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Abstract 

This paper presents a case study on operating room scheduling in a small hospital in Chile. Patient 
flow was represented using a discrete-event simulation model that considered the randomness 
associated with the primary activities of the entire process, which includes pre- and post-
hospitalisation, surgery, surgery setup and recovery. A simulated annealing algorithm was 
implemented and connected to the simulation model to search for better patient schedules. 
Additionally, three dispatching rules, Shortest Processing Time (SPT), Longest Processing Time 
(LPT) and First-In, First-Out (FIFO) were used. The results showed that the simulated annealing 
approach, based on the Cmax objective function, obtained schedules that were 18 % better than the 
hospital’s scheduling practices. The utilisation of dispatching rules also has a significant effect in the 
Cmax indicator. The SPT rule performed better than the hospital schedule in two of the three 
experiments considered in the study. 
(Received in March 2014, accepted in January 2015. This paper was with the authors 1 month for 1 revision.) 
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1. INTRODUCTION 
 

Operating room scheduling is one of the many complexities encountered in hospitals. This 
activity is typically performed semi-manually based on experience and is often extremely 
time consuming. Operating room scheduling should be coordinated with the allocation of 
resources associated with the operating rooms, such as pre- and post-surgical beds and human 
resources, such as nurses and medical hours. Performing this activity well is crucial in 
reducing patient’s waiting lists, improving the service levels provided to patients, reducing 
health equity gaps and improving the perception of the target population. Generally, these 
problems are complex and difficult to solve manually due to their combinatorial nature, which 
could have millions of possible solutions (or different schedules), making it impossible to 
obtain optimal solutions manually. The literature reports attempts to address this problem 
from different perspectives. Most of the literature models the problem as a deterministic 
environment. In those cases, the use of mathematical programming approaches is extremely 
common. Good reviews can be found in [1] and [2]. 
      In the particular field of simulation-based scheduling, it is possible to find studies 
associated with industry applications. Several examples can be found in [3], which evaluated 
a total of 44 dispatching rules in an automotive job shop simulation case study. The authors 
used single and hybrid rules, and the best result was obtained with the Most Total Work 
Remaining rule. In [4], the authors developed evolutionary simulation-based heuristics to 
construct near-optimal solutions for dispatching rule allocation for a case study analysis of a 
discrete-event simulation model of a commercial offset printing production system. [5] 
presents an optimisation via simulation approach to solve dynamic, flexible job shop 
scheduling problems using genetic algorithms. The results revealed that optimisation using the 
simulation approach is a good way to solve dynamic, flexible job shop scheduling problems, 
which generally takes the NP-Hard form. 
      Simulation-based scheduling in the healthcare field has been analysed by several authors. 
In [6], the authors present a combined optimisation simulation approach to the master surgical 
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scheduling problem using a mix integer programming model to find optimal solutions and 
used a discrete-event simulation to test its robustness. A similar situation, where a mix integer 
programming model and a Monte Carlo simulation are combined, is presented in [7]. In [8], 
the authors combine a simulation model and a genetic algorithm to search for better schedules 
for hospital admissions. [9] proposed an approach to optimise surgery start times for a single 
operating room with stochastic operation durations. The authors used response surface 
methodology to optimise the simulated schedules. [10] presents an approach for appointment 
scheduling using a discrete simulation and a random search algorithm to search for solutions. 
The results showed that in small problems, it is possible to obtain good schedules in a short 
amount of time. Other work related to appointment scheduling is presented in [11]. In this 
study, the authors did not use a search algorithm but instead, evaluated nine different 
schedules via a simulation of an Ear, Nose and Throat (ENT) outpatient department. The 
results show that the selection of a good schedule can reduce waiting times by a significant 
amount. In [12], a simulation model of an operating room was created that uses a bin packing 
algorithm to schedule the patients in time blocks. The objective of that study was to maximise 
the operating room use. A discrete-event simulation model of an outpatient clinic of a medical 
centre in Indianapolis is presented in [13], where the authors analysed the performance of 
different open-access scheduling configurations under various clinical environments in terms 
of patient waiting time, patient rejection rate and clinic use. [14] represented the operating 
room as a parallel machine problem using a discrete-event simulation model. Three 
dispatching rules were evaluated, where the best performance was obtained with the Longest 
Expected Processing with Setup Time (LEPST) rule. A similar work using simulation and 
dispatching rules is presented by [15], where the authors analysed the process by considering 
the number of pre- and post-recovery beds, not just the availability of the operating rooms. In 
this case, the best rule was SPT. 
      Most of the approaches presented in literature that used simulations focused on comparing 
different dispatching rules. Only a few cases applied a search algorithm to find near optimal 
schedules. In this work, we present a case study where simulated annealing is used as the 
search mechanism to find good schedules by considering all the primary resources related to a 
surgery. The number of pre- and post-surgery beds, number of operating rooms and healthcare 
human resources are included in the simulation model to represent the entire cycle as 
realistically as possible and include the randomness inherent in all the activities. 
      The paper is structured as follows: an introduction section, a methodology section, case 
study problem description, data analysis, optimisation process, results and conclusions. 
 
