Hantavirus in humans: a review of clinical aspects and management

Pablo A Vial, Marcela Ferrés, Cecilia Vial, Jonas Klingstrom, Clas Ahlin, René López, Nicole Le Corre, Gregory J Mertz

Hantavirus infections are part of the broad group of viral haemorrhagic fevers. They are also recognised as a distinct model of an emergent zoonotic infection with a global distribution. Many factors influence their epidemiology and transmission, such as climate, environment, social development, ecology of rodent hosts, and human behaviour in endemic regions. Transmission to humans occurs by exposure to infected rodents in endemic areas; however, Andes hantavirus is unique in that it can be transmitted from person to person. As hantaviruses target endothelial cells, they can affect diverse organ systems; increased vascular permeability is central to pathogenesis. The main clinical syndromes associated with hantaviruses are haemorrhagic fever with renal syndrome (HFRS), which is endemic in Europe and Asia, and hantavirus cardiopulmonary syndrome (HCPS), which is endemic in the Americas. HCPS and HFRS are separate clinical entities, but they share several features and have many overlapping symptoms, signs, and pathogenic alterations. For HCPS in particular, clinical outcomes are highly associated with early clinical suspicion, access to rapid diagnostic testing or algorithms for presumptive diagnosis, and prompt transfer to a facility with critical care units. No specific effective antiviral treatment is available.

Introduction
Hantaviruses are zoonotic viruses with a nearly global distribution. The viruses cause two severe diseases in humans: haemorrhagic fever with renal syndrome (HFRS) in Europe and Asia, and hantavirus cardiopulmonary syndrome (HCPS), also called hantavirus pulmonary syndrome, in the Americas. Although HFRS and HCPS are recognised as distinct clinical entities, there are overlapping symptoms, signs, and pathogenic alterations. Hantaan virus (HTNV) was discovered in 1976,11 and then several other hantaviruses have been identified throughout Europe and Asia. In 1993, a previously unrecognized syndrome (HCPS) characterised by respiratory failure and cardiogenic shock was reported in the southwest of the USA, leading to the discovery of a genetically distinct hantavirus later named Sin Nombre virus (SNV).14 Since then, many HCPS-causing hantaviruses have been identified in the Americas.15 Novel hantavirus species have also been reported in Africa, but evidence of human infection is limited to seroprevalence studies and case reports.6

Hantaviruses and their hosts
Hantaviruses belong to the Orthohantavirus genus, family Hantaviridae, order Bunyavirales.6 Viral particles are enveloped, 80–120 nM in diameter, and have a negative strand RNA genome with three segments: small (S), medium (M), and large (L). The S segment encodes the nucleocapsid protein, the M segment encodes the envelope glycoproteins (Gn and Gc), and the L segment encodes the viral RNA-dependent RNA polymerase.65 Rodents are the main natural hosts for HFRS-causing and HCPS-causing hantaviruses, although bats, moles, shrews, reptiles, and fish have also been shown to carry hantaviruses.64 Natural hosts are believed to be persistently infected with little biological effect. Rodents excrete hantaviruses in saliva, urine, and faeces, and humans are infected when inhaling the secreted viruses, or rarely by rodent bites (figure 1). Dynamics of rodent populations and other factors such as rainfall, temperature, land use and habitat changes, social development, and human behaviour influence the interaction between the rodent hosts and humans.6,3,5

