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ABSTRACT 

It is well known that the probability distribution of stock returns is non-gaussian. 
The tails of the distribution are too “fat”, meaning that extreme price movements, 
such as stock market crashes, occur more often than predicted given a gaussian 
model. Numerous studies have attempted to characterize and explain the fat-tailed 
property of returns. This is because understanding the probability of extreme 
price movements is important for risk management and option pricing.  In spite of 
this work, there is still no accepted theoretical explanation.  In this chapter, we 
use a large collection of data from three different stock markets to show that slow 
fluctuations in the volatility, (i.e., the size of return increments) coupled with a 
gaussian random process, produce the non-gaussian and stable shape of the 
return distribution. Furthermore, because the statistical features of volatility are 
similar across stocks, we show that their return distributions collapse onto one 
universal curve. Volatility fluctuations influence the pricing of derivative 
instruments, and we discuss the implications of our findings for the pricing of 
options. 
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INTRODUCTION 

In his thesis, Théorie de la Spéculation (1900), Louis Bachelier modelled price 
differences as a simple random process (Bachelier, 1900; 1964). It was a seminal 
publication, not only was it the first mathematical study of stock prices, it also 
was the first time that the diffusion of a markovian process was treated 
analytically, pre-dating by five years the work of Albert Einstein (1905).  
Bachelier's work layed the foundation for the field of mathematical finance; a 
field that has blossomed in the last century. 

Although pioneering for its time, several modifications to Bachelier's 
random walk model have been needed.  First was the realization that prices move 
in relative amounts rather than absolute amounts, and that returns rather than 
price differences should be modelled as a random process (Osborne, 1959). Next, 
several papers showed that returns could not be described by a simple random 
process because extreme price movements occur much to frequently, causing the 
return distribution to have fat tails (Mandelbrot, 1963; Fama, 1965).   

Despite numerous attempts to explain the fat-tailed nature of the return 
distribution (Mantegna and Stanley, 1995; Bouchaud and Potters, 2003; Gabaix et 
Al. 2003; Viswanathan et Al., 2003; Farmer et Al. 2004; Bassler et Al. 2007), 
there is still no consensus on the underlying cause.  

Characterizing the shape and scaling of the return distribution is important 
because it determines the probability of observing extreme events, which is 
needed for proper risk management and for the correct pricing of derivative 
instruments.  If returns are gaussian, then options are priced according to the 
standard equation of Black and Scholes (1973).  Because returns are ill-described 
by a gaussian process,  B-S prices exhibit systematic biases across moneyness and 
time to maturity. 

Two explanations for the non-gaussian shape of the return distribution are 
often discussed in the literature. The first is known as the mixture-of-distributions 
hypothesis (MOD) (Praetz 1972; Blattberg and Gonedes, 1974), which states that 
the return distribution is a mixture of gaussian distributions with different 
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variances. The second is known as the stable Paretian hypothesis (SP) 
(Mandelbrot, 1963; Mantegna and Stanley, 1995; Lux 1996), which states that 
returns are pulled independently and identically from a stable or truncated stable 
distribution. The MOD hypothesis better describes the shape of the distribution 
(Blattberg and Gonedes, 1974), but the SP hypothesis better describes the stability 
of the distribution, i.e., that the distribution retains it's non-gaussian shape when 
aggregating returns over longer timescales. 

In this chapter, we present a model that reproduces both the shape and 
stability of the return distribution. The model is based on two assumptions about 
the characteristics of volatility, the scale of returns. First, we assume that volatility 
fluctuates slowly, i.e., volatility fluctuations are rather small over short to 
intermediate intervals (days to weeks), but are quite large over longer timescales 
(months to years). Second, we assume that the process that generates volatility 
fluctuations is such that the inverse square of volatility is gamma-distributed. As 
shown below, these assumptions predict that the return distribution will be non-
gaussian (specifically Student t-distributed), and that the return distribution will 
keep this shape for short to intermediate timescales. The model, therefore, 
reproduces empirical results that previously seemed contradictory, and that 
individually, were used to support one or the other of the two competing 
hypotheses for non-gaussian returns (MOD or SP). 

We test the predictions of the model using data from 6 stocks collected 
from 3 global exchanges over different time periods. The model performs well for 
each stock, suggesting it is robust to different time periods, different market 
sectors, and different countries. These results have implications for the pricing of 
options, which we discuss after presenting the results. 

 

THEORETICAL APPROACH 

We define the return at time t as the difference in logarithmic price from time t to 
time τ+t , 
 
    )](ln[)](ln[)( tptptr −+= τ ,                                                                         (1) 

where the price, p(t), is defined as the midpoint price between the best bid price 
and offer price in the market (these prices are known as quotes). 

