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In this paper, we present a novel multi-objective mixed-integer linear programming model to support wine grape
harvesting. The proposed model considers the opposing nature of operational cost minimization and grape
quality maximization, subject to several constraints, such as grape requirements and routing decisions. Based on
the operations of a winery we worked with, we develop a negotiation protocol that can lead to an agreed final
harvest schedule. The protocol includes an initial Pareto optimal solution obtained through the augmented

weighted Tchebycheff method. Then, the solutions are presented to the two decision-makers and, if no agree-
ment is reached, we conduct an iterative process, which includes finding Pareto optimal solutions in a neigh-
borhood using the augmented e-constraint method. Finally, we choose, within this set, the solution following a
substitution rate criteria. We illustrate our procedure using an educational example.

1. Introduction

The Chilean wine industry has greatly developed in the last few
decades. It currently exports over 1800 million US dollars and plays an
important role in the Chilean economy (Mora, 2019). Although the
Chilean wine industry only contributes about 1% of the Chilean gross
domestic product, it has a significant role in positioning Chile as a
brand around the world (Egan & Bell, 2002). In fact, in the last decades,
Chilean wineries have turned from local-consumption-focused compa-
nies to export-focused companies, entering into more extensive and
more competitive markets (Overton & Murray, 2011). Thus, local
wineries need to improve their efficiency and productivity along the
whole wine supply chain to remain competitive in the global market.

This paper focuses on the wine grape harvest stage, which is the first
one of the wine supply chain. The grape harvest in Chile is generally
carried out from the end of February until the end of April of each year
(Lima, 2015). Wine grape harvest planning consists of deciding how,
when, where, and how much to harvest. For managerial reasons, the
soil is divided into blocks, which are portions of land with similar
characteristics in terms of composition and quality of grapes. In order to
generate a good harvesting schedule, both the oenologist and the field
manager must participate since they tend to have quite different per-
spectives.

* Corresponding author.

In this paper, we address the opposing objectives of the oenologist
and the field manager in the grape harvest scheduling problem. On the
one hand, the oenologist seeks to maximize the quality of the harvested
grapes, while on the other, the field manager attempts to minimize the
operational costs of the harvest. Moreover, these two opposing objec-
tives must consider operational constraints, such as resource avail-
ability. For example, each block has a feasible harvest time window
around an optimal specific day. The more the harvest deviates from the
optimal day, the more the grapes lose quality. In this context, the oe-
nologist has incentives to propose a harvesting plan in which every
block is harvested on its optimal day, but this may be infeasible or
prohibitively expensive considering a limited number of workers or
machinery.

The contribution of this paper is twofold. First, we develop a novel
multi-objective mixed-integer linear programming model to support
wine grapes harvesting. The model considers the opposing nature of the
minimization of operational costs and the maximization of grape
quality, subject to several constraints, such as requirements for the
grapes, winery cellar reception capacities, and routing decisions within
a period. Second, based on the real operations of one of the three largest
wineries in Chile, we develop a negotiation protocol that can help de-
cision-makers to reach an agreement on the final harvest schedule. The
negotiation protocol uses the augmented weighted Tchebycheff method

E-mail addresses: mavaras@udd.cl (M. Varas), francobasso@gmail.com (F. Basso), smaturan@ing.puc.cl (S. Maturana), david.osoriom@mail.udp.cl (D. Osorio),

raul.pezoa@udp.cl (R. Pezoa).

https://doi.org/10.1016/j.cie.2020.106497

Received 30 May 2019; Received in revised form 17 January 2020; Accepted 20 April 2020

Available online 11 May 2020
0360-8352/ © 2020 Elsevier Ltd. All rights reserved.



M. Varas, et al.

to compute a first optimal Pareto solution close to an ideal solution.
This solution is presented to the two decision-makers and, if no
agreement is reached, we conduct an iterative process that includes
finding Pareto optimal solutions in a neighborhood using the aug-
mented €-constraint method. In each iteration, we choose within these
Pareto optimal solutions, the one with the substitution rate closest to
one.

The rest of this paper is organized as follows. Section 2 reviews
relevant literature. Section 3 describes the multi-objective optimization
methodology. Section 4 presents the model for the problem at hand.
Section 5 describes the negotiation protocol and Section 6 presents an
illustrative example. Finally, Section 7 presents the conclusions.

2. Literature review

Since the 1940s, operations research has been successfully used to
improve productivity and efficiency in various industrial problems. In
particular, it has helped improve decisions in the management of nat-
ural resources; for example, in agriculture (Souza & Gomes, 2015); in
aquaculture (Mesquita, Murta, Paias, & Wise, 2017); in mining
(Moreno, Rezakhah, Newman, & Ferreira, 2017); and in the forest in-
dustry (Alvarez, Espinoza, Maturana, & Vera, 2020; Maturana, Pizani, &
Vera, 2010; Troncoso, D’Amours, Flisberg, Ronnqvist, & Weintraub,
2015). The wine industry has also incorporated the use of advanced
analytical methods. However, its adoption has been slower than in
other sectors due mainly to two factors. First, as stated by Morande and
Maturana (2010), winemakers tend to see themselves more as artists
than technicians, so they are usually reluctant to use quantitative
methods to support decision making. Second, since advanced analytical
models require both mathematical and computational knowledge for
the use of these tools, many practitioners tend to resist their application
for decision making (Garcia et al., 1990).

Notwithstanding these obstacles, in recent decades, there has been
significant development of mathematical tools to increase efficiency
and modernize the wine industry due, mainly, to the increase in com-
plexity of the decisions involved as a result of the globalization of all the
business areas in this industry (Hussain, Cholette, & Castaldi, 2008).

2.1. Wine supply chain

According to Basso, Guajardo, and Varas (2020), the wine supply
chain, shown in Fig. 1, consists essentially of four stages: (i) wine grapes
growth and harvest, (ii) wine manufacturing, (iii) bottling, labeling and
packaging, and (iv) distribution. For a detailed description of each
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stage, we refer the reader to (Petti et al., 2006).

The wine supply chain has been researched from different per-
spectives. For example, Garcia, Marchetta, Camargo, Morel, and
Forradellas (2012) propose a logistics benchmarking framework for the
wine industry, which was applied to several wineries from Mendoza in
Argentina. Ting, Tse, Ho, Chung, and Pang (2014) propose a decision
support system of supply chain quality sustainability to support man-
agers in food manufacturing firms for better planning their logistics in
order to maintain the quality and safety of food products. They also
conducted a case study of a Hong Kong red wine company.