Data are insufficient on how long hantaviruses remain viable in the environment. Puumala virus (Puumula) remained infectious for up to 15 days in bank voles’ bedding, and remained viable at room temperature after 5 days in a wet environment, and 24 h when dry.3 Similarly, HTNV survived in wet conditions for 8 days at 20°C, and 9 days at 37°C.11 Endothelial cells of capillaries and small vessels are the principal targets of hantaviruses, and increased vascular permeability is central to pathogenesis.6 Increased permeability does not appear to be caused by a lytic effect of the virus, but rather by functional changes of the endothelial barrier by mechanisms that remain poorly understood. It could be triggered by binding of the virus to cell receptors that regulate endothelial permeability, increased innate immune responses, and immunopathogenic mechanisms, including inflammatory responses.14,15 In HFRS, endothelial activation leads to platelet activation and altered coagulation.10,16 Endothelial cells in the lungs, kidneys, heart, liver, and spleen are infected and macrophages, mononuclear blood cells, dendritic cells, and respiratory and tubular epithelium can also be infected. According to histopathological studies, HFRS-causing hantaviruses primarily affect renal medulla capillaries, whereas HCPS-causing hantaviruses mainly affect pulmonary capillaries.11 However, the differences in clinical expression, severity, specific organ dysfunction, and the process behind the development of HFRS and HCPS remain mostly unexplained.
Hantavirus in Europe and Asia

HFRS-causing hantaviruses include HTNV, Dobrava virus (DOBV), PUUV, and Seoul virus (SEOV). Tula virus has also been shown to cause disease in a few cases. PUUV infection was originally named nephropathia epidemica, and the term is still in use. The distribution of these viruses overlaps with the geographical distribution of their rodent reservoirs. We have listed the rodents associated with hantaviruses pathogenic in humans in Europe and Asia (table).4,5,6 HFRS cases due to SEOV have been reported worldwide.7 Most SEOV infections in humans, including those acquired from laboratory or pet rats, appear to be asymptomatic or cause a mild illness that remains undiagnosed.8,9

HFRS and HCPS are reportable diseases in most countries, but reports largely reflect hospital admissions. The overall level of infection and the clinical presentation, if any, is difficult to assess as many infections are not identified. From serosurveillance studies in Finland, only around 15% of infected people are diagnosed and reported.9 Seropositive individuals have been identified in areas without known pathogenic hantaviruses, meaning these individuals might have been infected during travel, or by unrecognised local viruses. Tracing the place of infection can sometimes be difficult, as the incubation period can be up to 6 weeks.10 There is no evidence for human-to-human transmission of HFRS-causing hantaviruses, although blood products drawn from infected individuals, or blood transmission during medical interventions are a possible source of infection.11

No HCPS-causing hantavirus circulates in Europe and Asia, but cases have been diagnosed in travellers returning from the Americas.12

HTNV is responsible for most cases of hantavirus in China and South Korea, where case numbers vary with natural cycles, and where SEOV also circulates. A mean of 12,800 HFRS cases (median 11,063; range 8,553–325,043) per year was reported in China from 2004 to 2016, with a case fatality rate (CFR) of 1.3% and a decline in incidence over time.13 South Korea has reported 300–600 cases per year for the past 20 years (figure 2), and the CFR has decreased from 5% to 7% in the 1950s to 1% from 2011 to 2016.14 The proportion of cases caused by SEOV in these two countries is unclear.

In the European Union, where a mean of 3,100 HFRS cases (median 2,897; range 1,831–4,249) are reported per year: Finland reported 43%, Germany 30%, and Sweden 6% of all cases.15 CFR is reported to be 0.1% in Finland,16 less than 0.03% in Germany,17 and 0.4% in Sweden,18 and in the Balkans and southeast Europe, most cases are caused by DOBV, a more severe form of HFRS with a CFR from 10% to 12%, although genotypes with varying virulence have been recognised.19 DOBV has also been reported in central Europe, including in Germany, Poland, Lithuania, and Czech Republic. In Russia, PUUV, two species of DOBV (Sochi virus [SOCV] and Kurkino virus), HTNV, Amur virus, and SEOV exist. Approximately 7,300 HFRS cases per year are reported in Russia (figure 2), with an overall CFR of 0.4%.20 PUUV is responsible for almost all HFRS cases diagnosed in western Russia.

