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INTRODUCTION

Obesity is a major global health issue (Haidar and Cosman, 
2011). Changes in lifestyle, predominantly hypercaloric diet 
ingestion and sedentary habits, produce a dramatic increase 
in its prevalence. Most obese patients develop metabolic 
syndrome, a cluster of clinical features characterized by insulin 
resistance and dyslipidemia (Bonora et al., 2003). This pre-
diabetic condition has been recognized as an independent risk 
factor for cardiovascular diseases, particularly hypertension, 
atherosclerosis and diabetic cardiomyopathy (Obunai et al., 
2007).

Diabetic cardiomyopathy was described in 1972 as a heart 
failure without signs of hypertension, coronary artery disease 
or valvular or congenital heart disease (Rubler et al., 1972). 
During the last decade it has gained relevance because it leads 
to heart failure (Asghar et al., 2009); its pathophysiology is 
still not well understood. However, it has been reported that 
lipid accumulation of cardiomyocytes changes their energy 
metabolism, increasing oxidative stress, impairing calcium 
handling and mitochondrial dysfunction, which promote 
cardiomyocyte death and interstitial fi brosis (Boudina and 
Abel, 2010). At present, clinical treatments for diabetic 
cardiomyopathy are aimed at delaying its progression, mainly 
by improving metabolic alterations using hypoglycemic 
agents, and cardiac performance using β-blockers and 
angiotensin-converting enzyme inhibitors (Miki et al., 2013). 
Therefore, new therapies intended to reverse heart failure 
in obese individuals would have a signifi cant impact on the 
health system (Bernardi et al., 2012).

In both pre-clinical and clinical studies promising results 
were obtained when cell-based therapies were tested for the 
management of cardiac diseases (Jones et al., 2012). Bone 
marrow-derived multipotent mesenchymal stromal cells, also 
referred to as mesenchymal stem cells (MSC), appear as an 
appropriate tool for treating diabetic cardiomyopathy, since 
they manage oxidative stress, downregulate infl ammation, 
secrete anti-apoptotic and mitogenic factors and might 
differentiate into cardiomyocytes (Ankrum and Karp, 
2010). Furthermore, MSC may be transplanted without 
histocompatibility restraint directly into the injured heart, are 
anti-fi brotic and promote neovascularization. Due to the match 
between the pathophysiology of obesity-induced diabetic 
cardiomyopathy and the regenerative potential of MSC, we 
decided to evaluate whether the intravenous administration 
of MSC modifi es cardiac dysfunction of obese mice. To this 
end, C57BL/6 mice were fed with regular (normal) or high-
fat diet (obese). Obese animals received the vehicle (obese), a 
single dose (obese + 1x MSC) or three doses (obese + 3x MSC) 
of 0.5x106 syngeneic bone marrow-derived MSC (Figure 1). 
Two to three months following MSC administration cardiac 
function was assessed by cardiac catheterization, at basal 
condition and after pharmacological stress.

MATERIALS AND METHODS

Animals

C57BL/6 male mice were housed at constant temperature (22 
± 2 °C) and humidity (60%), with a 12:12 hour light:dark cycle 
and unrestricted access to food and water. When required, 
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animals were lightly anesthetized with sevofl uorane (Abbott 
Laboratories, Illinois, USA) or 60 mg/Kg ketamine plus 
4 mg/Kg xylazine. When sacrifi ced, animals were deeply 
anesthetized and received an overdose of ketamine/xylazine 
(60/4 mg/Kg). Animal protocols were approved by the Ethics 
Committee of the School of Medicine, Clínica Alemana, 
Universidad del Desarrollo.

Obesity induction

All mice were fed a regular diet up to one month of age. Then 
they were kept on a regular diet (normal) or switched to a 
high-fat diet (obese) until the end of the study (16 months of 
tested diet). Regular diet consisted of to 10 cal% fat, 20 cal% 
proteins and 70 cal% carbohydrates (Champion SA, Santiago, 
Chile). High-fat diet consisted of to 60 cal% fat, 20 cal% 
proteins and 20 cal% carbohydrates (D12492, Research Diets 
Inc., NJ, USA) ((Calligaris et al., 2013a; Ezquer et al., 2011).

Blood glucose, insulin, triglyceride and cholesterol quantifi cation

After four hours of fasting, blood samples were collected 
from the tail vein of alert mice. Plasma glucose levels were 
determined with the glucometer system Accu-Chek Performa 
(Roche Diagnostic, Germany). Plasma insulin levels were 
assayed using an ultrasensitive mouse insulin ELISA kit 
(Mercodia, Uppsala, Sweden). Plasma triglyceride and 
cholesterol levels were determined using TG Color GPO/

Figure 1. Study design
Male C57BL/6 mice were fed a regular diet up to one month of age. Then they were switched (obese) or not (normal) to a high-fat diet. 
Obese mice received a single dose of 0.5 x 106 syngeneic bone marrow-derived MSC at 13 months of age (obese + 1x MSC), or three 
doses of 0.5 x 106 syngeneic bone marrow-derived MSC at 13, 14 and 15 months of age (obese + 3x MSC).