Environmental issues have generated much research on how to
make the wine supply chain cleaner. For example, Valenzuela and
Maturana (2016) propose a three-dimensional performance measure-
ment system (SMD3D) that encompasses three key dimensions: sus-
tainable, temporal, and spatial. The in-depth interviews conducted with
managers of 50 wine companies in Chile confirmed the importance they
assign to sustainability, having formally defined it in their strategic
plan. More recently, Harris, Rodrigues, Pettit, Beresford, and Liashko
(2018) examine the impact of different wine distribution alternatives
on carbon and sulfate emissions. On the other hand, Ponstein, Ghinoi,
and Steiner (2019) use a life cycle assessment methodology to in-
vestigate greenhouse gas emissions in the wine supply chain in Finland.

2.2. Operation research models in the wine industry

There have been relevant contributions on the use of operations
research tools in the different stages of the wine supply chain (Moccia,
2013). At the grape harvest stage, which is the subject of our research,
Ferrer, Mac Cawley, Maturana, Toloza, and Vera (2008) propose a
mixed-integer linear optimization model (MILP) that incorporates route
decisions and the location of workers for scheduling the grape harvest.
The authors incorporate a novel loss function that represents the de-
crease in quality by advancing or delaying the harvest with respect to
its optimal day. Arnaout and Maatouk (2010) modify the model pro-
posed by Ferrer et al. (2008), adding a new constraint that forces no
inactive days between the start and the end of the harvest of a block.
The authors also develop a novel heuristic to solve large-sized instances
that significantly outperforms the Branch-and-Bound algorithm used in
Ferrer et al. (2008). Finally, Bohle, Maturana, and Vera (2010) present
an extension of the model proposed by Ferrer et al. (2008), addressing
the uncertainty of crop productivity by using the robust optimization
approach of Bertsimas and Sim (2004).

The manufacturing stage has been the subject of less research than
the other stages, due to its complexity. However, Cakici et al. (2006)
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Fig. 1. Wine industry supply chain (Basso et al., 2020).
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propose a MILP model to route flows through a network of tanks and
pipes at E. & J. Gallo Winery, seeking to minimize wine damage and
optimize resources. Due to the size of the piping networks, the authors
propose a heuristic procedure to solve full-scale problems. Also,
Palmowski and Sidorowicz (2018) consider a dynamic programming
optimization approach to model the assignation of grapes to pressing
tanks in order to obtain the highest possible income from produced
wine. Tests on real data show that the proposed algorithm generates a
higher payoff than the manual assignment method.

The packaging stage, on the other hand, has been much more re-
searched. For example, Cholette (2009) uses a two-stage stochastic
linear program with fixed recourse to study the problem of product
misallocation. The model maximizes the expected profit over a dis-
tribution of demand scenarios. Basso and Varas (2017) propose a MILP
model for the bottling scheduling problem. The resulting formulation
considers specific operational constraints, but excessive computational
times precludes its use in real instances. The authors also propose a
greedy heuristic solution approach that can handle real-case scenarios
in a reasonable amount of time. Varas, Maturana, Cholette, Mac
Cawley, and Basso (2018) extend the analysis of Cholette (2009) by
proposing a multi-stage stochastic programming model of the same
problem. The authors analyze the impact on the performance of wine
production planning when the labeling of bottled wine is delayed.
Varas, Basso, Liier-Villagra, Mac Cawley, and Maturana (2019) propose
a (s — 1, s) strategy to manage the inventory of premium wines, which
minimizes the steady-state expected values of work in process, overage,
and underage costs. They developed a heuristic that solves a news-
vendor type of problem for each end product. Basso et al. (2020) pro-
pose a horizontal collaborative approach for the wine bottling sche-
duling problem formulated in Basso and Varas (2017). The
methodology analyzes the impact of sharing production lines among
several wineries and concludes that delays can be reduced up to 56.9%.

Finally, at the distribution stage, Cholette (2007) develops a MIP
model to qualify partnerships between wineries and distributors. The
author applies this model in a real setting, recommending 31 winery-
distributor matches out of 675 possibilities. Mac Cawley (2014) dis-
cusses the relationship between quality degradation and the shipping
temperature of the wine. The author shows that the risk of extreme
temperature exposure for the shipments is minimized during the
Northern hemisphere winter. The author also notes that the transship-
ment phase is the most dangerous one of the distribution chain.

2.3. Multiobjective optimization applications

Multiobjective optimization has been used to help decision-makers
to deal with many different problems. For example, Salamati-Hormozi,
Zhang, Zarei, and Ramezanian (2018) propose a generalized mixed-
integer linear production planning problem with a multi-period and
multi-item specification in a make-to-order manufacturing system. This
model seeks to assign the customers’ orders to its subsidiary companies
so that it minimizes the total cost as well as the maximal production
utilization, leading to a fair allocation of production loads. Due to the
difficulty of finding the set of Pareto solutions, an €-constraint method
is used for small-sized problems, and three metaheuristic algorithms are
used for large-sized problems. Computational experiments show the
feasibility of the approach.

Rezaei-Malek, Tavakkoli-Moghaddam, Zahiri, and Bozorgi-Amiri
(2016) propose an integrated model that determines the optimal loca-
tion-allocation and distribution plan, along with the best ordering
policy for renewing the stocked perishable commodities that are pre-
positioned in a pre-disaster phase. Since it is impossible to know be-
forehand when a disaster will strike, and stocked perishable commod-
ities need to be renewed, the model seeks to minimize two objectives:
the average weighted response times and the total operational cost at
the pre-disaster phase, and the penalty costs of unmet demand and
unused commodities at a post-disaster phase. The reservation level
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Tchebycheff procedure (RLTP) is used to provide good solutions to
decision-makers interactively. A case study in Iran is presented.

Bilir, Ekici, and Ulengin (2017) propose a multi-objective supply
chain network optimization model to analyze the impact on customer
demand by supply chain decisions. The model considers three objec-
tives: profit maximization, sales maximization, and supply chain risk
minimization. The model is applied to a real-world problem, which is
solved as single and multi-objective models. The results are compared,
and a sensitivity analysis is conducted to test the applicability of the
model.