Most HFRS cases occur globally in rural settings (with the exception of SEOV that is mainly transmitted in urban settings) in farmers, military troops, and other
people who spend extended time outdoors. Smoking was reported as a risk factor for contracting PUUV infection and for more severe disease. The male-to-female ratio for HFRS cases is 2:6:1. In contrast to HFRS cases, SEOV cases are mainly seen in urban settings, where wild rats are prevalent.

Hantavirus in the Americas

Overall, 300 cases of HCPS are diagnosed per year in the Americas (figure 2), mainly in Argentina, Brazil, and Chile. HCPS is acquired in rural settings by residents (80%) or visitors (20%) of endemic areas. Overall, the median age for people with HCPS is 34 years (range 0–86 years), and 70–80% of cases occur in men. Risk factors include forestry or agricultural work, weeding, construction, demolition, cleaning previously unused homes, and actions that raise dust in cellars, storage areas, or stables. The most severe forms of HCPS are associated with SNV, ANDV, Araquarva virus, and Juquitibamba virus, all with CFRs between 30% and 45%. Cholera virus (CHOV) and Laguna Vegas virus (LANV) have a CFR between 12% and 15% (table). In addition to CHO in Panama, there is serological evidence of hantavirus infection in rodents and humans in other Central American and Caribbean countries, but descriptions of the clinical course are scarce.

Of note is an inverse correlation of seroprevalence rates and disease severity in humans. In the USA, Chile, and Argentina where the disease is severe, seroprevalence is low (0–1–2%). By contrast, in Paraguay and Panama, where HCPS is milder, 17–40% and 33%, respectively are seropositive. Thus, some populations have substantially higher exposure and infection rates and a lower susceptibility to clinical disease—an occurrence that could be related to genetic selection of the population, or more transmissible and less pathogenic viruses.

Person-to-person transmission of ANDV has been documented in Argentina and Chile. In 2018–19, a person-to-person transmission outbreak affected 34 patients in Argentina, 11 of whom died. A prospective study in Chile followed 476 household contacts of 76 confirmed ANDV cases for 5 weeks, and found 16 additional patients with a secondary attack rate of 3–4%. The risk of infection was 17–6% among sex partners of an index case, compared with 1–2% for other household contacts. Rare nosocomial transmission has also been reported. Based on these reports, risk factors for person-to-person transmission could include being a sexual partner, tongue kissing, and sleeping in the same room largely just before or during the febrile prodrome. In addition, attending a social gathering with a symptomatic person was identified as a risk factor in the 2018–19 Argentine outbreak. ANDV has been detected in saliva from rodents and humans, and is more resistant to inactivation by saliva than PUUV or HTNV. Ethnicity has been shown to affect the clinical course of ANDV and LANV infection, so human genetic composition can influence the severity of hantavirus infections.

Based on two reports in which infection was known to have been acquired during brief exposures in endemic areas, such as 2–3 day visits to Curry Village in the Yosemite National Park (CA, USA) in 2012, and short visits to endemic areas in Chile, the incubation for SNV and ANDV is long, ranging between 7 days and 49 days, with a median of 30 days and 18 days, respectively. For person-to-person transmission, estimates of incubation periods range between 9 days and 40 days, with a median of 19 days and 23 days, respectively.

HCPS cases occur mainly in spring and summer; however, the incidence and locations where rodent populations surge and outbreaks occur vary yearly. In Chile, abrupt, localised increases in *Oligoryzomys longicaudatus* populations, known as ratadas, follow blooming and seeding of bamboo species, leading to increased ANDV infections in rodents and humans.

Clinical presentation

HCPS and HFRS are separate entities, but the syndromes share several features (figures 1, 3). Firstly, both are characterised by strong inflammation, affect the vascular endothelial cells, and behave like a systemic disease. Secondly, both HCPS and HFRS can lead to renal failure. Finally, virtually all patients with HCPS and more than half of patients with HFRS have respiratory symptoms, such as hypoxia, and radiological findings on chest x-rays or CT scans.