PAP and Colestat kits (Wiener Lab, Rosario, Argentina), 
respectively (Ezquer et al, 2011).

Cardiovascular parameter assessment at basal and stress conditions

Mice were deeply anesthetized and placed in supine 
position on a thermo-regulated plate. Body temperature was 
monitored using a rectal thermometer and gaseous oxygen 
was supplied. Hemodynamic parameters were measured by 
cardiac catheterization (Calligaris et al., 2013b; Lorenz and 
Robbins, 1997). The catheter used was a Mikro-Tip SPR-671 
pressure sensor (Millar, Houston, USA) coupled to a PCU-
2000 pressure/volt transducer (Millar) and connected to a 
PowerLab 4/30 data acquisition system (AdInstruments, 
Bella Vista, Australia). For cardiac function assessment under 
stress condition, a PE-10 plastic tube (Warner Instruments 
Co, CT, USA) was introduced into the jugular vein, connected 
to a KDS-KDS210P pump (Kdscientifi c Inc., MA, USA) and 
dobutamine was infused continuously at 12ng/g/min for two 
min. Dobutamine is a β-adrenergic agonist with a high affi  nity 
for β1-receptors expressed in the heart. When systemically 
administered, it increases cardiac demand, producing cardiac 
stress. Data obtained were analyzed with LabChart 7Pro 
software (AdInstruments, Bella Vista, Australia).

MSC isolation and ex vivo expansion

Six to eight week-old female C57BL/6 mice were sacrifi ced 
by cervical dislocation. Bone marrow cells were obtained 
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by flushing femurs and tibias with sterile PBS. After 
centrifugation, cells were resuspended in alpha-MEM (Gibco, 
NZ) supplemented with 10% selected fetal bovine serum (Gibco) 
and 80 ug/mL gentamicin (Sanderson Laboratory, Chile) and 
plated at a density of 1x106 nucleated cells/cm2. Non-adherent 
cells were removed after 72 hours by media change. When foci 
reached confl uence, adherent cells were detached with 0.25% 
trypsin, 2.65 mM EDTA (Gibco), centrifuged and subcultured 
at 7,000 cells/cm2. After two subcultures, adherent cells were 
characterized and transplanted (Ezquer et al., 2008).

Phenotype of administrated MSC

Since there are currently no consensus markers for murine 
MSC as there are for human MSC (Conget and Minguell, 1999; 
Dominici et al., 2006), immunophenotyping was performed 
by flow cytometry analysis after immunostaining with 
monoclonal antibodies against CD45.2 (FITC-conjugated) from 
BD Pharmingen, USA, CD11b (PE-conjugated), Sca-1 (APC-
conjugated) and CD90.2 (PE-conjugated), all from eBioscience, 
CA, USA.

MSC differentiation potential was assessed after cell 
exposure to standard adipogenic or osteogenic diff erentiation 
media for 14 and 21 days, respectively (Conget and Minguell, 
1999). Images were acquired with a Nikon T1-SM microscope.

MSC intravenous administration

A total of 0.5x106 MSC were resuspended in 0.2 mL of 5% 
mouse plasma and administered via the tail vein to lightly 
anesthetized mice. Control animals received 0.2 mL of vehicle.

Statistical analysis

Data are presented as mean ± S.E.M. To determine the 
statistical significance of intergroup differences, Student’s 
t-test was used to compare mean values between normal and 
obese mice and one-way ANOVA was used to compare mean 
values among all groups. A value of p<0.05 was considered as 
statistically signifi cant.

RESULTS

Metabolic parameters of obese mice

Compared to normal mice, obese mice presented overweight, 
hyperglycemia, hyperinsulinemia and hypercholesterolemia, 
up until the end of the study period (Table 1).

Phenotype of administered MSC

Administrated MSC were CD45-, CD11b-, Sca-1+ and CD90.2+ 
(Figure 2A); they diff erentiated into adipocytes (neutral lipid 
droplet-containing cells) and osteoblasts (hydroxyl-apatite-
secreting cells,) meeting the criteria of mouse MSC defi nition 
(Figure 2B) (Sung et al., 2008).

Cardiac function of obese mice after MSC administration

Under basal conditions, no signifi cant changes were observed 
in contractile (dP/dtmax) or relaxation (dP/dtmin) heart 
capability between normal and obese mice (Figure 3A).

TABLE 1

Metabolic parameters of normal and obese mice.
**: P<0.01 student T-test obese vs. normal mice at the same age. n=8

Normal Obese

Age (months) 13 17 13 17

Body weight 
(g)

34.6 ± 1.2 34.6 ± 1.4 56 ± 1.9** 58.9 ± 1.8**

Glucose 
(mg/dl)

115 ± 4 120 ± 5 159 ± 8** 160 ± 6**

Insulin 
(μg/l)

0.5 ± 0.3 1 ± 0.4 2.8 ± 0.6** 5.6 ± 1.1**

Tryglicerides 
(mg/dl)

111 ± 5 96 ± 5 120 ± 6 100 ± 6

Cholesterol 
(mg/dl)

105 ± 6 141 ± 5 230 ± 7** 289 ± 8**

When cardiac  funct ion  was  evaluated af ter  a 
pharmacological stress (dobutamine stimulation), obese 
mice showed a statistically significant reduction in both 
hemodynamic parameters compared to normal mice (Figure 3B).