2. METHODOLOGY 
 
A scheduling problem is a complex combinatorial problem, where each possible patient 
combination represents a different solution. If n is the number of patients that exist, there can 
be n! different schedules. The time required to evaluate all of the n! solutions is prohibitive in 
most cases and even more complex for the problem presented in this paper because each 
possible solution is represented by a simulation scenario. For this reason, optimisation 
techniques are used to find optimal or near optimal solutions without solving all the possible 
combinations. One strategy is to connect the simulation model and a heuristic for searching 
for better solutions; this is depicted in Fig. 1. 
      Fig. 1 shows the simulation optimisation scheme. One initial set of patients is scheduled in 
a particular way, generally randomly, and is simulated to estimate a performance measure of 
this particular schedule. These results are used by a search method to propose a new schedule 
that is simulated by the model. This iterative cycle is repeated until a termination condition is 
met. 
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Figure 1: Simulation optimisation iterative scheme. 

 
      This study uses simulated annealing as the search algorithm. This method was introduced 
by [16], popularised by [17] and has been used in several problems. Several examples of 
simulated annealing used in scheduling environments can be found in [18] for job shop 
scheduling, [19] for project scheduling, [20] for vehicle design scheduling, [21] for parallel 
machine scheduling and [22] for flow shop scheduling. In simulation optimisation, simulated 
annealing has been used as search engine in some cases. A multiobjective optimisation 
approach based on simulated annealing and discrete event simulation was presented by [23] 
for the maintenance scheduling problem of a fleet of fighter aircraft. Simulation optimisation 
of police patrol districting plans is studied by [24]. They compare simulated annealing and 
response surface methodology concluding that good districting plans can be generated more 
efficiently with designed experiments and provide better alternatives for police departments. 
[25] developed a deterministic simulation model connected to a simulated annealing search 
engine to design of best possible routes for a set of trucks serving multiple loggers and mills. 
Good results are obtained comparing the methodology against real data provided by a log 
delivery trucking firm. 
 
2.1  Solution codification 
 
To implement the simulated annealing algorithm, a coding scheme is required that represents 
each solution. In this case, a solution represents a particular patient schedule that can be 
represented as a list of patients who must be served in the order of the list. An example of 6 
patients is presented in Fig. 2, where patient 5 is served first, then patient 1 and so on. 
 

P5 P1 P4 P3 P6 P2 
Figure 2: Solution codification. 
 
      The objective function used in this project was the minimisation of the maximum 
completion time (Cmax), which means that each schedule run in the simulation model will 
generate a Cmax that represents the total time required to serve the entire batch of patients. 
Because simulated annealing is a local search technique, the concept of a neighbour must be 
defined. In this problem, a neighbour is a solution that is “close” to an original solution. The 
neighbourhood exploration definition used in this research was pairwise exchange, which 
means that two patients of the same schedule are selected randomly to exchange places, which 
generates a new neighbour solution. Fig. 3 illustrates an original solution and the 
corresponding neighbour for a problem consisting of 6 patients. Patients 2 and 6 were 
randomly selected for exchange. 
 

 

Simulation 

model 

Search 

method 
Performance 

measure 

Input new schedule 

Initial conditions 
Set of patients 

Output 

Final 
schedule 



Baesler, Gatica, Correa: Simulation Optimisation for Operating Room Scheduling 

218 

 

 
 
 
 
 
 

 
Figure 3: Neighbourhood representation. 
 
3. CASE STUDY 
 
The hospital under study is a small hospital located in Chile. The hospital contains 38 hospital 
beds, 6 recovery beds and 3 operating rooms. One of these rooms is reserved for emergency 
patients. Fig. 4 presents the flow for a scheduled surgical patient. 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Surgical flow. 
 
