Cerebral Cortex, July 2020;30: 4011-4025

doi: 10.1093/cercor/bhaa017
Advance Access Publication Date: 28 February 2020
Original Article

ORIGINAL ARTICLE

Human Anterior Insula Encodes Performance
Feedback and Relays Prediction Error to the Medial
Prefrontal Cortex

Pablo Billeke?l, Tomas Ossandon?:3, Marcela Perrone-Bertolotti%?,
Philippe Kahane?, Julien Bastin®, Karim Jerbi’-19:11 Jean-Philippe Lachaux?®
and Pablo Fuentealba?

ILaboratorio de Neurociencia Social y Neuromodulacién, Centro de Investigacién en Complejidad Social
(neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago CL 7610658, Chile, 2Departamento de
Psiquiatria, Facultad de Medicina y Centro Interdisciplinario de Neurociencia, Pontificia Universidad Catdlica
de Chile, Santiago CL 8330024, Chile, 3Institute of Biological and Medical Engineering, Pontificia Universidad
Catdlica de Chile, Santiago CL 8330024, Chile, *Université Grenoble Alpes, CNRS, LPNC UMR 5105, Grenoble
38000, France, >Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut
Neurosciences, Grenoble 38000, France, ®Université Grenoble Alpes, Inserm U1216, Grenoble Institut
Neurosciences, Grenoble 38000, France, /Cognitive & Computational Neuroscience Lab, Psychology
Department, University of Montreal, Montreal, QC H3T 1L5, Canada, 8INSERM U1028, CNRS UMR5292, Brain
Dynamics and Cognition Team, Lyon Neuroscience Research Center, Lyon, Bron 69004, France, SInstitut
Universitaire de France, 19UNIQUE Research Center, QC, Canada, and 11MILA (Quebec Artificial Intelligence
Institute)

Address correspondence to Pablo Billeke, Laboratorio de Neurociencia Social y Neuromodulacién, Centro de Investigacién en Complejidad Social
(neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Av. Las Condes 12461, Santiago CL-7610658, Chile. Email: pbilleke@udd.cl

Abstract

Adaptive behavior requires the comparison of outcome predictions with actual outcomes (e.g., performance feedback). This
process of performance monitoring is computed by a distributed brain network comprising the medial prefrontal cortex
(mPFC) and the anterior insular cortex (AIC). Despite being consistently co-activated during different tasks, the precise
neuronal computations of each region and their interactions remain elusive. In order to assess the neural mechanism by
which the AIC processes performance feedback, we recorded AIC electrophysiological activity in humans. We found that
the AIC beta oscillations amplitude is modulated by the probability of performance feedback valence (positive or negative)
given the context (task and condition difficulty). Furthermore, the valence of feedback was encoded by delta waves
phase-modulating the power of beta oscillations. Finally, connectivity and causal analysis showed that beta oscillations
relay feedback information signals to the mPFC. These results reveal that structured oscillatory activity in the anterior
insula encodes performance feedback information, thus coordinating brain circuits related to reward-based learning.
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Introduction

Monitoring both the performance and outcomes of actions
is fundamental for adapting behavior to challenging environ-
mental conditions. During this monitoring, organisms compare
internally generated predictions with actual outcomes in order
to compute prediction error signals which are crucial for
reward-based learning (Glimcher 2011). Several brain areas
have been related to these monitoring performance processes.
In particular, medial prefrontal cortical regions, such as the
supplementary motor area (SMA) and the dorsal anterior
cingulate cortex (dACC), play a pivotal role in detecting conflicts
and errors to fix ongoing behavior and allocate cognitive
resources to adapt subsequent behavior (Alexander and Brown
2011; Bonini et al. 2014; Shenhav et al. 2014; Billeke et al.
2014b). These areas are the main cortical target of mesolimbic
dopaminergic neurons signaling prediction errors during
reinforcement learning (Mark Williams and Goldman-Rakic
1998). Recent evidence from animal and human studies shows
that there is an extended network of cortical areas that also
respond to performance feedback (Ullsperger et al. 2014). One of
these areas is the anterior segment of the insular cortex (AIC),
which is in close functional and anatomical relationship with
medial prefrontal regions (Dosenbach et al. 2007; Nelson et al.
2010; Power et al. 2011). In spite of the consistent co-activation
between AIC and dACC in response to performance feedback,
there is no consensus for the specific role played by the AIC in
performance monitoring.