There are several possibilities to set the unit of the time index, t, and here 
we study returns over the finest possible time scale, event-time.  In event-time, t is 
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updated, incremented by a unit, whenever there is a change in the midpoint 
between the prevailing best quotes. 

 
 To begin our analysis we will use the Langevin approach. The proposed 
stochastic dynamic for the return during a day will be the fundamental ordinary 
differential equation 
 

    )(t
dt
dr

σξ= ,                                                                                                   (2) 

Where )(tξ  is a white gaussian noise of unit variance, i.e., 
 

    0)( =tξ ,                                                                                                      (3) 

    )'()'()( tttt −= δξξ ,                                                                                    (4) 

t is the time, and σ  is the volatility, or the strength of the noise acting on the 
return. 
 Under Ito's calculus, this stochastic dynamic leads immediately to an 
evolution equation for the probability of the returns, the Fokker-Planck equation, 
which is 
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This equation has an analytical solution, which is the same that Bachelier found 
for non log-transformed prices in 1900, and five years after him Einstein 
suggested as the distribution for Brownian particles: the normal distribution. “The 
problem, which  corresponds to the diffusion from a single point (ignoring the 
interactions between diffusing particles) is now mathematically completely 
defined: its solution is” 
 

    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

t
r

t
trP 2

2

2 2
exp

2
1),(

σπσ
 ,                                                       (6) 



Theoretical approach 5 

“Therefore, the  distribution of the resulting displacements in a given time t is the 
same as random error...”, from (Einstein, 1905), author's translations. 

 
 In Eqs. (2-6), the volatility is fixed, meaning that during any given day, we 
assume a constant strength for the noise. At this point, the model is nearly 
identical to Bachelier's original work (using returns instead of price differences).  
To generate the non-gaussian, stable shape of the return distribution, we assume 
that volatility slowly fluctuates. Specifically, we assume that volatility is 
sufficiently slow varying, such that we can treat σ  as a constant over intraday 
time scales. Over longer periods, we assume that the square of the volatility (the 
local variance of the price), v= 2σ , follows a feedback process (Bouchaud and 
Potters, 2003) 
 
    )())(1( 001 ςςεε −−−−=−− kkk vgvvvv  ,                                (7) 

where ς  is a centered noise term. This process produces a local variance that is 
mean-reverting to the value 0v , but which retains memory of past values with 
coupling parameter g. 
 The continuous formulation of this discrete Langevin equation leads to the 
following Fokker-Plank equation for the evolution of the probability 
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where D is the variance of the noise ς . The stationary solution for this equation is 
an inverse-gamma distribution 
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where µ =1+ ε2Dg . Now, if we define 
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so, that the return distribution can be written as 
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and using the distribution's transformation 
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which is the equation for a gamma distribution. On any single day, the distribution 
of returns is gaussian with variance βσ /12 ==v , as shown in Eq. (6). Because 
β  can vary at longer time scales, the return distribution observed with data pulled 
from many different days is obtained by marginalizing over β , 
 
    ∫= βββττ dfrPrP )()|,(),(  .                                                       (16) 

As seen in this equation, the return distribution is a mixture of Gaussians with 
different variances. 
 A straightforward integration of the conditional probability of returns, 

)|,( βτrP , and the distribution )(βf  yields the following for the return 
distribution 
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which is a variant of the Student's t-distribution. The non-Gaussian shape of the 
distribution results from collecting returns from time periods separated by long 
intervals where β  is different. The stability of this shape for short to intermediate 
τ  results from negligible fluctuations of β  over these time scales. 
 Other papers have reported that returns follow a Student's t-distribution 
and have fit returns to a generic version of this distribution, see (Praetz, 1972; 
Blattberg and Gonedes, 1974; Bouchaud and Potters, 2003) for examples. Eq. (17) 
does not represent a fit to the return data, but is determined solely by the two 
parameters, 0β  and n, from the distribution of the inverse variance, β . In the 
results we present below, we do not fit a Student's t-distribution, but instead 
compare the empirical distribution to the predicted distribution as expressed in Eq. 
(17) and as determined by the independent measurement of 0β  and n. This 
specifically tests our model rather than the more general result that returns follow 
a Student's t-distribution. 
 To facilitate the presentation of the empirical results, we define the 
following normalized variables 
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where ]2/)1[(/]2/[2 +ΓΓ=Ω nnπ . These normalizations allow results for 
different time scales and different stocks to collapse on a single curve.  
 