Exogenous MSCs did not signifi cantly modify the cardiac 
performance of obese mice under basal condition or after 
dobutamine stimulation (Figure 3B). When dP/dtmin and dP/
dtmax values obtained at basal condition were compared to 
data obtained under stress condition, it was observed that 
obese animals that received three doses of MSC experienced a 
slight but not signifi cant increase in ΔdP/dtmin(dobutamine-basal), 
suggestive of a function improvement (normal: 3,231 ± 1,000; 
obese: 1,609 ± 758; obese + 1x MSC: 1,883 ± 632; obese + 3x 
MSC: 2,423 ± 886).

DISCUSSION

Diabetic cardiomyopathy is revealed by cardiac remodeling 
(concentric hypertrophy), fi brosis, progressive diastolic and 
systolic dysfunction and impaired contractile reserve in stress 
test performance (Abel et al., 2008; Daniels et al., 2010). These 
cardiac alterations have been related to increased oxidative 
stress, altered calcium homeostasis, progressive mitochondrial 
dysfunction starting with a reduction of ATP production, to 
activation of apoptotic signals (release of cytochrome c) and 
lipotoxicity (apoptosis-induced by ceramide) (Boudina and 
Abel, 2010).

It has been reported that VEGF, HGF, FGF and matrix 
metalloproteinases produced by MSC promote myocardium 
regeneration and improve functionality in animal models of 
acute myocardial infarction (Samper et al., 2012). It has also 
been suggested that MSC might contribute to the management 
of diseases where tissue damage is linked to oxidative stress 
directly (Valle-Prieto and Conget, 2010; Van Linthout et al., 
2011) or through the secretion of IGF-1, a factor that inhibits 
oxidative stress production in cardiomyocytes (Kajstura et 
al., 2001). In the present study, MSC administration reversed 
neither the contractile nor the diastolic dysfunction of obese 
mice. Moreover, exogenous MSC did not impair either 
metabolic or cardiac complications of obese mice. To discount 
that the observed lack of eff ects is explained by the inability of 
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Figure 3. Cardiac function of obese mice after MSC administration
Two to three weeks following MSC administration (17 months of age), hemodynamic parameters were determined at basal condition (A) 
and after pharmacological stress stimulation (B). p values for one-way ANOVA test. (n=8).
dP/dtmax: maximum positive pressure development. dP/dtmin: maximum negative pressure development.

Figure 2. Phenotype of administrated MSC
MSC isolated from 6-8 week-old female C57BL/6 mice were incubated with anti-CD45.2, anti-CD11b, anti-Sca-1 and anti-CD90.2 antibodies, 
and analyzed by fl ow cytometry (A). They were also exposed to adipogenic or osteogenic differentiaton media, stained for neutral lipids or 
hydroxyl-apatite minerals, and observed under light microscope (B). Data are representative of 5 MSC cultures. Bar = 50 µm.



255CALLIGARIS and CONGET Biol Res 46, 2013, 251-255

MSC to reach the heart of obese mice, we administered a single 
dose of MSCs that constitutively express GFP to 14 month-
old obese mice. Three months later we were able to fi nd rare 
donor cells in the myocardium but not in the blood of obese 
mice. Due to the fact that mice remained under the high-fat 
diet during the entire study period, it appears that MSC are 
unable to protect cardiomyocytes from metabolic impairment, 
modifying neither contraction-relaxation performance nor 
the progression of diabetic cardiomyopathy (Calligaris et al., 
2013a).

In order to assess whether the observed lack of eff ects 
depended on the dose used, we tripled the amount of MSC 
administered. Nevertheless, no further eff ect was observed. We 
did not test a higher dose because the number of cells already 
administered (8 x 106) was already in the upper limit of what 
is currently tested in clinical trials (1-10 x 106) (Elnakish et al., 
2012).

An earlier study described a beneficial effect of MSC 
administration on streptozotocin-induced diabetic rats (Zhang 
et al., 2008). While exogenous MSC promoted angiogenesis 
and attenuated cardiac remodeling, no functional results were 
reported. This brief report is the fi rst study conducted since 
then to describe the eff ect of MSC on obesity-induced diabetic 
cardiomyopathy at the functional level. We show that at the 
conditions tested (route, time and doses), donor MSC have 
neutral eff ect on diabetic cardiomyopathy induced by obesity.

Further studies should be conducted in order to improve 
the putative effect of MSC on cardiac dysfunction of 
obese mice, such as MSC pre-conditioning in order to 
increase their homing and/or resistance to oxidative 
stress microenvironments (Samper et al., 2012), and other 
administration routes such as intramyocardial or intracoronary 
(Elnakish et al., 2012; Mathiasen et al., 2012).
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