Browsing by Author "Breckpot, Jeroen"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Complete Sequence of the 22q11.2 Allele in 1,053 Subjects with 22q11.2 Deletion Syndrome Reveals Modifiers of Conotruncal Heart Defects(American Society of Human Genetics by Elsevier Inc., 2020-01) Zhao, Yingjie; Diacou, Alexander; Johnston, Richard; Musfee, Fadi; McDonald-McGinn, Donna; McGinn, Daniel; Crowley, Blaine; Repetto, Gabriela; Swillen, Ann; Breckpot, Jeroen; Vermeesch, Joris; Kates, Wendy; Digilio, Cristina; Unolt, Marta; Marino, Bruno; Pontillo, Maria; Armando, Marco; Di Fabio, Fabio; Vicari, Stefano; van den Bree, Marianne; Moss, Hayley; Owen, Michael; Murphy, Kieran; Murphy, Clodagh; Murphy, Declan; Schoch, Kelly; Shashi, Vandana; Tassone, FloraThe 22q11.2 deletion syndrome (22q11.2DS) results from non-allelic homologous recombination between low-copy repeats termed LCR22. About 60%-70% of individuals with the typical 3 megabase (Mb) deletion from LCR22A-D have congenital heart disease, mostly of the conotruncal type (CTD), whereas others have normal cardiac anatomy. In this study, we tested whether variants in the hemizygous LCR22A-D region are associated with risk for CTDs on the basis of the sequence of the 22q11.2 region from 1,053 22q11.2DS individuals. We found a significant association (FDR p < 0.05) of the CTD subset with 62 common variants in a single linkage disequilibrium (LD) block in a 350 kb interval harboring CRKL. A total of 45 of the 62 variants were associated with increased risk for CTDs (odds ratio [OR) ranges: 1.64-4.75). Associations of four variants were replicated in a meta-analysis of three genome-wide association studies of CTDs in affected individuals without 22q11.2DS. One of the replicated variants, rs178252, is located in an open chromatin region and resides in the double-elite enhancer, GH22J020947, that is predicted to regulate CRKL (CRK-like proto-oncogene, cytoplasmic adaptor) expression. Approximately 23% of patients with nested LCR22C-D deletions have CTDs, and inactivation of Crkl in mice causes CTDs, thus implicating this gene as a modifier. Rs178252 and rs6004160 are expression quantitative trait loci (eQTLs) of CRKL. Furthermore, set-based tests identified an enhancer that is predicted to target CRKL and is significantly associated with CTD risk (GH22J020946, sequence kernal association test (SKAT) p = 7.21 × 10-5) in the 22q11.2DS cohort. These findings suggest that variance in CTD penetrance in the 22q11.2DS population can be explained in part by variants affecting CRKL expression.Item Complete Sequence of the 22q11.2 Allele in 1,053 Subjects with 22q11.2 Deletion Syndrome Reveals Modifiers of Conotruncal Heart Defects(2020) Zhao, Yingjie; Diacou, Alexander; Johnston, H. Richard; Musfee, Fadi I; McDonald-McGinn, Donna M.; McGinn, Daniel; Crowley, T. Blaine; Repetto, Gabriela; Swillen, Ann; Breckpot, Jeroen; Vermeesch, Joris R; Kates, Wendy R.; Digilio, M. Cristina; Unolt, Marta; Marino, Bruno; Pontillo, Maria; Armando, Marco; Di Fabio, Fabio; Vicari, Stefano; Bree, Marianne van den; Moss, Hayley; Owen, Michael J.; Murphy, Kieran C.; Murphy, Clodagh M.; Murphy, Declan; Schoch, Kelly; Shashi, Vandana; Tassone, Flora; Simon, Tony J.; Shprintzen, Robert J.; Campbell, Linda; Philip, Nicole; Heine-Suñer, Damian; García-Miñaúr, Sixto; Fernández, Luis; Bearden, Carrie E.; Vingerhoets, Claudia; Amelsvoort, Therese van; Eliez, Stephan; Schneider, Maude; Vorstman, Jacob A. S.; Gothelf, Doron; Zackai, Elaine; Agopian, A. J.; Gur, Raquel E.; Bassett, Anne S.; Emanuel, Beverly S.; Goldmuntz, Elizabeth; Mitchell, Laura E.; Wang, Tao; Morrow, Bernice E.The 22q11.2 deletion syndrome (22q11.2DS) results from non-allelic homologous recombination between low-copy repeats termed LCR22. About 60%-70% of individuals with the typical 3 megabase (Mb) deletion from LCR22A-D have congenital heart disease, mostly of the conotruncal type (CTD), whereas others have normal cardiac anatomy. In this study, we tested whether variants in the hemizygous LCR22A-D region are associated with risk for CTDs on the basis of the sequence of the 22q11.2 region from 1,053 22q11.2DS individuals. We found a significant association (FDR p < 0.05) of the CTD subset with 62 common variants in a single linkage disequilibrium (LD) block in a 350 kb interval harboring CRKL. A total of 45 of the 62 variants were associated with increased risk for CTDs (odds ratio [OR) ranges: 1.64-4.75). Associations of four variants were replicated in a meta-analysis of three genome-wide association studies of CTDs in affected individuals without 22q11.2DS. One of the replicated variants, rs178252, is located in an open chromatin region and resides in the double-elite enhancer, GH22J020947, that is predicted to regulate CRKL (CRK-like proto-oncogene, cytoplasmic adaptor) expression. Approximately 23% of patients with nested LCR22C-D deletions have CTDs, and inactivation of Crkl in mice causes CTDs, thus implicating this gene as a modifier. Rs178252 and rs6004160 are expression quantitative trait loci (eQTLs) of CRKL. Furthermore, set-based tests identified an enhancer that is predicted to target CRKL and is significantly associated with CTD risk (GH22J020946, sequence kernal association test (SKAT) p = 7.21 × 10-5) in the 22q11.2DS cohort. These findings suggest that variance in CTD penetrance in the 22q11.2DS population can be explained in part by variants affecting CRKL expression.Item Deletion size analysis of 1680 22q11.2DS subjects identifies a new recombination hotspot on chromosome 22q11.2(2018) Guo, Tingwei; Diacou, Alexander; Nomaru, Hiroko; McDonald-McGinn, Donna M.; Hestand, Matthew; Demaerel, Wolfram; Zhang, Liangtian; Zhao, Yingjie; Ujueta, Francisco; Shan, Jidong; Montagna, Cristina; Zheng, Deyou; Crowley, Terrence B.; Kushan-Wells, Leila; Bearden, Carrie E.; Kates, Wendy R.; Gothelf, Doron; Schneider, Maude; Eliez, Stephan; Breckpot, Jeroen; Swillen, Ann; Vorstman, Jacob; Zackai, Elaine; Benavides, Felipe; Repetto, Gabriela; Emanuel, Beverly S.; Bassett, Anne S.; Vermeesch, Joris R.; Marshall, Christian R.; Morrow, Bernice E.Recurrent, de novo, meiotic non-allelic homologous recombination events between low copy repeats, termed LCR22s, leads to the 22q11.2 deletion syndrome (22q11.2DS; velo-cardio-facial syndrome/DiGeorge syndrome). Although most 22q11.2DS patients have a similar sized 3 million base pair (Mb), LCR22A-D deletion, some have nested LCR22A-B or LCR22A-C deletions. Our goal is to identify additional recurrent 22q11.2 deletions associated with 22q11.2DS, serving as recombination hotspots for meiotic chromosomal rearrangements. Here, using data from Affymetrix 6.0 microarrays on 1680 22q11.2DS subjects, we identified what appeared to be a nested proximal 22q11.2 deletion in 38 (2.3%) of them. Using molecular and haplotype analyses from 14 subjects and their parent(s) with available DNA, we found essentially three types of scenarios to explain this observation. In eight subjects, the proximal breakpoints occurred in a small sized 12 kb LCR distal to LCR22A, referred to LCR22Aþ, resulting in LCR22Aþ-B or LCR22Aþ-D deletions. Six of these eight subjects had a nested 22q11.2 deletion that occurred during meiosis in a parent carrying a benign 0.2 Mb duplication of the LCR22A-LCR22Aþregion with a breakpoint in LCR22Aþ. Another six had a typical de novo LCR22A-D deletion on one allele and inherited the LCR22A-Aþduplication from the other parent thus appearing on microarrays to have a nested deletion. LCR22Aþmaps to an evolutionary breakpoint between mice and humans and appears to serve as a local hotspot for chromosome rearrangements on 22q11.2.