Browsing by Author "Butcher, Nancy"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Effects of copy number variations on brain structure and risk for psychiatric illness: Large-scale studies from the ENIGMA working groups on CNVs(2022) Sønderby, Ida; Ching, Christopher; Thomopoulos, Sophia; Van der Meer, Dennis; Sun, Daqiang; Villalon, Julio; Agartz, Ingrid; Amunts, Katrin; Arango, Celso; Armstrong, Nicola; Ayesa, Rosa; Bakker, Geor; Bassett, Anne; Boomsma, Dorret; Bülow, Robin; Butcher, Nancy; Calhoun, Vince; Caspers, Svenja; Chow, Eva; Cichon, Sven; Ciufolini, Simone; Craig, Michael; Crespo, Benedicto; Cunningham, Adam; Dale, Ander; Dazzan, Paola; De Zubicaray, Greig; Djurovic, Srdjan; Doherty, Joanne; Donohoe, Gary; Draganski, Bogdan; Durdle, Courtney; Ehrlich, Stefan; Emanuel, Beverly; Espeseth, Thomas; Fisher, Simon; Ge, Tian; Glahn, David; Grabe, Hans; Gur, RaquelThe Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype-phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This "genotype-first" approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior.Item Neuroimaging and clinical features in adults with a 22q11.2 deletion at risk of Parkinson’s disease(Oxford University Press, 2017) Butcher, Nancy; Marras, Connie; Pondal, Margarita; Rusjan, Pablo; Boot, Erik; Christopher, Leigh; Repetto, Gabriela; Fritsch, Rosemarie; Chow, Eva; Masellis, Mario; Strafella, Antonio; Lang, Anthony; Bassett, AnneThe recurrent 22q11.2 deletion is a genetic risk factor for early-onset Parkinson's disease. Adults with the associated 22q11.2 deletion syndrome (22q11.2DS) may exhibit phenotypes that could help identify those at highest risk and reveal disease trajectories. We investigated clinical and neuroimaging features relevant to Parkinson's disease in 26 adults: 13 with 22q11.2DS at genetic risk of Parkinson's disease (mean age = 41.5 years, standard deviation = 9.7), 12 healthy age and sex-matched controls, and a 22q11.2DS patient with l-DOPA-responsive early-onset Parkinson's disease. Neuroimaging included transcranial sonography and positron emission tomography using 11C-dihydrotetrabenazine (11C-DTBZ), a radioligand that binds to the presynaptic vesicular monoamine transporter. The 22q11.2DS group without Parkinson's disease demonstrated significant motor and olfactory deficits relative to controls. Eight (61.5%) were clinically classified with parkinsonism. Transcranial sonography showed a significantly larger mean area of substantia nigra echogenicity in the 22q11.2DS risk group compared with controls (P = 0.03). The 22q11.2DS patient with Parkinson's disease showed the expected pattern of severely reduced striatal 11C-DTBZ binding. The 22q11.2DS group without Parkinson's disease however showed significantly elevated striatal 11C-DTBZ binding relative to controls (∼33%; P < 0.01). Results were similar within the 22q11.2DS group for those with (n = 7) and without (n = 6) psychotic illness. These findings suggest that manifestations of parkinsonism and/or evolution to Parkinson's disease in this genetic at-risk population may include a hyperdopaminergic mechanism. Adequately powered longitudinal studies and animal models are needed to evaluate the relevance of the observed clinical and imaging phenotypes to Parkinson's disease and other disorders that are more prevalent in 22q11.2DS, such as schizophrenia.Item Practical guidelines for managing adults with 22q11.2 deletion syndrome.