The application of multi-objective optimization can also be found in
various natural resources industries. For example, in the forestry in-
dustry, Palma and Vergara (2016) develop an optimization model
considering three objectives: production costs, waste, and over-
production. The authors solve problems considering uncertainty in the
preferences of each objective. In this same industry, Palma and Nelson
(2010) consider the model proposed by Johnson and Scheurman
(1977), taking two objectives into account, and adding uncertainty to
the importance of each of them. More recently, Vafaeenezhad,
Tavakkoli-Moghaddam, and Cheikhrouhou (2019) describe a multi-
objective linear programming model they developed for a multi-
echelon, multi-product, multi-period supply chain planning problem.
This model considers many dimensions of sustainable development si-
multaneously by using six objective functions. For solving this model,
an improved version of the augmented-constraint method (AUGME-
CON2) is used. The authors also provide computational results using
the proposed model. Finally, an application to the paper industry is
presented and discussed.

In the food industry, Bottani, Murino, Schiavo, and Akkerman
(2019) proposed a bi-objective mixed-integer programming formula-
tion for the Resilient Food Supply Chain Design (RFSCD) problem,
which is the problem of designing a food supply chain that is resilient
enough to ensure business operations continuity in the event of risks or
disruptions. The objectives were to maximize the total profit over one
year and to minimize the total lead time of the product along the supply
chain. They solve the model using an Ant Colony Optimization (ACO)
algorithm.

In the wine industry, Varsei and Polyakovskiy (2017) propose a
multi-objective optimization model for designing the supply chain
considering three objectives: costs, CO, emissions, and social impact. To
the best of our knowledge, this is the only application of the multi-
objective optimization approach in the wine industry.

Finally, environmental issues have also been incorporated in multi-
objective models. For example, Miranda-Ackerman, Azzaro-Pantel, and
Aguilar-Lasserre (2017) present a methodology based on life cycle as-
sessment, multi-objective optimization solved using genetic algorithms,
and multiple-criteria decision-making tools for helping design food
supply chain networks. The approach is illustrated and validated on an
orange juice supply chain case study.

Our paper is related to the work presented in Bohle et al. (2010)
with a significant difference: in our work, we focus on the inherent
conflict between the oenologist and the field manager that arise when
developing a harvest schedule. The underlying hypothesis of our work
is that the improper management of these conflicting objectives could
lead to inferior solutions in terms of both quality and costs. In this
context, the use of a single-objective function that integrates the con-
cerns of both decision-makers requires knowing the cost of grape
quality degradation when deviating from the optimal harvesting day. In
practice, however, this cost is quite difficult to estimate because the
final price of a bottle depends not only on the grape quality, but also on
several other factors that are subject to multiple sources of uncertainty,
e.g., promotions and demand level, and unexpected events (Mac
Cawley, 2014). Moreover, a single-objective solution approach does not
include human interaction, which could be unrealistic in this industry.
So, to tackle all the above drawbacks, in this paper, we propose a multi-
objective formulation, a €-constraint solution approach, and a
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negotiation protocol to cope with the conflicting objectives.

3. A multi-objective optimization framework: some building
blocks

Multi-objective optimization can be defined as an optimization
problem with at least two objective functions. Consider m > 1 objective
functions fi: ¥ — R, ...f,: ¥ - R which maps the decision space y to
the set of real numbers R. A multi-objective optimization problem can
be written as follows (1).

minimize  (f; (x), ...f, (X))
s. t. XEy (D

In a multi-objective framework, the goal is to find a solution on
which the decision-maker can agree, and that is optimal in some sense
(Emmerich & Deutz, 2018). On this, the main difficulty with this type of
problem is the subjectivity of the optimal solution (Baesler & Palma,
2014). In multi-objective optimization, the notion of an optimal solu-
tion is changed to non-dominated solutions. A non-dominated solution,
or Pareto optimal solution, is a feasible solution for which there is no
other feasible solution that improves some objective function without
worsening another (Mavrotas, 2009). The set of all non-dominated so-
lutions is called the Pareto set, which reveals the trade-off between the
objectives. Therefore, computing the Pareto set and choose a solution
within it is the main topic in multi-objective optimization.

Regarding the methods of resolution, Hwang and Masud (2012)
classify them into three categories: a priori, interactive, and a posteriori,
which differ based on the stage at which decision-makers expresses
their preferences. In the a priori methods, decision-makers reveal their
preferences before the computing stage, for which they have to have
extensive knowledge of the process to obtain satisfactory solutions
(Mavrotas & Diakoulaki, 1998). In interactive methods, decision-ma-
kers add preferences during the calculation stage. Interactive methods
are suitable for large problems because they can restrict the search area
to focus only on the part of interest of the set, guided by the preferences
of the decision-maker (Mavrotas & Diakoulaki, 1998). Finally, a pos-
teriori methods seek to generate the complete Pareto set, and then show
it to the decision-maker who makes the final decision (Mavrotas &
Florios, 2013). The a posteriori methods are the most computationally
demanding, making them less popular (Mavrotas, 2009).

There are different techniques to compute the Pareto set. We now
briefly describe three of them, one for each category. First, the
weighted sum is an a priori method that consists of assigning a weight to
each objective function, transforming the problem from a multi-objec-
tive optimization problem to a classical single-objective optimization
problem. Consider a weight vector w € R;. The linear scalarization of
(1) is given by (2). The limitation of this method is that not all non-
dominated solutions can be found (Ehrgott, 2006). For a further de-
scription of a priori methods, we refer the reader to Marler and Arora
(2004).

m
minimize Z w;f; (x)
i=1

s. t. XEy (2)

Second, STEM is an interactive method that seeks to determine so-
lutions by minimizing the Tchebycheff distance with respect to an ideal
solution (Benayoun, De Montgolfier, Tergny, & Laritchev, 1971). Con-
sider a weight vector A € RY,. The Tchebycheff scalarization of pro-
blem (1) is given by (3), where z;, the components of the ideal point,
are defined as z;" = infyc,f (x) with i € {1, ...m}. For a more extensive
description of interactive techniques, we refer the reader to Antunes,
Alves, and Climaco (2016).

minimize maxXjeq,  mdilf; (%) — 27
s. t. XEy (3)
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Finally, the e-constraint method is an a posteriori method that solves
one of the objective functions using the others as constraints (Chankong
& Haimes, 1983). Consider m — 1 constants €; € R, ...,€,,_; € R. The
e-constraint scalarization of (1) is given by (4), where f, g, ...g,_,
constitute the m component of the objective functions vector. This
method was strongly improved by Mavrotas (2009), who proposed the
augmented €-constraint method that avoids redundant calculations and
provides only non-weak solutions. A non-weak non-dominated solution
is a feasible solution for which there is no other feasible solution that
strictly improves all the objectives simultaneously. An improved ver-
sion of this method is described in Mavrotas and Florios (2013).

minimize f; (x)
s. t. gx)< g, i€{l,om—1}
XEy (4)

The methodology proposed in this paper minimizes the Tchebycheff
distance to the ideal solution to find and initial Pareto optimal point. It
then uses the e-constraint method to iteratively find other Pareto op-
timal solutions. Further details are provided in Section 5.