For HFRS, increased vascular permeability, coagulation dysregulation, and acute kidney injury are typical features. The infection has classically been divided into

<table>
<thead>
<tr>
<th>Rodent host</th>
<th>Syndrome</th>
<th>Case fatality rate (%)</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puumala virus</td>
<td>SNV</td>
<td>HFRS</td>
<td>1%</td>
</tr>
<tr>
<td>Hantaa virus</td>
<td>SNV</td>
<td>HFRS (NE)</td>
<td>0.1–0.4%</td>
</tr>
<tr>
<td>Debravatia virus</td>
<td>SNV</td>
<td>HFRS</td>
<td>9–12%</td>
</tr>
<tr>
<td>Scopulivirus</td>
<td>SNV</td>
<td>HFRS</td>
<td><1%</td>
</tr>
<tr>
<td>Tula virus</td>
<td>SNV</td>
<td>HFRS</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

All information was obtained from several sources: hantavirus cardiopulmonary syndrome. HFRS—haemorrhagic fever with renal syndrome. NE—neighbourhood epidemics.

Table: Common or important hantaviruses causing disease in the Americas, and Europe and Asia
five stages (febrile, hypotensive, oliguric, diuretic, and convalescent). However, the course and severity of infection varies among individuals and hantavirus type: for example, PUUV, HTNV, and SEOV tend to cause milder symptoms than DOBV does. In milder cases, the clinical phases might be less identifiable. Among confirmed HFRS cases in Europe, between 30% and 30% are hospitalised, often due to severe symptoms or suspicion of bacterial infection.

After an incubation period of 2–6 weeks, prominent features include acute onset of high fever with headache, nausea, myalgia, and abdominal and back pain. Due to vascular leakage, hypotension is frequent during this early acute phase.

The febrile phase lasts approximately 7 days and is accompanied by coagulation abnormalities, thrombocytopenia, and haemorrhagic diatheses. Bleeding is more frequent in severe HFRS (caused by HTNV and DOBV) and can include petechiae in skin or mucosa, epistaxis, menorrhagia, metrorrhagia, and gastrointestinal bleeding, although fatal bleeding is rare. In PUUV, a third of patients have mild haemorrhages. An oliguric phase occurs in half of HFRS cases and can be associated with hypertension, complications of renal insufficiency, and pulmonary oedema. Ocular symptoms, mostly blurred vision caused by a thickening of the lens leading to transient myopia, is found in up to 70% of patients infected with PUUV.

Typical laboratory findings include proteinuria, haematuria, decreased plasma albumin concentration and elevated haemoglobin concentration due to plasma leakage, and thrombocytopenia in the early stage. C-reactive protein, interleukin-6, and other markers of inflammation are also elevated. Markers for acute kidney injury and increased serum creatinine and urea concentrations can be observed 5–9 days after disease onset, during the oliguric phase. Elevated liver transaminases, lactate dehydrogenase, and leukocyte counts are frequent. The severity of thrombocytopenia is associated with longer hospital stays and higher creatinine concentrations. Patients infected with DOBV have a higher proportion of acute renal failure, visual disturbances, severe thrombocytopenia, and other abnormal laboratory findings than do patients infected with PUUV.

Cardiopulmonary involvement with respiratory failure and shock might also occur in HFRS. In a German study, electrocardiogram (ECG) abnormalities were detected in 18%, and relative bradycardia in 80%, of patients infected with PUUV. In the Balkans, more than half of patients with PUUV and DOBV showed ECG abnormalities and half had pathological pulmonary x-rays with interstitial infiltrates and pleural effusions. Patients with HFRS mostly die from shock, complications of renal insufficiency, and multiorgan failure. Findings at autopsy can include microthrombi, interstitial oedema, and perivascular haemorrhage, especially in the kidneys.
and lungs. Kidney biopsies from patients with HFNS show interstitial haemorrhage, microvascular inflammation including the presence of T cells and macrophages, and peritubular capillaritis.