      Fig. 4 shows that every scheduled patient has to be assigned to one of the 38 hospital 
beds; afterwards, the surgery is performed in one of the two operating rooms. After surgery, 
the patient uses one of the 6 recovery beds. Finally, the patient returns to the hospital bed for a 
certain number of days depending on the type of surgery. 
 
3.1  Patient categories 
 
The hospital performs 85 different types of surgeries; however, 25 of the surgery types 
represent 90 % of the total surgeries performed each year. For that reason, our analysis was 
concentrated in those 25 surgery categories. The patient flow was simplified to four primary 
activities: surgery, surgery setup, recovery and hospitalisation. For each of the 25 surgery 
categories, a statistical analysis was performed based on a data base of 2500 patients. The 
duration of each one of these activities was analysed and fitted using the Kolmogorov- 
Smirnov test, where P values greater than 0.05 were obtained in all of the cases, except in 2 
categories where empirical distributions were used. For the parameter, number of 
hospitalisation days, a discrete empirical distribution was used. The resulting distributions for 
the surgery, setup and recovery times are presented in Table I. 
      It is possible to appreciate that for a same activity, different statistical distributions are 
obtained in each patient category. This issue is common in healthcare because the duration of 
one activity could differ significantly among types of surgeries. For example, the surgery time 
distribution could present different types of tails because the risk of an unexpected event is 
not the same for each type of surgery. The recovery time could also be different because the 
type of anaesthesia used in the surgery or other issues such as patient condition or age may 
prolong the duration of this activity. 
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Table I: Activity distributions. 

Surgery 

category 
Setup time [min] Surgery time [min] Recovery time [min] 

1 5+56*BETA(0.25, 0.724) TRIA(25, 57.7, 71) 55+EXPO(17.8) 
2 EXPO(15.8) TRIA(30, 60, 150) NORM(67.5, 24.6) 
3 WEIB(32.9, 0.55) 10+61*BETA(0.98, 0.641) NORM(65.6, 26.3) 
4 EXPO(13.7) 45+WEIB(47.8, 1.29) TRIA(10, 84, 115) 
5 60*BETA(0.76, 1.89) 5+WEIB(26.4, 1.22) 5+EXPO(21) 
6 EXPO(24.5) 35+EXPO(67.2) 30+155*BETA(0.633, 0.917) 
7 5+EXPO(11.9) UNIF(24.5, 70.5) TRIA(5, 82.7, 105) 
8 90*BETA(1.25, 1.35) NORM(93.3, 26.4) NORM(105, 32.3) 
9 EMPIRICAL EMPIRICAL EMPIRICAL 

10 EMPIRICAL EMPIRICAL 4.5+WEIB(5.89, 0.717) 
11 225*BETA(1.11, 4.17) 5+WEIB(59.6, 1.72) NORM(101, 42.1) 
12 UNIF(10, 145) 40+96*BETA(0.693, 1.16) 15+140*BETA(0.494, 0.481) 
13 165*BETA(0.929, 2.25) 10+306*BETA(1.66, 5.12) NORM(107, 47.4) 
14 UNIF(10, 36) 25+EXPO(36) 10+WEIB(9.27, 0.295) 
15 4.5+EXPO(15.5) 5+EXPO(23.6) 5+EXPO(25) 
16 5+WEIB(10.4, 0.459) 20+EXPO(9.51) 5+WEIB(3.85, 0.241) 
17 WEIB(9.59, 0.483) TRIA(8, 13.7, 41) WEIB(10.5, 0.491) 
18 5+WEIB(13.2, 0.353) TRIA(10, 14, 76) 5+WEIB(0.687, 0.256) 
19 UNIF(5, 41) TRIA(30, 46.5, 96) 30+EXPO(55) 
20 5+WEIB(10.4, 0.459) 20+EXPO(9.51) 5+WEIB(4.01, 0.244) 
21 EXPO(27.5) 5+EXPO(22.5) 56*BETA(0.526, 0.946) 
22 WEIB(30.8, 0.747) 20+81*BETA(0.899, 1.26) TRIA(19.5, 43.5, 101) 
23 EXPO(14.5) 10+EXPO(52) TRIA(5, 68, 95) 
24 10+85*BETA(0.545, 0.741) TRIA(35, 53, 71) 10+121*BETA(1.44, 0.825) 
25 EXPO(43.4) 25+EXPO(24.1) 5+WEIB(40, 0.573) 

 
      It is important to mention that some of the activities were represented using a normal 
distribution. In those cases, in order to eliminate the probability of a negative activity time, a 
truncated normal distribution was implemented. Since these distributions were fitted using 
real hospital data, the close to zero values represent that the activity was interrupted due to an 
unexpected event. For example, if patient's condition worsens during the recovery, the patient 
must be transferred to the intensive care unit. 
      The number of hospitalisation days was fitted using empirical distributions. An example 
of one of the categories is presented in Table II. It shows that a patient of surgery category 8 
can be hospitalised 1 day with a probability 0.29, 2 days with a probability 0.28, etc. One 
specific table was created for each of the 25 surgeries types. For space limitations, only a 
single table is presented. 
 