4, Mathematical formulation

In this section, we formulate the grape harvest planning as a mixed-
integer linear multi-objective mathematical programming problem.
This model tries to capture the operational complexity that underlies
the harvesting process in the wine industry.

For the sake of exposition, we state the relevant definitions and the
main assumptions in SubSection 4.1. In SubSection 4.2, the sets and
parameters are described. The decision variables of the model are de-
fined and described in SubSection 4.3, while the objective functions are
established and explained in SubSection 4.4. In SubSection 4.5, the
constraints of the model are stated. Finally, the constraints and vari-
ables necessary to linearize the model are added in SubSection 4.6, and
consequently, one of the objective functions is modified according to
the new formulation.

4.1. Definitions and assumptions

It may be useful for a better understanding of the model to give
some definitions and assumptions that are fairly standard in the related
literature (see for example both Ferrer et al. (2008) and Bohle et al.
(2010)) and in the wine industry of several countries, such as Argen-
tina, Australia, Chile, and the United States. There may be, of course,
some vineyards of those countries that operate differently.

Consider the following definitions:

® A block is a particular portion of land with similar characteristics of

soil, grape variety, and quality.

A winery is a place of destination where the grapes arrive after being

harvested in the blocks. Here is where wine production begins.

® A mode is the harvesting method, which can be mechanical or

manual.

A harvest window corresponds to a feasible set of consecutive harvest

periods.

e A tour is an ordering of blocks to be harvested in a period.

® The loss function provides the decrease of grapes quality as a func-
tion of the deviation from the optimal day of harvest. An example is
shown in Fig. 2.

Consider the following assumptions:

For each block, the harvest window corresponds to a strict subset of
the planning horizon.

e When the harvest of a block starts, it cannot be stopped.

¢ The harvested grapes in each block may go to multiple wineries.
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Fig. 2. Quality loss function example. Based on Ferrer et al. (2008).

Each winery has a maximum reception capacity.

® Wineries might require grapes from some particular block and a

specific harvest mode. For example, in the case of premium wines,

the harvest mode is usually by hand, and the grapes come from the
blocks with the best grapes.

Multiple blocks can be harvested in a period.

Each block may be harvested using multiple modes in each period.

There is a headquarters (depot), denoted AG, where the work begins

and ends every period. So, in each period, it is necessary to define

which blocks and in what sequence they will be harvested. Thus, the
existence of intra-period routing is allowed. This last is a distinctive

feature of our modeling approach compared to Ferrer et al. (2008).

If a block is harvested, there is a minimum amount of grapes that

should be harvested in each period. This value depends on the

mode.

e There is a minimum number of workers required for harvesting a
block.

e There is a maximum number of hours available for the mechanical
harvest mode.

e All available grapes must be harvested in a block. If this does not
happen, the residual non-harvested grapes will be detrimental for
next year’s plantation.

e For each harvest mode, one block is harvested at a time.

e There are fixed hiring and firing costs. Also, the workers are paid
each period.

e A predefined loss function gives the reduction in grape quality due
to harvesting before or after the optimal date.

4.2. Sets and Parameters
Consider the following sets:

® J;: Set of blocks that can be harvested mechanically (indexed by j).

e I,: Set of blocks that can be harvested manually (indexed by j,).

e J: Equals to J; U J, U {AG}. For the sake of exposition, we denote AG
by 0.

e K: Set of harvesting modes (indexed by k). Specifically, k = 1 re-
presents the mechanical harvest mode and k = 2 the manual mode.

e T: Planning horizon (indexed by ¢).

® B: Set of wineries (indexed by b).

Consider the following parameters:

e D; € R*: Distance between blocks i and j (km).

* Q; € R*: Quality factor for block j in period t (%). This parameter is
equal to zero for periods outside the harvest window, and within, its
values are given by the loss function.

e H € R*: Hiring cost =),

1¥n{kfr
F € R*: Firing cost ( ¥y
worker
C, € R*: Unit cost of a productive resource of mode k. For k = 1, this

parameter corresponds to the amount paid for using a machine one

hour (_#). For k = 2, this parameter corresponds to the
machinery hours

amount paid to each worker every period ( Sk 2
worker

Py € R*: Unit productivity of mode k to harvest block j
ke

Gy € R*: Quantity of grapes in block j harvested with mode k re-

quired by winery b (kg).

Wi, € {0, 1}: It takes value 1 if block j can be harvested in period t,

and 0 otherwise.

Lizy € R™: Reception capacity of winery b in period t with mode k
k

perfmf :

e A, € R*: Available hours for the use of machinery in period t
(hours).

® M € R*: A sufficiently large number.

® R, € R*: Transportation cost for moving the whole mode k opera-

tion. (%).

¢ V. € R*: Minimum amount of grapes to be harvested if harvesting
takes place in a block with mode k (kg).

® N € Z*: Minimum number of workers needed to harvest one block
(workers).

4.3. Variables

The main decisions of the problem are determining how, when,
where, and how much to harvest.

® Xjip € R: Quantity of grapes harvested in block j, in period t, with
mode k, en route to winery b (kg).

® Yy € {0, 1}: Binary variable that takes the value 1 if for block j, the
harvest starts in period t, with mode k, en route to winery b, and 0
otherwise.

® Z;iwk € {0, 1}: Binary variable that takes the value 1 if the operations
are moved from block i to block j, in period t, using mode k, en route
to winery b, and 0 otherwise.

® Tjy € N: Variable used to eliminate the subtours in MTZ formula-
tion. It represents the position in the cycle of block j, in period ¢,
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with mode k, en route to winery b.

e wh, € Z*: Number of workers hired in period t (workers).

e wf € Z*: Number of workers fired in period t (workers).

® u;; € Z*: Quantity of productive resources used in block j, in period
t, with mode k (workers or machine hours).