HCPS-causing hantaviruses mainly target the respiratory and cardiovascular systems (figure 1). HCPS begins with a febrile prodrome: myalgias, headaches, chills, abdominal pain, vomiting, diarrhea, arthralgia, conjunctival injection, and retro-ocular pain that lasts 2–7 days. Respiratory symptoms such as nasal congestion and odynophagia are infrequent, and abdominal pain can be intense and confused with acute abdomen. Patients infected with ANDV might also have petechiae on the axilla and extremities. The febrile prodrome is followed by the cardiopulmonary phase with sudden onset of cough, dyspnoea, tachycardia, and hypotension. These symptoms reflect increased vascular permeability, that in a period of hours leads to non-cardiogenic pulmonary oedema, respiratory failure, and often cardiogenic shock. However, some patients only develop prodromal phase symptoms and do not progress to the cardiopulmonary phase. More than half of SNV and ANDV infections are severe, whereas CHOV is associated with a milder form for which less than 10% of patients develop respiratory failure, and shock is rare. The cardiopulmonary phase lasts 2–4 days, with most deaths occurring within the first 24 h after hospital admission. In surviving patients, the deregulation of the endothelial cell barrier is reversed quickly.

Thrombocytopenia is observed early on, even before the onset of the cardiopulmonary phase. A prognostic role for thrombocytopenia in HFRS and HCPS has been described in relation to severity of inflammation, and development of severe acute kidney injury. In the cardiopulmonary phase, immunoblasts are usually present in the blood smear with leukocytosis without toxic degranulation, and a possible increase of haematocrit and haemoglobin. Other frequent findings are mild elevation of plasma creatinine and liver enzymes, increased lactate dehydrogenase, hypernatraemia, and proteinuria. Chest X-rays are usually normal during the prodrome, but bilateral infiltrates develop rapidly with a mixed interstitial and alveolar pattern, and pleural effusions in the cardiopulmonary phase. The usual findings in lung CT scans are marked septa, ground-glass opacities, and pleural effusions (figure 4).

Differential diagnosis

HFRS and HCPS must be differentiated, especially in the prodromal phase, with other febrile illnesses present in the geographical area. These include leptospirosis, atypical pneumonia with bilateral infiltrates, sepsis with acute respiratory distress syndrome and endocarditis with pulmonary oedema, and influenza. In western USA, pneumonic plague should also be considered.

Fever and thrombocytopenia can be caused by a variety of infections such as dengue virus, severe fever with thrombocytopenia syndrome, Crimean–Congo haemorrhagic fever, other arboviral infections, septicaemia, and rickettsiosis. Hantavirus infections can mimic an acute abdomen or other febrile gastrointestinal diseases such as typhoid fever. In pregnant women, the abdominal pain, urinary complaints, hypertension, and low platelet count that can be present in hantavirus infections must be differentiated from haemolysis, elevated liver enzymes, and low platelets syndrome (known as HELLP), and other complications of pregnancy.

Hantavirus in children

The clinical course of HFRS and HCPS for children seems to be similar to the course for adults. Abdominal pain and vomiting are common in children with a Puumla infection, but otherwise the clinical course appears similar to or milder than in adults. SOCV (a DOBV genotype in Russia) shows similar clinical severity and key laboratory findings among children and adults, but respiratory involvement is less frequently described in children than adults.

