD subjects demonstrated a parametric modulation in the power of alpha and theta band while ASD subjects did not demonstrate significant modulations. The preceding leads to significant differences between the groups in both the alpha power placed on the occipital cortex and the theta power placed on the left premotor and the right prefrontal cortex. The impaired theta modulation correlated with autistic symptoms. The results indicated that ASD may present an alteration in the recruitment of the oscillatory activity during working-memory, and this alteration could be related to the physiopathology of the disorder.