® v € {0, 1}: Binary variable that takes the value 1 if block j is
harvested in period ¢, with mode k, en route to winery b, and 0
otherwise.

4.4. Objective functions
In general terms, optimizing the harvest planning implies mini-

mizing the operational costs (5), and maximizing the quality of the
harvested grapes (6). Both objectives are defined as follows:

MinF,
(a) (b) (c)
= il teT.kek Ck‘uﬂk . Zte]‘ HIWh‘ # Zrel‘ F.IW’
(d)
+ Zie.ﬂie!,IET,bGB.keK:L#j R-Dyj-Zijne (5)
MaxF, = E QjeXjkn
jeldteT keK,beB (6)

The objective function F; seeks to minimize the harvest operational
costs. In particular, (a) represents the resources (machine hours or
workers) cost; (b) represents hiring cost; (¢) represents the firing cost;
and (d) represents the transportation cost. The objective function F», on
the other hand, seeks to maximize the quality of the harvested grapes.

4.5. Constraints

We group the constraints in three categories: capacity and harvest
operations constraints, harvesting modes constraints, and MTZ con-
straints. We refer the reader to Miller, Tucker, and Zemlin (1960) for
the MTZ formulation of traveling salesman problems.

Capacity and harvest operations constraints:

Z&m«béLkm VkeK.beB.teT

Jjel (7)
> X =G VKEK,bEB,jET
®
Xy € GipViy VK EK, bEB, jEJ 1 ET 9)
ViVigs € Xjp YK EK,bEB,JEL LET, G # 0 (10)
D, Yo S Pyt VKEK,jET, tET
beR a1
Vip < Wy VjeJ, 1eT.keK,beB (12)
11 z Vo Vi EJ,j # 0

kEK IET bER:Gjg#0 13)

>, Yw<SlVbeEBkeK, jelj
teT:Wj=1 (14)

Viup SViu» VhkEK, jeJ . teT.beB (15)

Vier1ks — Vit € Vypyrpp VKE K, JEJ,IET -1, bEB.j # 0, G #F 0
(16)
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Vikp & Z Vun YRKEK, jEJ, tET.DEB, Wi=1,Gyp # 0
s<i:Wjg=1
a7
Yigp € E Vigp VKEK,JET.tET,DEB, Wy =1, Gy # 0
‘ szhWis=1
(18)
Harvesting modes constraints:
Z Uji2 = Z Ujy -2 + Why —wff V122
Jh €2 Jh €12 (19)
> wjn<A VieT
heh (20)
Nvjpop€uj, VIET, j, €L, bEB (21)
MTZ constraints:
E Zojpk =1 Vb EB LT, k€K
Jjer (22)
3 zom=1VbeB teT kekK
iel (23)
E Zijwk = Viy VD EB, ieJ—{0L,te T, k€K
JETj#Fi (24)
> Zusk=vis YbEB.i€J—{0LteT. k€K
jej#i (25)
k=1 VbeB teT.kek (26)
2V < Toke VJET—{0},bEB.teT, k€K 27)
Tk Z vigp + 1 VjEeT - {0, beB, teT, kek
ie/—{0} (28)
Tibk — Tipk + 1 € Z Vi — 1|| 1 — Zjux | VB E B, j
Iei—{0}
JielT—{0LteT. keK,i#j (29)

Eq. (7) is the wineries reception capacity constraint. Constraint (8)
ensures that the wineries requirements are fulfilled. Constraint (9)
forces vjyy to take the value 1 if grapes are harvested. Constraint (10)
imposes a lower bound on the quantity of the harvested grapes, while
(11) imposes a resource constraint. Constraint (12) allows harvesting
only within the time window. Constraint (13) requires harvesting every
block at least once. Constraint (14) imposes starting the harvest at most
once, while constraints (15)-(18) ensure that there are no interruptions
once the harvest starts. Constraint (19) relates the number of workers in
consecutive periods. Constraint (20) limits the maximum number of
machine-hours used, while (21) provides a lower bound on the number
of workers used in a harvested block. Finally, Egs. (22)-(29) are MTZ
subtour elimination constraints.

4.6. Model linearization

Note that constraint (29) is non-linear because of the product be-
tween the variables z;:, and vy, in the right-hand side of the equation.
This is a drawback when trying to solve the problem multiple times, as
is the case of the e-constraint method. To linearize the model, constraint
(29) and the objective function of costs (5) must be modified to (34)
and (35), respectively. Moreover, two new variables and four auxiliary
constraints are added.
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Auxiliary Variables:

Jyjivic € 10, 1}: Corresponds to the product between zp and vy with
1i,jeT—{o.

[Sﬂbk € {0, 1}: Binary variable that takes the value 1 if j € J — {0}
belongs to the tour in period t, with method k, with winery b as
destination.

Auxiliary constraints:
Gujieoic € Zijk YD E B, j, i, l€eJ—{0},teT,k€K,i # j (30)
Sujok S Vv VD€ B, j i, leJ— {0 teT, k€K, i #j (31)
Vikp + Zijik — 1 < Sk YD EB.j, i, l€eJ—{0LteT, k€K, i # j
(32)
Tiok S M-y, VODEB, jeJ - {0, keEK,t€T (33)

Tk — Tk + 1 < Z Vigkh — E Sujok + | 2 — Bk — 'Gj(bk M ¥
1ej—{o} les—{0}

beB,jiel—{0h,teT,kek,i#j (34)

New operational costs objective function:

(a) (b) (c)
i [j—- Ui & wf
Minky = Z_je],te’l'.kEK Cle jae + Z!ET Heowy Z:er Fuy, (35)
(d) ()

+ Y, R-Dyzyok + D, By
i€J JEIIET DEB KEK:i%] U <ijebk i€I—{0},1ET,bEB kEK Buoo

Constraints (30)-(32), force &y, to be the product between zj
and vy, keeping linearity. Constraint (33), and the term (e) of the new
objective function F,', force 7j,; to be zero if and only if Bﬂbk is zero,
where 1 > 0 is small enough.

5. The negotiation protocol

This section describes in detail the negotiation protocol. The re-
quired algorithms are described in each subsection. The protocol is
summarized in SubSection 5.4.