The proportion of cases in children varies by region. For HFRS, children and adolescents represent 1.7% of the cases in China, 6.0% in Finland,
9-7% in Russia, and 6-9% in Germany. In 2019, the incidence in Europe was less than 0-5 cases per 100,000 in children aged 14 years or younger, representing 1-3% of all cases in Europe.° 1,25,28° For HCPS, 18-66% of the cases in Chile, 8% in the USA, 10% in Brazil, and 9% in Argentina occur in children younger than 16 years.° 1,25,28° HCPS caused by ANDV occurs in children aged younger than 10 years and in adolescents,° 1,25 whereas SNV infection in children is largely limited to adolescents.° 1,25,28° Why the prevalence of HFRS and HCPS is lower in children remains unclear, but it might be due in part to fewer high-risk activities such as working in agriculture and forestry. The gender distribution in children (1:1) is different than in adults (4:1 male:female).° 1,25 The prodromal and cardiopulmonary phases, and laboratory findings in children are similar to those in adults.° 1,25,28°

Pregnancy infection and outcome in newborn babies

The severity of PUUV, DOBV, and ANDV infections is similar in pregnant and non-pregnant women,° 1,25 but HTNV infections can be more severe, especially in the third trimester.° 1,25 Severe HFRS and HCPS can lead to obstetric or fetal complications.° 1,25,28° Miscarriage or preterm labour (before 37 weeks) appears to be due to maternal infection (eg. hypoxaemia and hypotension), rather than fetal infection.° 1,25,28° Intrauterine transmission is very rare and has not been reported for SNV, ANDV, PUUV, DOBV, or SEOV. A few cases of suspected intrauterine transmission have been reported for HTNV, but only one case was confirmed by the presence of immunoglobulin M (IgM) in fetal cord blood and pathological findings at autopsy.° 1,25,28° In 2020, two cases of ANDV infection in breastfeeding mothers with transmission to their newborn babies were reported.° 1,25,28° In one case, viral RNA was detected in the mother’s breastmilk,° 1,25 as previously reported for SNV.° 1,25

Possible complications and sequelae after HFRS and HCPS

Systemic and organ-related complications and sequelae might occur depending on the type of hantavirus syndrome, causative virus, and severity of the acute infection. Fatigue, impaired kidney and lung function, and hypertonia have been reported after HFRS,° 1,25,28° but the increased risk for hypertonia was not detected.
10 years after HFRS. Although hypertension and proteinuria are common at follow-up, kidney function seems to be restored after HFRS. Up to 80% of patients with PUUV might have hormonal dysfunction at follow-up. Like SARS-CoV-2, hantavirus infections might increase the risk for thromboembolic complications such as stroke and myocardial infarction. Information on long-term sequelae in HCPS is insufficient, but transient convalescent pulmonary dysfunction, potential chronic renal sequelae, retinal haemorrhage, optic neuritis, and sensorineural hearing loss have all been reported. Long-term complications of SNV or ANDV infection can be difficult to differentiate from effects of long-term critical care hospitalisation and extracorporeal membrane oxygenation (ECMO).

Hantavirus diagnosis

Hantavirus infection should be considered in patients who reside in or have recent (5–50 days before) travel history to an endemic region, presenting with either persistent fever (＞48 h), headache, myalgia, gastrointestinal manifestations (abdominal pain, vomiting, and diarrhoea), and a marked decrease in platelet count, or in the case of more advanced illness, cough, dyspnoea, hypoxia and bilateral pulmonary infiltrates, or acute renal dysfunction. In ANDV endemic regions, close contact with an infected patient in the previous 40 days, in particular sexual contact or sleeping in the same room, should also be considered a risk factor. Detection of proteinuria and haematuria with urine dipstick analysis supports the clinical suspicion of HFRS, although serology is the most widely used diagnostic test. IgM antibodies directed against hantavirus nucleocapsid protein are often present at onset of the febrile prodrome, and IgG antibodies directed against nucleocapsid proteins are usually present by the end of the febrile prodrome. The serological standard method for confirmation is enzyme-linked immunosorbent assay (ELISA). Immunochromatographic IgM assays prepared with nucleocapsid protein have been used for diagnosis of HFRS caused by PUUV, HTNV, and DOBV (in one virus or combined formats), with assay performance greater than 90% compared with ELA IgM assays. The immunochromatographic IgM test for PUUV has also been used to test for SNV and ANDV, although immunochromatographic tests should be confirmed with specific ELA to minimise the false positive results. IgG ELA tests are used alongside IgM ELA tests for acute diagnosis, and for seroprevalence studies. Neutralising antibody assays are mainly used to study natural immunity or evaluate candidate vaccines and monoclonal antibodies.

