Browsing by Author "Campos, América"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Caveolin-1-Mediated Tumor Suppression Is Linked to Reduced HIF1α S-Nitrosylation and Transcriptional Activity in Hypoxia(2020) Sanhueza, Carlos; Castillo Bennett, Jimena; Valenzuela-Valderrama, Manuel; Contreras, Pamela; Lobos-González, Lorena; Campos, América; Wehinger, Sergio; Lladser, Álvaro; Kiessling, Rolf; Leyton, Lisette; Quest, Andrew F. G.Caveolin-1 (CAV1) is a well-established nitric oxide synthase inhibitor, whose function as a tumor suppressor is favored by, but not entirely dependent on, the presence of E-cadherin. Tumors are frequently hypoxic and the activation of the hypoxia-inducible factor-1α (HIF1α) promotes tumor growth. HIF1α is regulated by several post-translational modifications, including S-nitrosylation. Here, we evaluate the mechanisms underlying tumor suppression by CAV1 in cancer cells lacking E-cadherin in hypoxia. Our main findings are that CAV1 reduced HIF activity and Vascular Endothelial Growth Factor expression in vitro and in vivo. This effect was neither due to reduced HIF1α protein stability or reduced nuclear translocation. Instead, HIF1α S-nitrosylation observed in hypoxia was diminished by the presence of CAV1, and nitric oxide synthase (NOS) inhibition by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) reduced HIF1α transcriptional activity in cells to the same extent as observed upon CAV1 expression. Additionally, arginase inhibition by (S)-(2-Boronoethyl)-L-cysteine (BEC) partially rescued cells from the CAV1-mediated suppression of HIF1α transcriptional activity. In vivo, CAV1-mediated tumor suppression was dependent on NOS activity. In summary, CAV1-dependent tumor suppression in the absence of E-cadherin is linked to reduced HIF1α transcriptional activity via diminished NOS-mediated HIF1α S-nitrosylation.Item Cell Intrinsic and Extrinsic Mechanisms of Caveolin- 1-Enhanced Metastasis(2019) Campos, América; Burgos-Ravanal, R.; González, M.F.; Huilcamán, R.; Lobos-González, Lorena; Quest, AFG.Caveolin-1 (CAV1) is a scaffolding protein with a controversial role in cancer. This review will initially discuss earlier studies focused on the role as a tumor suppressor before elaborating subsequently on those relating to function of the protein as a promoter of metastasis. Different mechanisms are summarized illustrating how CAV1 promotes such traits upon expression in cancer cells (intrinsic mechanisms). More recently, it has become apparent that CAV1 is also a secreted protein that can be included into exosomes where it plays a significant role in determining cargo composition. Thus, we will also discuss how CAV1 containing exosomes from metastatic cells promote malignant traits in more benign recipient cells (extrinsic mechanisms). This ability appears, at least in part, attributable to the transfer of specific cargos present due to CAV1 rather than the transfer of CAV1 itself. The evolution of how our perception of CAV1 function has changed since its discovery is summarized graphically in a time line figure.Item Exosomes released upon mitochondrial ASncmtRNA knockdown reduce tumorigenic properties of malignant breast cancer cells.(Nature Publishing Group, 2020) Lobos-González, Lorena; Bustos, Rocío; Campos, América; Silva, Valeria; Silva, Verónica; Jeldes, Emanuel; Salomon, Carlos; Varas-Godoy, Manuel; Cáceres-Verschae, Albano; Durán, Eduardo; Vera, Tamara; Ezquer, Fernando; Ezquer, Marcelo; Burzio, Verónica; Villegas, JaimeDuring intercellular communication, cells release extracellular vesicles such as exosomes, which contain proteins, ncRNAs and mRNAs that can influence proliferation and/or trigger apoptosis in recipient cells, and have been proposed to play an essential role in promoting invasion of tumor cells and in the preparation of metastatic niches. Our group proposed the antisense non-coding mitochondrial RNA (ASncmtRNA) as a new target for cancer therapy. ASncmtRNA knockdown using an antisense oligonucleotide (ASO-1537S) causes massive death of tumor cells but not normal cells and strongly reduces metastasis in mice. In this work, we report that exosomes derived from ASO-1537S-treated MDA-MB-231 breast cancer cells (Exo-1537S) inhibits tumorigenesis of recipient cells, in contrast to exosomes derived from control-ASO-treated cells (Exo-C) which, in contrast, enhance these properties. Furthermore, an in vivo murine peritoneal carcinomatosis model showed that Exo-1537S injection reduced tumorigenicity compared to controls. Proteomic analysis revealed the presence of Lactadherin and VE-Cadherin in exosomes derived from untreated cells (Exo-WT) and Exo-C but not in Exo-1537S, and the latter displayed enrichment of proteasomal subunits. These results suggest a role for these proteins in modulation of tumorigenic properties of exosome-recipient cells. Our results shed light on the mechanisms through which ASncmtRNA knockdown affects the preparation of breast cancer metastatic niches in a peritoneal carcinomatosis model.Item Extracellular Vesicles as Mediators of Cancer Disease and as Nanosystems in Theranostic Applications(2021) Burgos, Renato; Campos, América; Díaz, Magda; González, María Fernanda; León, Daniela; Lobos-González, Lorena; Leyton, Lisette; Kogan, Marcelo; Quest, AndrewCancer remains a leading cause of death worldwide despite decades of intense efforts to understand the molecular underpinnings of the disease. To date, much of the focus in research has been on the cancer cells themselves and how they acquire specific traits during disease development and progression. However, these cells are known to secrete large numbers of extracellular vesicles (EVs), which are now becoming recognized as key players in cancer. EVs contain a large number of different molecules, including but not limited to proteins, mRNAs, and miRNAs, and they are actively secreted by many different cell types. In the last two decades, a considerable body of evidence has become available indicating that EVs play a very active role in cell communication. Cancer cells are heterogeneous, and recent evidence reveals that cancer cell-derived EV cargos can change the behavior of target cells. For instance, more aggressive cancer cells can transfer their “traits” to less aggressive cancer cells and convert them into more malignant tumor cells or, alternatively, eliminate those cells in a process referred to as “cell competition”. This review discusses how EVs participate in the multistep acquisition of specific traits developed by tumor cells, which are referred to as “the hallmarks of cancer” defined by Hanahan and Weinberg. Moreover, as will be discussed, EVs play an important role in drug resistance, and these more recent advances may explain, at least in part, why pharmacological therapies are often ineffective. Finally, we discuss literature proposing the use of EVs for therapeutic and prognostic purposes in cancer.