Browsing by Author "Bultynck, Geert"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Intramolecular loop/tail interactions are essential forconnexin 43-hemichannel activity(2010) Ponsaerts, Raf; De Vuyst, Elke; Retamal, Mauricio; D’hondt, Catheleyne; Vermeire, Dieter; Wang, Nan; De Smedt, Humbert; Zimmermann, Pascale; Himpens, Bernard; Vereecke, Johan; Leybaert, Luc; Bultynck, GeertConnexin-assembled gap junctions (GJs) and hemichannels coordinate intercellular signaling processes. Although the regulation of connexins in GJs has been well characterized, the molecular determinants controlling connexin-hemichannel activity are unresolved. Here we investigated the regulation of Cx43-hemichannel activity by actomyosin contractility and intracellular [Ca2 ] [Ca2 ]i ) using plasma membrane-permeable TAT peptides (100 M) designed to interfere with interactions between the cytoplasmic loop (CL) and carboxy-terminal (CT) in primary bovine corneal endothelial cells and HeLa, C6 glioma, and Xenopus oocytes ectopically expressing Cx43. Peptides corresponding to the last 10 CT aa (TAT-Cx43CT) prevented the inhibition of Cx43-hemichannel activity by contractility/high [Ca2 ]i , whereas a reverse peptide (TAT-Cx43CTrev) did not. These effects were independent of zónula occludens-1, a cytoskeletal-associated Cx43- inding protein. In contrast, peptides corresponding to CL (TAT-L2) inhibited Cx43-hemichannel responses, whereas a mutant peptide (TAT-L2H126K/I130N) did not inhibit. In these assays, TAT-Cx43CT acted as a scaffold for TAT-L2 and vice versa, a finding supported by surface plasmon resonance measurements. Loop/tail interactions appeared essential for Cx43-hemichannel activity, because TAT-Cx43CT restored the activity of nonfunctional hemichannels, consisting of either Cx43 lacking the C-terminal tail (Cx43M239) or intact Cx43 ectopically expressed in Xenopus oocytes. We conclude that intramolecular loop/tail interactions control Cx43- hemichannel activity, laying the basis for developing hemichannel-specific blockers.—Ponsaerts, R., De Vuyst, E., Retamal, M., D’hondt, C., Vermeire, D., Wang, N., De Smedt, H., Zimmermann, P., Himpens, B., Vereecke, J., Leybaert, L., Bultynck, G. Intramolecular loop/tail interactions are essential for connexin 43-hemichannel activity. FASEB J. 24, 4378–4395 (2010). www.fasebj.orgItem Opening of pannexin- and con nexin-based channels increases the excitability of nodose ganglion sensory neurons(Frontiers Research Foundation, 2014) Retamal, Mauricio; Alcayaga, Julio; Verdugo, Christian; Bultynck, Geert; Leybaert, Luc; Sáez, Pablo; Fernández, Ricardo; León, Luis; Sáez, JuanSatellite glial cells (SGCs) are the main glia in sensory ganglia. They surround neuronal bodies and form a cap that prevents the formation of chemical or electrical synapses between neighboring neurons. SGCs have been suggested to establish bidirectional paracrine communication with sensory neurons. However, the molecular mechanism involved in this cellular communication is unknown. In the central nervous system (CNS), astrocytes present connexin43 (Cx43) hemichannels and pannexin1 (Panx1) channels, and the opening of these channels allows the release of signal molecules, such as ATP and glutamate. We propose that these channels could play a role in glia-neuron communication in sensory ganglia. Therefore, we studied the expression and function of Cx43 and Panx1 in rat and mouse nodose-petrosal-jugular complexes (NPJcs) using confocal immunofluorescence, molecular and electrophysiological techniques. Cx43 and Panx1 were detected in SGCs and in sensory neurons, respectively. In the rat and mouse, the electrical activity of vagal nerve increased significantly after nodose neurons were exposed to a Ca2+/Mg2+-free solution, a condition that increases the open probability of Cx hemichannels. This response was partially mimicked by a cell-permeable peptide corresponding to the last 10 amino acids of Cx43 (TAT-Cx43CT). Enhanced neuronal activity was reduced by Cx hemichannel, Panx1 channel and P2X7 receptor blockers. Moreover, the role of Panx1 was confirmed in NPJc, because in those from Panx1 knockout mice showed a reduced increase of neuronal