5.1. Computing Pareto optimal solutions: the augmented €-constraint
method

As mentioned earlier, in a multi-objective optimization framework,
it is uncommon that a single solution optimizes all the objective func-
tions simultaneously. Therefore, the concept of optimality is replaced
by Pareto optimality or non-dominated solutions. Pareto optimal solu-
tions are those such that any objective function cannot be improved
without worsening the value of at least one of the others. The Pareto set
groups all of the Pareto optimal solutions. In multi-objective optimi-
zation problems, the decision-makers must choose the solution they
prefer the most within this set.

The proposed negotiation protocol needs to generate Pareto optimal
solutions iteratively. In this paper, we use the augmented €-constraint
method of Mavrotas (2009) for generating the Pareto optimal solutions.
This method constitutes an improved implementation of the e-con-
straint method of Chankong and Haimes (1983) in which one goal is
optimized while the others are added as constraints.

The augmented €-constraint method has several steps. The first one
is to compute the Payoff Table in lexicographic order, which is shown in
Algorithm 1. In this case, z;° corresponds to the optimal value of max-
imizing — F,, while n, corresponds to the maximum value of F, having
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— Fi(X) = 7 as a constraint. The same goes for the values of 7} and n,.
Then, [n,, z;'] and [n,, 73] are ranges of variation of F, and F,, respec-
tively.

Algorithm 1. Payoff Table in lexicographic order

1: input(Fy, F») 2: zf' < max — F(X) s.t constraints (3)-(24), (26)-(30)
3: add — Fy(X) = z{ as constraint (29)

4: ny < maxF(X) s.t constraints (3)-(24), (26)-(29)

5: Remove constraint (29)

6: 73 « maxF(X) s.t constraints (3)-(24), (26)-(30)

7: add F>(X) > z3 as constraint (29)

8: n; « max — F|(X) s.t constraints (3)—(24), (26)-(29)

9: Remove constraint (29)

10: return (1, z7), (A2, 23)

Algorithm 2 describes how this method is used to solve the multi-
objective grape harvest planning problem. We divide the range of
variation [n,, z3] into g equal intervals of length A, using g — 1 inter-
mediate equidistant grid points. We use the lower bounds of such g
intervals, as lower bound constraints of F; to solve auxiliary optimi-
zation problems. Mavrotas (2009) shows that if constraints in the form
F(X) = ny + i-A are added, then the auxiliary optimization problems
could lead to weak non-dominated solutions. To tackle this drawback,
we modify the constraint to F,(X) = n, + i-A, as proposed by Mavrotas
(2009), and we add A as a non-negative surplus variable, turning the
constraint to F5(X) — A = n, + i-A. To ensure that the solution is Pareto
optimal, we include 4 in the objective function.

Algorithm 2. Augmented € — constraint

: Input(Fy, Fa, g)

: (ny, z1'), (2, 73) < Algorithm 1: Lexicographic Payoff Table(F), F;)
Define r « z3 — na as the length of the range of variation of F»
Define € > 0 as an adequately small number

: Calculate step values A = i

[T S B R SR el

:fori=0, ..,g—1do

X.A4
BX)—A=m+iAd>0
8: end for

return {X}. ...,X;}

7: (x* Af) - urgmax(—F. xX) + e%) 5.t. constraints (3)-(24), (26)-(30);

bl

We now turn to the problem of selecting a solution within the Pareto
optimal set. For instance, Mavrotas (2009) proposes an interactive
method that uses the augmented e-constraint to iteratively find five
Pareto optimal solutions. These solutions are presented to a single de-
cision-maker who must choose his/her preferred solution. This poses a
key problem when we consider two decision-makers with conflicting
objectives. Indeed, they would obviously choose different points within
these five solutions, maximizing his/her objective function. To deal
with this problem, we propose in the next subsection a negotiation
method that can lead to an agreed final harvest schedule.

5.2. Obtaining a first Pareto optimal solution: minimizing the augmented
weighted Tchebycheff distance

Using Algorithm 1, we obtain the range of variation for both ob-
jective functions. According to Benayoun et al. (1971), the vector
(z, 25) is called the ideal solution and corresponds to the optimal ob-
jective functions values. In general, there is no feasible X such that
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Start

!

Inp'-“ (F15F25 TlﬁTZ:nmaJca a)
n<+< 0
Find ideal solution (Algorithm 1)

!

Find the solution that minimizes
the augmented weighted Tcheby-
cheff distance (Algorithm 3)

!

Does the oenologist and the field yes
manager agree with the solution?

no

no

Find Pareto optimal solutions
in the neighborhood and choose

the one with the substitution
rate closest to one (Algorithm 4)

Fig. 3. Flow chart of the negotiation protocol.

Table 1
Payoff table with lexicographical order.

Table 2
Time and number of Pareto optimal solutions as a function of g.

-F B g Time (sec) Number of Pareto optimal solutions
max — Fy —2,599,500 55,000 10 120 9
max > —2,600,344 78,000 100 1800 13
1000 15,840 14
10,000 259,920 14

—-F&X) = z; and F, ()? ) =z;. To find a starting point for the negotia-
tion, one would like to have a feasible and Pareto optimal solution near
this ideal solution.

In this paper, we use Solanki (1991) approach to find an initial
Pareto optimal solution by minimizing the augmented weighted Tche-
bycheff distance. A pseudo-code of this procedure is provided in
Algorithm 3. In line 5, the first term
max{e (g7 + Fi1(X)), aa(z; — F>,(X))} corresponds to the augmented
weighted Tchebycheff distance between (z, zz) and the Pareto
boundary. We follow Benayoun et al. (1971) for the computation of the
weights ¢, o,. The second term p,-F(X) — p,-F»(X) ensures that the
solution of the optimization problem is non-weak, where p, and p, are
small positive scalars (Antunes et al., 2016).