3.2  Simulation model 
 
A simulation model using the discrete event simulation software Arena 12.0 from the 
Rockwell Automation Company was created to represent the surgical patient flow. The 
patient arrival is basically a queue containing the batch of patients scheduled for surgery. A 
patient will leave the queue and enter the hospital only if a bed is available. The patient will 
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stay at the bed for their turn in the surgical schedule. In that moment if the operating room is 
available the patient will be assigned to it. After the surgery, if the recovery bed is available, 
the patient will be transported to it, otherwise he has to wait in the operating room, blocking 
the next surgery. Finally after recovery, the patient is transported to the hospitalisation bed, 
where stays for the amount of days that corresponds to that particular patient category. 
 

Table II: Empirical distribution for hospitalisation days for surgery category 8. 

Days Prob. Cumulative prob. 

1 0.29 0.29 
2 0.28 0.57 
3 0.21 0.78 
4 0.06 0.84 
5 0.02 0.86 
6 0.04 0.9 
7 0.04 0.94 
8 0.02 0.96 
9 0 0.96 
10 0.04 1 

 
      The human resources, such as doctors and nurses, were not considered in the model. This 
assumes that operating room availability implies human resources availability as well. This 
assumption could be a limitation if the objective of the study is to evaluate the effect that 
human resources have in the system`s performance. In this study these variables are 
considered fixed since the objective was to evaluate the effect of different patient’s schedules. 
 
3.3  Simulation conditions 
 

A simulation experiment consists of running a batch of patients until the last patient who is 
scheduled in that batch leaves the hospital. The measure of performance that was used was the 
time required to process a batch of patients. A total of 20 replications was required to obtain a 
0.95 confidence interval with a ± 5 % half-width, which means that each schedule explored 
during the optimisation process was run 20 times. Two weeks was used as warm-up period to 
run the experiment in a steady-state process because other patients were using the beds and 
operating rooms. Each simulation run ended when the last scheduled patient left the hospital. 
 
3.4  Model validation 
 
To determine if the simulation model emulated the behaviour of the real system, a set of 
validation experiments were performed. Ten different months were selected from the hospital 
data base to calculate the time that was required to complete the surgery process, which 
includes recovery and hospitalisation. The simulation model was initialised with the same 
patient schedule and surgery categories. The results show that a significant difference did not 
exist between the real system and the simulation model. 
 
4. RESULTS 
 
The optimisation process requires the definition of the simulated annealing parameters, initial 
temperature and cooling temperature. Tree alternatives were chosen for each parameter, as 
shown in Table III. 
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Table III: Simulated annealing parameters. 

Initial temperature Cooling temperature 

3000 10 
2000 5 
1000 1 

 
      Several experiments using all the combinations of these parameters were performed. The 
best results were obtained when the initial temperature and cooling temperature were set at 
1000 degrees and 1 degree, respectively. The stopping criterion was set as 0 degrees, which 
means that the algorithm will continue until the final temperature reaches 0 degrees. 
      The experimentation process consisted of analysing the simulated annealing algorithm 
performance against three classic dispatching rules: Shortest Processing Time (SPT), Longest 
Processing Time (LPT) and First-In, First-Out (FIFO). These rules were selected because are 
very simple to understand and to implement by hospital personnel. Many other more 
sophisticated dispatching rules or even optimisation algorithms could have been considered in 
this work; however the orientation of this study was to show how different techniques could 
have a significant effect in the hospital performance. Three different experiments were 
performed that considered 85 patients, 170 patients and 265 patients, respectively. 
 
4.1  Experiment with 85 patients 
 
This experiment was performed 20 times by considering different random seeds to simulate 
different sets of patients with different characteristics, where from each run, a patient schedule 
was obtained. Each patient schedule was replicated 10 times to obtain statistical significance. 
The results for the Cmax indicator expressed in minutes for each one of the four heuristics are 
presented in Table IV and in Fig. 5. 
 