RT-qPCR, usually designed to detect the S segment, is sensitive and specific. Viral loads are higher in buffy coat than in plasma, and RT-qPCR can detect ANDV RNA for up to 2 weeks before symptom onset and detection of antibodies, and for weeks after resolution of symptoms (figure 3). Similar molecular tests have been developed in the USA, Panama, and Brazil for local strains. RT-qPCR assays are also used for the diagnosis of DOBV and PUUV in the early phase of infection, even when specific antibodies are not present. An RT-qPCR for a consensus region of PUUV’s nucleocapsid protein from different geographical locations in Sweden showed a 98.7% sensitivity, and 100% specificity in the diagnosis of confirmed patients within the first 8 days of symptoms. It also established the diagnosis in 9.6% of patients who were negative for specific PUUV antibodies early in the disease. A nested RT-qPCR for the L segment has been developed for diagnosis of early phase HFRS in serum and urine; the virus was detected earlier in urine than in serum, and was detected in both fluids for up to 1 month after initial symptoms. Next-generation sequencing has been used to study viral genomics and epidemiology, including suspected person-to-person transmission.

Treatment and supportive care

There is no specific effective antiviral or immunomodulatory treatment available; treatment of patients admitted to hospital is supportive. Intravenous ribavirin reduced mortality in one controlled trial for HFRS in China, but these trials are insufficient. Ribavirin was ineffective against HFRS caused by PUUV, and a small, placebo-controlled trial that used intravenous ribavirin for HCPS (in the cardiopulmonary phase) in North America suggested no survival benefit. Similarly, high-dose intravenous methylprednisolone was ineffective in a controlled trial for HCPS (in the cardiopulmonary phase) in Chile. Management strategies of HFRS include careful monitoring of clinical signs, fluid and electrolyte balance, blood pressure, and urine production. Treatments include analgesic drugs, intravenous fluid against hypotension, oxygenation against hypoxia, and correction of electrolyte imbalances. Dialysis is required in 15% of patients with DOBV, but in less than 5% of patients with PUUV. Mechanical ventilation and renal replacement therapy might be necessary in severe cases with acute respiratory distress syndrome and overt kidney failure. Patients with hypotension and shock receive vasoactive drugs together with fluid.

Favipiravir was effective in ANDV and SNV animal models when given before onset of viraemia, and icatibant acetate, a bradykinin receptor antagonist, has been used in several patients with severe HFRS. Notably, an association has been shown between low concentrations of specific antibodies in serum during the acute phase, and severe or fatal outcomes in patients infected with PUUV, ANDV, or SNV. In an open study in Chile, mortality in patients infected with ANDV treated with convalescent plasma was lower than in
greater than 10% of the total leukocyte population) has a sensitivity of 96%, and a specificity of 99%. Common laboratory assays can also identify patients at increased risk of severe disease. A platelet count greater than 115,000 platelets per μL at admission has been associated with a lower risk of progression to severe HCPS, whereas a platelet count lower than 40,000 platelets per μL has been associated with increased mortality. Similarly, positive quantitative proteinuria at hospital admission has been linked to mortality.

When the clinical or laboratory signs of circulatory shock begin, appropriate monitoring allows for the implementation of advanced organ support. Patients with HCPS might change from room air oxygen to invasive mechanical ventilation, and from normal haemodynamics to refractory shock within hours. Some patients progress to cardiogenic shock despite inotropic drugs, and might not reach respiratory stabilisation despite invasive mechanical ventilation, so ECMO should be considered.