Algorithm 3. Augmented weighted Tchebycheff

1: input(Fy, F)

2: (n1, z7), (n2, z3) < Payoff Table(Fy, F2)
-z

n HVFIIHLZ By
By . B2

Bi+p BiL+B2

5: return X*

3 -n
Z VR,

3B~

4: qp «
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2 600 500
®
2 600 250
°
[ ]
°
_ 2600000
R .
Ll
L ]
]
2599 750 °
e o
[ ]
2599 500 °
50000 55000 60000 65000 70000 75000 80000
B
Fig. 4. Pareto optimal solutions for g = 10, 000.
2600500 i : T J 5.3. Exploring the neighborhood and generation of a new solution
After obtaining the solution described in the previous subsection, it
2600250 |- is presented to the two decision-makers, in our case, the oenologist and
the field manager. If both agree with the solution, then the negotiation
F . ends. Otherwise, it is necessary to find a new solution. To do so, we
propose Algorithm 4.
2600000 | -
Algorithm 4. local neighborhood
2599750 1: Input(Fy, Fz, X", ¢, g, W),
2:rpp < (1 — @)FR(X") + any ryp < (1 — a)Fa(X") + agj
3: Define r « ryp — rpp as the new range for F
4: Define € > 0 as an adequately small number
2599 500 ® 5: Calculate step values A = g
] | L L | ! 6:fori=0, ...g— 1do
72000 73000 74000 75000 76000 77000 78000 79000
7: (X,—*‘ 1:] = argmax(fﬂ ) + e-i) s.t constraints (1)-(22), (24)-(28);
F2 X "
BX)—A=rp+i-A130
Fig. 5. Ideal solution. P - F
8 %
2 600 500 T T T T 9:end for
10: if {X;.Xl*_..,X;,,} C W then
B - ] 11: xmtl e X
12: else
2600230 |- T -
13: j« argmin 1-y
i=0,.,8—1
) X ew
2 600 000
14: X"+« X7
15: end if
16: return X"+
2599750
This algorithm explores a neighborhood around the current solu-
2392900 I * tion. The radius of the neighborhood is controlled by the parameter «
L | : L (line 2). To find Pareto optimal solutions within this neighborhood, we
[0 o 000 o000 re00h, EUO0 IS0ty Ond use the augmented e-constraint method described in Algorithm 2 to
F generate a set of Pareto optimal points. Restricting this procedure to a

Fig. 6. Closest Pareto optimal solution.

neighborhood has the advantage of reducing the computation time. We
consider only the solutions not previously presented to the decision-
makers, using a tabu list W.

It is important to point out that several interactive methods present
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2600500 = T T T ' T T
¢ *
1 F(X") —ny) i
2600250 . VB ~mjo
- : : .
1 1
_ 2600000 . :
[Q 1 1
2599750 |- : .
1 1
| |
2599500 : !
: I | . | I \
50000 55000 60000 65000 70000 75000 80000
F
Fig. 7. Local Neighborhood of the first Pareto optimal solution.
2600500
‘ - )
2600250 : il e :
| L
2600000 ! 1 :
~ ! '
1 1
1 1
2599750 ! !
2599500 E !
50000 55000 60000 65000 70000 75000 80000
F
Fig. 8. Points of the Pareto Boundary in the neighborhood.
2600500 2600500
2600250 2600250
®
T L]
o 2600 000 - 2600 000 T
oS S
2599 750 2599 750
2599 500 L] 2599 500 L
72000 73000 74000 75000 76000 77000 78000 79000 72000 73000 74000 75000 76000 77000 78000 79000
P I 2

Fig. 9. Solution with n = 1.

more than one point to the decision-maker to guide his/her decision
iteratively by following his/her preferred solution within these points
(Mavrotas, 2009). In our context, however, there are two decision-
makers with opposing objectives. Therefore, it is very likely that, if
more than one Pareto optimal solution is presented to both decision-
makers, they might choose different points, which would make it

10

Fig. 10. Solution with n = 2.

unclear how to continue the exploration. To avoid this problem, we
offer a single Pareto optimal solution to both decision-makers.

To choose among the solutions provided by the augmented e-con-
straint method, when exploring the neighborhood around the current
solution (line 7), we propose to select the solution with the proportional
change in F, more similar to the proportional change in F,. More
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Fig. 11. Solution with n = 3.
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2600250 |-

2600000 |-

Hy

2599750

2599 500

72000

73000

74000

75000

76000

77000

78000

79000

F

Fig. 12. Solution with n = 4.

specifically, we choose the Pareto optimal solution with the rate of
substitution between F; and F (line 8) that is closest to one (line 13).
We seek to facilitate the negotiation between the two decision-makers
by providing them with solutions that are potentially more acceptable
and balanced. That is, we show them solutions that increase one goal in
a similar percentage to the decrease of the second goal.

5.4. The iterative process

Algorithm 5, which summarizes the negotiation protocol, uses the
previous algorithms in an iterative process that ends when an agree-
ment is found (line 5 and 15). All the solutions found within a neigh-
borhood belong to the tabu list (line 11), or the maximum number of
iteration is reached (line 21). For simplicity, consider the non-para-
metric functions, T;(X) and T;(X), which represent the response given
by the field manager and the winemaker, respectively, when faced with
the solution X. These functions take value 1 if X is agreed upon, and 0 if
not.

11
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Algorithm 5. Main

1: input(Fy, F>, Ti, T, Mynax, @)

2: Define W «+ @ as the tabu list

3: X% Augmented weighted Tchebycheff (Fj, )
4:if [(X°)- (X% = 1 then

5:  return X°

6: else

7: We Wu X%

8: end if

9:forn=0, ...,Amax — 1 do

10: if X"= local neighborhood(Fy, F>, X", «, g, W) then
11: return X"

12:  else

13: X"+l local neighbourhood (F, F3, X", &, g, W)
14 if T (x7+) = 1 then

15: return X"+!

16: else

17: W« Wu {xn+l}
18: end if

19: end if

20:  end for

21: return X"max

Finally, for the sake of the explanation, Fig. 3 presents a flow chart
that also summarizes the proposed negotiation protocol.

6. An illustrative example

We use a synthetic educational example consisting of ten blocks and
three periods to illustrate the negotiation protocol defined in the pre-
vious section (see Appendix for detailed data). The multi-objective
harvest model and the augmented €-constraint method are coded in
Python 3.7. Each auxiliary optimization problem is solved using the
Gurobi 8.0.1 solver on a computer with an Intel processor (R) Core
(TM) i5-7300HQ CPU 2.50 GHz and 8 Gb of RAM.

The augmented €-constraint method (SubSection 5.1) applied to our
model can be found in Table 1, which shows the Payoff Table in lex-
icographic order. For g € {10, 10%, 103 10*], Table 2 shows both the
number of Pareto optimal solutions found and the corresponding
computing time. Fig. 4 shows the 14 Pareto optimal solutions for
g = 10, 000. At first glance, it seems that the number of Pareto optimal
solutions converges to 14. Nevertheless, we cannot assure that there are
no more Pareto optimal solutions to be found unless we analyze the
case when g — oo, which implies that the computing time also goes to
infinity. This, of course, is impractical, especially in the wine industry,
where decision support systems for harvesting must be used on a daily
basis.