Table IV: Cmax results for experiment 1. 

Parameter SA SPT LPT FIFO 

Mean 21214 23125 24750 26337 
Median 21431 23433 24357 25993 
Standard deviation 988 2114 2445 2834 
Minimum 19410 18787 20598 21417 
Maximum 22900 26655 29304 31250 

 
Figure 5: Box plot for experiment 1. 
 
      Table IV shows that on average, a total of 21214 minutes is required to process the entire 
batch of 85 patients using the simulated annealing approach, which is equivalent to 14.7 days. 
The worst heuristic was the FIFO approach, which required 26337 minutes (18.3 days). It is 
important to mention that the FIFO approach is equivalent to the scheduling strategy used by 
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the hospital. The difference between the simulated annealing and FIFO heuristic is 3.6 days, 
which corresponds to a 20 % time reduction. Fig. 5 shows the box plots of the four 
approaches. Based on the mean values, the ranking is SA, SPT, LPT, FIFO. To determine a 
ranking with significant difference among the four heuristics, it is necessary to perform an all-
pairwise comparison [23]. This approach compares all the possible pairs and constructs 
confidence intervals for the mean difference. To obtain an overall confidence of 1– α, it is 
necessary to construct each individual confidence interval using the Bonferroni inequality 
[26]. In this case, with four treatments a total of k×(k–1)/2 = 6 pairs are possible, which means 
that each confidence interval should be constructed with a 1– α/6 confidence level to obtain an 
overall confidence of 1– α. For this study, an overall confidence of 0.9 was chosen, which 
implies a 0.983 confidence level for each individual comparison. Table V shows the results of 
this multiple comparison using the paired-t test. 
 

Table V: All-pairwise comparison confidence intervals for experiment 1. 

 SPT LPT FIFO 

 LL Mean UL LL Mean UL LL Mean UL 
SA -2890 -1912 -934 -4685 -3537 -2388 -6810 -5124 -3437 
SPT  -3063 -1625 -187 -5305 -3212 -1119 
LPT     -4010 -1587 836 

 
      Table V presents the six confidence intervals constructed with a 0.983 confidence level. 
The table shows the lower limit, mean and upper limit of the confidence interval for the 
difference between each pair of heuristics. For example, the comparison between simulated 
annealing and SPT heuristic resulted in a confidence interval with a mean difference of -1912 
minutes with lower and upper limits of -2890 and -934 minutes, respectively. Because the 
interval does not contain the zero, this result indicates a significant difference between the two 
heuristics. The negative values imply that the Cmax for the SA approach is less than the Cmax 
of the STP heuristic. On average, this difference is 1912 minutes. The only confidence 
interval that contains the zero is the LTP-FIFO comparison, which indicates there is no 
significant difference between both heuristics. By analysing the complete table, it is possible 
to conclude with an overall confidence level of 0.9 that the best performance is obtained with 
the SA approach, followed by the SPT heuristic and finally, in third place, LPT and FIFO 
with no significant difference. 
 
4.2  Experiment with 170 patients  
 
In this experiment, a batch of 170 patients was considered. The same analysis was performed 
using the SA, SPT, LPT and FIFO heuristics. The results for the Cmax indicator expressed in 
minutes for each of the four heuristics are presented in Table VI and in Fig. 6. 
 

Table VI: Cmax results for experiment 2. 

Parameter SA SPT LPT FIFO 

Mean 44259 48528 50062 53396 
Median 45100 47080 49182 53459 
Standard deviation 4526 5714 7046 6973 
Minimum 34264 37908 38505 43146 
Maximum 51807 60915 64269 68598 
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Figure 6: Box plot for experiment 2. 
 
      Table VI shows that on average, a total of 44259 minutes are required to process the entire 
batch of 170 patients using the simulated annealing approach, which is equivalent to 30.7 
days. The worst heuristic was the FIFO approach, which required 53396 minutes (37 days). 
The difference between the simulated annealing and FIFO heuristics is 6.7 days, which 
corresponds to a 17 % of time reduction. Fig. 6 presents the box plots of the four approaches, 
which shows the same behaviour as experiment 1, though the box plots do overlap more. The 
same procedure of multiple comparisons was applied to this experiment. The results are 
presented in Table VII. 
 

Table VII: All pairwise comparison confidence intervals for experiment 2. 