activity induced by Ca2+/Mg2+-free extracellular conditions. The data suggest that Cx hemichannels and Panx channels serve as paracrine communication pathways between SGCs and neurons by modulating the excitability of sensory neurons.Item Peptides and peptide-derived molecules targeting the intracellular domains of Cx43: gap junctions versus hemichannels(Elsevier, 2013) Iyyathuraia, Jegan; D'hondt, Catheleyne; Wang, Nan; De Bock, Marijke; Himpens, Bernard; Retamal, Mauricio; Stehberg, Jimmy; Leybaert, Luc; Bultynck, GeertAbout a decade ago, the molecular determinants controlling the opening and closing of Cx43 gap junction channels have been identified. Advanced biophysical approaches revealed a critical role for structural rearrangements in the cytoplasmic loop and dimerization of the C-terminal tail, resulting in binding of the C-terminal tail to the cytoplasmic loop and Cx43 gap junction channel closure during cellular acidosis. This has spurred the development of Cx43-mimetic peptides and peptidomimetics that interfere with these loop/tail interactions, thereby preventing the closure of Cx43 gap junctions, e.g. in the heart upon ischemia. Recently, we found that loop/tail interactions control Cx43-hemichannel activity but with an opposite effect. Binding of the C-terminal tail to the cytoplasmic loop is a requisite for the opening of Cx43 hemichannels in response to different stimuli, like decreased extracellular [Ca2+], increased intracellular [Ca2+], positive membrane potentials or ischemia. Strikingly, peptides that favor the open state of Cx43 gap junctions like the L2 peptide inhibit Cx43-hemichannel opening. These tools now provide unprecedented opportunities to selectively inhibit Cx43 hemichannels while maintaining Cx43 gap junction communication, impossible to achieve with siRNA or knockdown approaches both affecting gap junctions and hemichannels. These tools not only are very helpful to unravel the role of Cx43 hemichannels in complex biological systems, but also hold therapeutic potential to counteract excessive Cx43-hemichannel activity like in ischemia/reperfusion in the brain and the heart or to prevent Cx43 hemichannel-mediated gliotransmitter release in the basal amygdala during memory consolidation in response to emotional events. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.Item Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala(Federation of American Societies for Experimental Biology, 2012) Stehberg, Jimmy; Moraga-Amaro, Rodrigo; Salazar, Christian; Becerra, Alvaro; Echeverría, Cesar; Orellana, Juan; Bultynck, Geert; Ponsaerts, Raf; Leybaert, Luc; Simon, Felipe; Sáez, Juan; Retamal, MauricioRecent in vitro evidence indicates that astrocytes can modulate synaptic plasticity by releasing neuroactive substances (gliotransmitters). However, whether gliotransmitter release from astrocytes is necessary for higher brain function in vivo, particularly for memory, as well as the contribution of connexin (Cx) hemichannels to gliotransmitter release, remain elusive. Here, we microinfused into the rat basolateral amygdala (BLA) TAT-Cx43L2, a peptide that selectively inhibits Cx43-hemichannel opening while maintaining synaptic transmission or interastrocyte gap junctional communication. In vivo blockade of Cx43 hemichannels during memory consolidation induced amnesia for auditory fear conditioning, as assessed 24 h after training, without affecting short-term memory, locomotion, or shock reactivity. The amnesic effect was transitory, specific for memory consolidation, and was confirmed after microinfusion of Gap27, another Cx43-hemichannel blocker. Learning capacity was recovered after coinfusion of TAT-Cx43L2 and a mixture of putative gliotransmitters (glutamate, glutamine, lactate, d-serine, glycine, and ATP). We propose that gliotransmitter release from astrocytes through Cx43 hemichannels is necessary for fear memory consolidation at the BLA. Thus, the present study is the first to demonstrate a physiological role for astroglial Cx43 hemichannels in brain function, making these channels a novel pharmacological target for the treatment of psychiatric disorders, including post-traumatic stress disorder.