A line of evidence suggests that the AIC’s involvement in
performance monitoring may pertain to its role in error aware-
ness (Klein et al. 2013). This view is supported by neuroimag-
ing evidence showing robust AIC activation evoked by error
or negative performance feedback (Ullsperger and von Cramon
2003; Dosenbach et al. 2006; Ham et al. 2013). Since AIC is
known to be involved in interoception (Craig 2009), it is conceiv-
able that it activates as a result of enhanced awareness to an
autonomic reaction to an error (Klein et al. 2007). Nonetheless,
when the valence of the feedback is controlled for frequency,
both dACC and AIC seem to respond to the unexpectedness
of the feedback valence rather than error per se (Ferdinand
and Opitz 2014). This suggests that AIC activity cannot entirely
be explained on the basis of error processing. Indeed, AIC-
dACC network activations have been reported in several types
of tasks (Dosenbach et al. 2006), indicating a general-purpose
function related to the maintenance and implementation of
task sets, as well as the coordination of behavioral responses
(Medford and Critchley 2010). Another prevalent hypothesis sug-
gests that dACC and AIC make-up a “salience network,” high-
lighting their response to behaviorally relevant events (Seeley
et al. 2007; Menon and Uddin 2010), but not novelty per se
(Wessel et al. 2012). In this context, saliency can be understood
as the property that characterizes the extent by which a stim-
ulus deviates from the prediction, whether it surpasses it or
falls short from it (i.e., unsigned prediction error). Interestingly,
recent functional magnetic resonance imaging (fMRI) studies
suggest that the AIC might be a central hub in cognitive pro-
cessing since it exerts influence on the activity of other brain
areas related to cognitive control and attention, including the
medial prefrontal cortices (Sridharan et al. 2008; Higo et al. 2011,
Ham et al. 2013).

Thus, despite a fair amount of evidence for the AIC involve-
ment in performance monitoring, and its interaction with other
cortical areas, the precise neuronal computations carried out in

the AIC and the information flow to/from other key areas during
performance monitoring remain poorly understood. Since previ-
ous studies using direct recordings from the human brain have
demonstrated its strong potential in probing the electrophysi-
ological underpinnings of performance monitoring (Jung et al.
2010, 2011; Bonini et al. 2014; Bastin et al. 2016), we recorded
electrical brain activity from neurosurgical epileptic patients
with intracerebral depth electrodes placed in the insular cortex
for presurgical evaluation while they carried out various cogni-
tive tasks with performance feedback. We tested the hypoth-
esis that the AIC encodes performance feedback in order to
adapt ongoing behavior to environmental conditions. In partic-
ular, we predicted that the electrophysiological activity of the
AIC is modulated by the probability of the feedback valence
and that it exerts a causal influence on other cortical areas
related to feedback processing and reward-based learning, such
as the medial prefrontal region (Sridharan et al. 2008; Ham
et al. 2013).

We found robust oscillatory activity in the beta frequency
range that was related to feedback processing in the electrodes
located in the AIC. Remarkably, the power of beta oscillations
was dynamically modulated by the expectancy of feedback
valence (i.e., unsigned prediction error) in both between-task
and within-task analyses. In addition, beta oscillations were
nested in delta oscillations and presented a phase preference
that encoded feedback valence. Finally, beta oscillations in the
AIC influenced causally the activity of other cortical areas
that showed feedback response, including medial prefrontal
regions. The single-trial variation of the AIC influence on
the medial prefrontal region correlated with the prediction
error of feedback valence. Then, our results provide novel
evidence for the critical role played by the AIC in the neural
network that mediates the processing of performance feedback.
Importantly, to the best of our knowledge, our findings are the
first to reveal and characterize the transmission of performance
monitoring signals from the AIC to medial prefrontal regions in
humans.