(Macmillan Publishers Limited, 2015) Fung, Wai Lun; Butcher, Nancy; Costain, Gregory; Andrade, Danielle; Boot, Erik; Chow, Eva; Chung, Brian; Cytrynbaum, Cheryl; Faghfoury, Hanna; Fishman, Leona; García-Miñaúr, Sixto; George, Susan; Lang, Anthony; Repetto, Gabriela; Shugar, Andrea; Silversides, Candice; Swillen, Ann; Van Amelsvoort, Therese; McDonald-McGinn, Donna; Bassett, Anne22q11.2 Deletion syndrome (22q11.2DS) is the most common microdeletion syndrome in humans, estimated to affect up to 1 in 2,000 live births. Major features of this multisystem condition include congenital anomalies, developmental delay, and an array of early- and later-onset medical and psychiatric disorders. Advances in pediatric care ensure a growing population of adults with 22q11.2DS. Informed by an international panel of multidisciplinary experts and a comprehensive review of the existing literature concerning adults, we present the first set of guidelines focused on managing the neuropsychiatric, endocrine, cardiovascular, reproductive, psychosocial, genetic counseling, and other issues that are the focus of attention in adults with 22q11.2DS. We propose practical strategies for the recognition, evaluation, surveillance, and management of the associated morbidities.Publication Source-based morphometry reveals structural brain pattern abnormalities in 22q11.2 deletion syndrome(2024) Repetto, Gabriela; Ge, Ruiyang; Ching, Christopher; Bassett, Anne; Kushan, Leila; Antshe, Kevin; Van Amelsvoort, Therese; Bakker, Geor; Butcher, Nancy; Campbell, Linda; Chow, Eva; Craig, Michael; Crossley, Nicolas; Cunningham, Adam; Daly, Eileen; Doherty, Joanne; Durdle, Courtney; Emanuel, Beverly; Fiksinski, Ania; Forsyth, Jennifer; Fremont, Wanda; Goodrich-Hunsaker, Naomi; Gudbrandsen, Maria; Gur, Raquel; Jalbrzikowski, Maria; Kates, Wendy; Lin, Amy; Linden, David; McCabe, Kathryn; McDonald, Donna; Moss, Hayley; Murphy, Declan; Murphy, Kieran; Owen, Michael; Villalon, Julio; Roalf, David; Ruparel, Kosha; Schmitt, J. Eric; Schuite, Sanne; Angkustsiri, Kathleen22q11.2 deletion syndrome (22q11DS) is the most frequently occurring microdeletion in humans. It is associated with a significant impact on brain structure, including prominent reductions in gray matter volume (GMV), and neuropsychiatric manifestations, including cognitive impairment and psychosis. It is unclear whether GMV alterations in 22q11DS occur according to distinct structural patterns. Then, 783 participants (470 with 22q11DS: 51% females, mean age [SD] 18.2 [9.2]; and 313 typically developing [TD] controls: 46% females, mean age 18.0 [8.6]) from 13 datasets were included in the present study. We segmented structural T1-weighted brain MRI scans and extracted GMV images, which were then utilized in a novel source-based morphometry (SBM) pipeline (SS-Detect) to generate structural brain patterns (SBPs) that capture co-varying GMV. We investigated the impact of the 22q11.2 deletion, deletion size, intelligence quotient, and psychosis on the SBPs. Seventeen GMV-SBPs were derived, which provided spatial patterns of GMV covariance associated with a quantitative metric (i.e., loading score) for analysis. Patterns of topographically widespread differences in GMV covariance, including the cerebellum, discriminated individuals with 22q11DS from healthy controls. The spatial extents of the SBPs that revealed disparities between individuals with 22q11DS and controls were consistent with the findings of the univariate voxel-based morphometry analysis. Larger deletion size was associated with significantly lower GMV in frontal and occipital SBPs; however, history of psychosis did not show a strong relationship with these covariance patterns. 22q11DS is associated with distinct structural abnormalities captured by topographical GMV covariance patterns that include the cerebellum. Findings indicate that structural anomalies in 22q11DS manifest in a nonrandom manner and in distinct covarying anatomical patterns, rather than a diffuse global process. These SBP abnormalities converge with previously reported cortical surface area abnormalities, suggesting disturbances of early neurodevelopment as the most likely underlying mechanism.