The pathophysiology of HCPS is characterised by a pulmonary capillary leak with non-cardiac pulmonary oedema, and low preload, progressive hypovolaemia, cardiac index impairment, and high systemic vascular resistance index in severe disease. When clinical hypoperfusion (mottling and slow capillary refill time) or hyperlactataemia is present, haemodynamic monitoring of cardiac index and inotropic drugs titration should be started promptly. Cardiac index can be monitored by thermodilution-based techniques, including transpulmonary thermodilution or pulmonary artery catheterisation. Serial cardiac index monitoring by echocardiography is a less invasive option that is used in centres where trained staff are continuously available to assess changes.

Volume resuscitation should be avoided, as it can exacerbate pulmonary oedema and increase mortality. Inotropic drugs are the main strategy for improving cardiac index, and although oxygen and ventilatory support should be considered, intubation should be delayed when feasible until vascular access for ECMO has been established. When shock is refractory to inotropic drug support (dobutamine or epinephrine), respiratory support does not provide adequate gas exchange, early connection to venoarterial ECMO should be considered (figure 5).

Clinical experience with venoarterial ECMO for severe HCPS is substantial (figure 5). A study by Wernly and colleagues reported 80% survival in 25 patients treated with veno-arterial ECMO. These patients initially had insertion of vascular sheaths based on a presumptive or definitive diagnosis of HCPS (rather than criteria for immediate initiation of ECMO), followed by a delay of intubation until it could be performed almost concurrently with placement of vascular access. Tailored high-volume haemofiltration was used before ECMO in five patients, thereby avoiding ECMO in three patients.
Conclusions and future perspectives

Clinical outcomes of severe hantavirus infections are dependent on clinical suspicion, rapid diagnostic tests or algorithms for presumptive diagnosis, and prompt transfer to a facility with critical care units, including units with access to ECMO for HCAPS. Development of readily available pan-hantavirus serological and RT-qPCR tests is needed. As reviewed in 2019, no treatment or vaccines are approved for use in Europe and the Americas. Randomized clinical trials are warranted to evaluate the efficacy of candidate antivirals, neutralising antibodies, and drugs such as icatibant. Although inactivated HTNV and SDEV vaccines are used in Asia, and case numbers decreased following implementation, clear evidence of vaccine efficacy is absent. Safe, effective vaccines are needed, especially in the Americas, where deadly hantaviruses circulate. The Yosemite outbreak in California, USA, and the large person-to-person outbreak in Argentina highlight the need for protocols for early diagnosis and treatment of exposed individuals. Evaluation of early post-exposure treatment with favipiravir (before viraemia), ribavirin (with viraemia), or neutralising antibodies might be considered for close household contacts of ANDV cases, those exposed after high-risk laboratory accidents, or in super-spreader events. Finally, additional research is needed to identify long-term sequelae.

Contributors

PAV and RL searched the literature. All authors reviewed the literature, wrote and reviewed the original draft, and contributed equally. PAV, RL and GJM designed the figures. PAV and GJM edited the manuscript. CV and NLC managed the references.

Declaration of interests

We declare no competing interests.

Acknowledgments

Grants have financed studies of HFRS and HCPS by the authors in Europe and the Americas, and supported researchers protected time for data analysis and writing: NIH U01 AI046452 (PAV, GJM, MF, CV), Fendecy 201240 (CV, PAV, MF, JX), Fendecy 219835 (MF, NLC, CV), ATE220061 (CV, MF, PAV), and The Center for Medical Innovation 20200141 (JX). We would like to thank Felipe Serrano for scientific illustrations (figures 1, 4) and Marllaura Nuhete for assistance in conducting publications search.

Editorial note: The Lancet Group takes a neutral position with respect to territorial claims in published maps and institutional affiliations.

References

Copyright © 2023 Published by Elsevier Ltd. All rights reserved.