DATA 

Our results are produced using a large amount of data (of the order of 710 data 
points) from three stock markets over three time periods: the London Stock 
Exchange (LSE) from May 2, 2000 to December 31, 2002, the New York Stock 
Exchange (NYSE) from January 2, 2001 to December 31, 2002, and the Spanish 
Stock Exchange (SSE) from January 2, 2004 to December 29, 2006. For each 
market, we choose two highly traded stocks that are from different market sectors.  
From the NYSE we study General Motors (GM), an automotive maker, and 
International Business Machines (IBM), a computer hardware/software maker and 
consulting firm. From the LSE we study AstraZeneca (AZN), a pharmaceutical 
company, and Vodafone (VOD), a mobile telecommunications company. From 
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the SSE we study Santander (SAN), a banking group, and Telefonica (TEF) a 
broadband and telecommunications company. We consider only the electronic 
markets for these stocks, and we measure returns whenever the mid-price of a 
stock fluctuates. This approach allows us to study returns on the finest possible 
time scale. When aggregating returns over longer time scales, we use non-
overlapping intervals. As mencioned, we measure price fluctuations, or returns, in 
the standard way (Bouchaud and Potters, 2003) as )](ln[)](ln[)( tptptr −+= τ , 
where p is the mid-price, t is the time (which is updated by one unit whenever the 
mid-price changes), and τ  is the time increment (also measured in units of mid-
price changes). 
 

RESULTS 

In this section, we compare empirical results with the assumptions and results of 
the model. We present supporting evidence for our assumption that the inverse 
variance of stock returns is gamma distributed. In addition, we show that the 
return distribution collapses over intraday time scales, supporting our assumption 
of a slowly fluctuating volatility. Finally, we plot the scaled return distributions 
for all of the stocks in our study; the collapse of these distributions suggests that 
the volatility characteristics we've assumed are universally valid. 
 Figs. 1 and 2 present results only for the stock IBM, although not shown, 
the results for the other stock in our study are similar in appearance. In Fig. 1(a) 
we plot the probability density function of β . We overlay the plot with the best fit 
gamma distribution, i.e., the gamma distribution using maximum likelihood 
estimates (MLEs) for the parameters n and 0β . These MLEs for IBM and the 
other stocks are reported in Table 1. In Fig. 1(b), we plot the complementary 
cumulative distribution (CCD) of β  and again overlay the plot with the best fit 
gamma distribution (the CCD is the integral of the probability function). As seen 
in both plots, the gamma distribution fits well. 
 In Fig. 2(a) we plot the probability density function for IBM scaled 
returns, r’, from 10=τ to 640=τ , which is up to one trading day for the stocks in 
our study. From the MLEs for parameters n and 0β , we predict the full 
probability distribution of returns, as derived in Eq. (17) and overlay this 
prediction on the plot. In Fig. 2(b) we plot the CCD of absolute scaled returns, 
C(|r'|).  We show this plot in logarithmic coordinates to focus on the tails of the 
distribution, and we overlay the plot with the CCD of the theoretical distribution.  
As seen in both plots, the model matches the data well in the central region and 
the tails, and the shape of the distribution is stable over these time scales. 
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 In Fig. 3, we plot the empirical CCD of β  versus the fit for all six stocks 
in the study.  This plot is created by first fixing the value of the fit C(.), 
calculating β  at this point, and then plotting the value of the empirical C(.) for 
this β . The plot is sometimes called a P-P plot, which is used to assess the 
similarity of the distributions on the x and y axes.  If the empirical distribution 
follows the fitted distribution exactly, the curve will lie on the 45º line. The 
empirical data shows no systematic deviations from a gamma distribution. 
 Our model predicts that the functional form of the return distribution is the 
same for different stocks, and that inconsistencies can be attributed to different 
parameters of the gamma distribution for β . This is verified in Fig. 4, where we 
show the collapse of the renormalized probability distribution P’(r’), Eq. (19), for 
all 6 stocks in our study.  The return distributions are well fit by the model and 
collapse over the entire range of returns.  
 
 
 
 
 
 
Security Events Events/Day n )10( 6

0 ×β  
GM 505541 1025 3.7 6.3 
IBM 1056636 2143 4.4 12.8 
AZN 1013482 1501 4.8 5.0 
VOD 841492 1247 8.8 1.8 
SAN 243545 329 15.7 3.0 
TEF 315093 426 30.6 4.8 
Table 1.   The total number of price changing events, average number of events 
per day, and maximum likelihood estimates for n and 0β for the six stocks studied. 
 