To find the first Pareto optimal solution, we follow the procedure
detailed in SubSection 5.2. Fig. 5 shows the ideal solution, while Fig. 6
shows the first Pareto optimal solution presented to both decision-ma-
kers.

To generate the next solution, we use the approach defined in
SubSection 5.3. Fig. 7 shows the last solution with no agreement and
the neighborhood around it. Note that in this case, the value of F; in the
current solution equals the upper bound z3. Thus, the neighborhood lies
to only one side of that point. Fig. 8 shows the solutions found by the
augmented e-constraint method and the next candidate solution.

Finally, we apply the iterative process described in SubSection 5.4.
Figs. 9-12 show the evolution of the Pareto optimal solutions presented
to the decision-makers.
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7. Concluding remarks

Based on the real operations of one of the three largest wineries in
Chile, we study the conflicting objectives of the oenologist and the field
manager when scheduling the grapes harvest. We propose a multi-ob-
jective mixed-integer linear programming considering two objectives,
namely, to maximize the quality of the harvested grapes and to mini-
mize the total operational costs. As far as we know, our solution ap-
proach is the first one that deals with the difficulty of dealing with two
decision-makers simultaneously, in this type of problem.

To simplify the negotiation process, our protocol presents, in each
iteration, a single non dominated solution to both decision-makers. This
solution is obtained by examining the neighborhood of the previous
solution and computing a set of Pareto optimal solutions through the
augmented e-constraint method. We choose within this set a new har-
vest schedule using a substitution rate criteria. We avoid visiting twice
the same solution using a tabu list. The iterative process ends when an
agreement is reached, or no further solutions could be provided. A
small example is used to illustrate how the proposed procedure should
be applied.

Even though our primary focus is the wine industry, we believe that
the proposed procedure is flexible enough to be easily extendable to
other contexts in which two or more decision-makers with conflicting
objectives have to agree on a solution. Particularly, the idea of having
optimal extracting/harvesting periods with a decreasing quality in-
terval around it appears often in the natural resources industries, for
example, in fishery, forestry, and agriculture. Thus, a modified version
of our negotiation protocol could also be used in such contexts.

As future research, we would like to find a solution procedure that

Appendix A
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would allow us to solve larger instances of the proposed model in a
reasonable amount of time. This would allow us to study how the
proposed procedure could work with real decision-makers in the setting
of a real problem. However, to implement the proposed methodology
for larger wineries one should consider non-exact methods (Jha et al.,
2019) since, even for our medium size instance, the Pareto solutions
search scales poorly (see Table 2). Finally, we would also like to add a
third objective function that minimizes the CO2 emissions resulting
from the transportation of workers.
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The data used in the illustrative example (see Section 5) are shown in Tables 3-9. In this case, the planning horizon is T = 3.

Table 3
Sets.
Set Cardinality
Ji 10
J 10
J 11
K 2
B 2
Table 4
Parameters.
Parameter Value
Ry 100
N 21
A 400
W 0
1% 0
Table 5
Distance between blocks.
0 1 2 3 4 5 6 7 8 9 10
0 0 14 17 9 8 5 13 9 6 4 5
1 14 0 7 15 14 17 23 19 16 14 15
2 17 7 0 8 7 10 20 22 19 17 18
3 9 15 8 0 7 10 18 14 11 9 10

12

(continued on next page)
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Table 5 (continued)

0 1 2 3 4 5 6 7 8 9 10
4 8 14 7 7 0 3 13 17 14 12 13
5 5 17 10 10 3 0 12 14 11 9 10
6 13 23 20 18 13 12 0 4 7 9 12
7 9 19 22 14 17 14 4 0 3 5 8
8 6 16 19 11 14 11 7 3 0 2 5
9 4 14 17 9 12 9 9 5 2 0 3
10 5 15 18 10 13 10 12 8 5 3 0
Table 6
Time windows and quality loss factor of blocks.
J R w Q
0 1 1 0
0 2 1 0
0 3 1 0
1 1 1 0
1 2 1 2
1 3 1 0
2 1 1 2
2 2 1 0
2 3 1 1
3 1 1 2
3 2 1 0
3 3 1 1
4 1 1 0
4 2 1 2
4 3 1 0
5 1 1 0
5 2 1 2
5 3 1 0
6 1 1 0
6 2 1 0
6 3 1 2
7 1 1 8
7 2 1 6
7 3 1 0
8 1 1 0
8 2 1 0
8 3 1 0
9 1 1 0
9 2 1 0
9 3 1 0
10 1 1 0
10 2 1 0
10 3 1 0
Table 7
Productivity of resource in a block.
K J Py
1 0 1
1 1 4200
1 2 3540
1 3 4200
1 4 3540
1 5 3540
1 6 3540
1 7 4200
1 8 3540
1 9 3540
1 10 3540
2 0 1
2 1 3790
2 2 4980
2 3 4980
2 4 3790
2 5 3790
2 6 4980
2 7 3790
2 8 4980
2 9 6390
2 10 6390

—
w
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Table 8
Estimated kg of grapes in block.
J K B Gikb
0 1 1 0
1 1 1 0
2 1 1 0
3 1 1 0
4 1 1 0
5 1 1 0
6 1 1 0
7 1 1 0
8 1 1 0
9 1 1 0
10 1 1 0
g 1 2 0
1 1 2 0
2 1 2 0
3 1 2 0
4 1 2 0
5 1 2 0
6 1 2 0
7 1 2 0
8 1 2 0
9 1 2 0
10 1 2 0
0 2 1 0
1 2 1 0
2 2 1 0
3 2 1 0
4 2 1 0
5 2 1 0
6 2 1 0
7 2 1 0
8 2 1 0
9 2 1 0
10 2 1 0
0 2 2 0
1 2 2 10,000
2 2 2 10,000
3 2 2 10,000
4 2 2 10,000
5 2 2 10,000
6 2 2 10,000
7 2 2 10,000
8 2 2 10,000
9 2 2 10,000
10 2 2 10,000
Table 9
Processing capacity of winery.
K B T Liht
1 1 1 200,000
1 1 2 200,000
1 1 3 200,000
1 2 1 200,000
1 2 2 200,000
1 2 3 200,000
2 1 1 150,000
2 1 2 150,000
2 1 3 150,000
2 2 1 150,000
2 2 2 150,000
2 2 3 150,000
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