 SPT LPT FIFO 

 LL Mean UL LL Mean UL LL Mean UL 
SA -6441 -4269 -2097 -8902 -5803 -2704 -12868 -9136 -5404 
SPT  -5246 -1534 2179 -7906 -4867 -1829 
LPT     -8787 -3334 2120 

 
      By analysing the complete table, it is possible to conclude with an overall confidence level 
of 0.9 that the best performance was obtained with the SA approach. This result is the same as 
that obtained in experiment 1; however, it is not possible to determine the second position in 
the ranking because the intervals include the zero in the SPT-LPT and LPT-FIFO intervals. 
 
4.3  Experiment with 255 patients  
 
The results for the Cmax indicator expressed in minutes for each of the four heuristics are 
presented in Table VIII and in Fig. 7. 
 

Table VIII: Cmax results for experiment 3. 

Parameter SA SPT LPT FIFO 

Mean 62460 64933 69606 75190 
Median 62347 63745 69343 74640 
Standard deviation 2083 4700 6613 7073 
Minimum 58951 57206 57413 62006 
Maximum 66542 75241 81467 89478 

 
      Table VIII shows that on average, a total of 62460 minutes was required to process the 
entire batch of 255 patients using the simulated annealing approach, which is equivalent to 
43.4 days. The worst heuristic was the FIFO approach, which required 75190 minutes (52.2 
days). The difference between the simulated annealing and FIFO heuristics is 8.8 days, which 
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corresponds to a 17 % time reduction. Fig. 7 presents the box plots of the four approaches, 
which show the same behaviour from experiments 1 and 2. The multiple comparisons results 
are presented in Table IX. 
 

 
Figure 7: Box plot for experiment 3. 
 

Table IX: All pairwise comparison confidence intervals for experiment 3. 

 SPT LPT FIFO 

 LL Mean UL LL Mean UL LL Mean UL 
SA -4700 -2473 -246 -10636 -7146 -3656 -16489 -12730 -8971 
SPT    -8970 -4673 -375 -14380 -10257 -6133 
LPT     -10338 -5584 -831 

 
      Table IX shows that all the confidence intervals are significant. Thus, it is possible to 
conclude with a 0.9 overall confidence level that the best performance was obtained by the 
SA heuristic, the second best is the SPT approach, the third best is LPT, and last place is the 
FIFO rule. 
 
5. CONCLUSIONS 
 
This paper presents a methodology based on a simulated annealing and discrete-event 
simulation that can determine good schedules for surgery patients. The results showed that it 
is possible to reduce the time required to process a batch of patients by 18 % when the SA 
search method is used instead of the FIFO approach (the current hospital method). This is 
considering the average of the 3 experiments. The improvement was independent of batch 
size because essentially, the same conclusions and improvements were obtained in the 3 
experiments. The second best method was the SPT rule with a 12 % improvement compared 
with that of the FIFO rule. The LPT rule performed similarly to the FIFO approach in two of 
the three experiments, which shows that it is not a good rule for this particular problem. The 
most important conclusion of this paper is that it is possible to solve the stochastic operating 
room scheduling problem from a practical point of view that uses search algorithms and 
simulation. The problem representation was realistic, which included the primary steps of a 
surgical process, particularly variables such as bed availability, a resource that frequently is 
the bottleneck of the process. It is important to mention that many other algorithms could be 
used, such as genetic algorithms or evolutionary strategies; however, these population-based 
metaheuristics can require a larger amount of solutions to perform a good search compared 
with local search techniques, such the SA approach used in this work. This issue is extremely 
important to consider because each schedule that was evaluated during the search corresponds 
to a simulated scenario that must be replicated n times, which consumes a significant amount 
of time and makes it difficult to explore extensive search spaces. It is noteworthy that 
generally healthcare personnel performing these tasks are unaware of the potential operational 
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effect that the application of different patient schedules may have. They mainly consider 
clinical factors when preparing a schedule. This study clearly shows the effect that can be 
generated on an operational indicator when an optimisation heuristic as simulated annealing 
or other simple dispatching rules are used. 
      Future work will focus on using other local search algorithms, such as the tabu search, to 
evaluate its performance. Although the case study presented here was for a small hospital, the 
methodology does not significantly differ when larger hospitals are analysed because the 
patient process is essentially the same. One important difference that could be encountered in 
a larger institution is related to the human resources availability. This issue incorporates an 
additional dimension to the problem that must be added to the simulation model logic. 
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