 
 
 
 
 

IMPLICATIONS FOR OPTION PRICING 

In the option pricing paper of Black and Scholes (1973), stock prices are assumed 
to follow geometric brownian motion with a constant volatility.  Because 
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volatility is constant, there exists only one source of randomness that affects both 
the price of the stock and the price of an option on the stock.  The main insight of 
the B-S model is the following: by holding a certain proportion of stock together 
with the option (which is dynamically rebalanced), the randomness of both can be 
cancelled so that a riskless portfolio results. By setting the return of this portfolio 
to the risk-free rate, the price of the option can be deduced. 

The first study to price options with nonconstant volatility was Merton 
(1976), who allowed the price process to include random but diversifiable jumps. 
A number of papers followed that allow for more general changes in volatility.  
These papers can be separated into two groups, the first group keeps only one 
source of randomness and assumes that volatility is a deterministic function of 
price and time (Cox and Ross, 1976; Derman and Kani, 1994; Platen, 2001).  The 
models in these papers are known as local volatility models. The second group 
allows for volatility to be driven by a second source of randomness (Hull and 
White, 1987; Stein and Stein, 1991; Heston, 1993). These models are known as 
stochastic volatility models. Option pricing within local volatility models can be 
solved in a similar way as in the B-S model, by forming riskless portfolios.  
Within stochastic volatility models, pricing options requires either the 
introduction of a hedging instrument for volatility fluctuations, or assumptions 
about the risk preferences of investors. 

As seen in the figures above, the returns for the stocks in our study are 
Student t-distributed and volatility exhibits slow dynamics.  The B-S model no 
longer applies under these circumstances. Calculating options prices when 
volatility exhibits both extreme fluctuations and slow dynamics is non-trivial 

Local volatility models that produce student t-distributed returns include 
the models found in Borland (2002) and the minimal market model of Platen 
(2001).  Stochastic volatility models that produce student t-distributed returns 
include the GARCH model (Nelson, 1990) and the 3/2 model (Lewis, 2000).  The 
stochastic volatility model that we adopt in this chapter is a variation of the 
GARCH model. Option pricing within the GARCH model was treated in Satchell 
and Timmermann (1992), Amin and Ng (1993), and Duan (1995).  Care should be 
taken when interpreting these results because volatility fluctuations are too fast 
over longer time-periods within the GARCH model.  Taylor (2000) studies option 
pricing when volatility is slowly varying. 

To obtain correct option prices, the full dynamics of volatility from short 
to long timescales must be specified accurately.  There is currently no consensus 
on a volatility model that acheives such a specification, and many of the volatility 
models above are able to reproduce in a general way the biases observed in B-S 
option pricing. 
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CONCLUSIONS 

In this chapter we have presented evidence that the non-gaussian shape and stable 
scaling of the return distribution are due to slow, but significant, fluctuations in 
volatility.  Furthermore, our results suggest that return distributions for stocks 
from different exchanges, time periods, and over different time scales can be 
described by one functional form. 
 Our model decomposes individual returns into the product of two terms: a 
gaussian noise term and a volatility parameter.  On any single day, we assume that 
volatility is constant so that returns are well described by gaussian fluctuations.  
Across many days, however, volatility is driven by a mean-reverting process that 
produces a gamma distributed β . When combining the local gaussian behavior of 
returns with these slow volatility fluctuations, the result is a Student's t-
distribution for returns that appears stable over short to intermediate time scales. 
 The idea that volatility fluctuations produce non-gaussian returns is not 
new. It was originally suggested several decades ago (Praetz 1972; Blattberg and 
Gonedes, 1974; Clark 1973). This has competed with an alternative explanation 
that returns are drawn unconditionally from a fat-tailed, stable distribution 
(Mandelbrot 1963; Mantegna and Stanley, 1995; Lux 1996). Our model can 
reproduce both the non-gaussian shape and the apparent stability of the return 
distribution, two characteristics that previously seemed to be at odds with one 
another and that individually could be used to support one or the other competing 
explanations. 
 Using intraday data for 6 stocks from 3 countries, we confirm the 
predictions of the model. We find that the inverse square of daily volatility is well 
fit by a gamma distribution.  Using the parameters from this fit, we compute the 
return distribution from the model and find that the empirical distribution matches 
this prediction extremely well. Furthermore, we find that the return distribution 
collapses over intraday timescales, a result that supports our assumption of 
constant intraday volatility.  Finally we show that, by appropriately rescaling the 
returns for each of the stocks in our study, their return distributions collapse onto 
a single curve, confirming that our model is valid for a variety of different stocks. 
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