Bosch, PaulRodríguez, José M.Sigarreta, José M.Tourís, Eva2025-01-292025-01-292024Bosch, P., Rodríguez, J.M., Sigarreta, J.M. et al. Some new Milne-type inequalities. J Inequal Appl 2024, 106 (2024). https://doi.org/10.1186/s13660-024-03184-4https://hdl.handle.net/11447/9748Inequalities play a main role in pure and applied mathematics. In this paper, we prove a generalization of Milne inequality for any measure space. The argument in the proof of this inequality allows us to obtain other Milne-type inequalities. Also, we improve the discrete version of Milne inequality, which holds for any positive value of the parameter p. Finally, we present a Milne-type inequality in the fractional context.14 p.enMilne-type inequalitiesDiscrete Milne’s inequalityFractional integral inequalitieSome new Milne-type inequalitiesArticlehttps://doi.org/10.1186/s13660-024-03184-4