Methods
Participants

Intracranial recordings were obtained from 19 epileptic patients
(12 female, 17 right-handed) with intractable epilepsy who
underwent stereotactic intracerebral EEG (SEEG) recordings
before surgery at the Neurology Department of the Grenoble
University Hospital (Grenoble, France). Patients’ age was
between 14 and 50 years (mean: 29.5) with an age of seizure
onset ranging from 1 to 20 years (mean: 11 years). The
implantation decision was only a guide for clinical aim.
All electrode data presenting pathological waveforms were
discarded from the present study. This procedure was achieved
in collaboration with the medical staff. It was based on the visual
inspection of the recordings and by systematically excluding
data from any electrode sites that were found a posteriori to
be located within the seizure onset zone (see Supplementary
Table 1 for a complete description of the epileptic zone for each
patient). All participants provided written informed consent,
and the experimental procedures were approved by the local
Ethical Committee (“ISD et SEEG” project, CPP Sud-Est V no
09-CHU-12).
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Electrode Implantation

Eleven to 15 semi-rigid, multilead electrodes were stereotacti-
cally implanted in each patient. Each electrode had a diameter of
0.8 mm, and depending on the target structure, comprised 10-15
contact leads 2-mm wide and 1.5 mm apart (DIXI Medical). Elec-
trodes were anatomically localized by aligning the pre-operative
with the postoperative (i.e., electrodes in place) structural MRIs
of each patient, and the localization was provided in MNI coor-
dinates after normalization.

Experimental Tasks

We analyzed five different tasks. These tasks were selected
given that all of them presented visual stimuli that indicated
the performance of the subject in a given trial (performance
feedback). The first two were designed for research purposes
only, with the rationale that the probability of possible valence of
the feedback was obtained by the subject explicitly (probabilistic
decision-making [PDM]) or by learning (social decision-making
[SDM] task, see below). The other tasks (a reading task and
two working memory task) were selected from a pool of tasks
used as the functional localizers of basic cognitive function
in order to inform the presurgical decisions in a clinical set-
ting. In these three tasks, the feedback valence is dependent
on the performance of each patient. Thus, the probability of
feedback valence depends on both individual performance and
the difficulty of each condition (see below). Overall, all the tasks
present performance feedback, but the source by which the
subject can anticipate the probability of the specific valence
differs across the tasks, allowing us the opportunity to study
the consistent feedback processing independent of the specific
task features or demands. The description of each task is the
following:

1. PDM task (Supplementary Fig. 1). Patients had to decide
between two probabilistic rewarded options. Each option
was represented by the colors of the bar (on each side of
the screen) and was associated with a probability of being
selected, represented by the length of the colored bar placed
in the center of the screen; and a payoff, represented by a
number placed over each colored bar. The options had ran-
dom, complementary probabilities and payoffs. The option
with the highest probability had the lowest payoff, and vice
versa. After the patient had chosen an option (1-3 s), the
rewarded option was indicated with either a green circle in
case the patient chose correctly or with a red circle otherwise.
Feedback presentation (red or green circle) lasted 1 s. If
the patient chose the rewarded option, he/she obtained the
associated payoff. Otherwise, he/she received no money.

2. SDM task (Supplementary Fig. 2). We used a repeated version
of the Ultimatum Game used in prior work (Billeke et al. 2013).
In brief, patients played as proposers and had to make an
offer to the other player (the responder) as how to split an
amount of money (10 Euros) between them. The responder
could either accept or reject the offer. If the offer is accepted,
the money is split as proposed. While if the offer is rejected,
none of the players received any money. Each game consisted
of 30 consecutive rounds between the same pair of players.
Patients believed they were playing with another human, but
they were actually playing with a computational simulation
that generated a credible social interaction (Billeke et al.
2014b). The feedback was a symbol indicating the respon-
ders’ decisions (1 s). In the preceding two tasks (PDM and
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SDM tasks), the patients played for a symbolic reward and,
hence, did not receive real money for their participation.

3. Reading task (RdT, Supplementary Fig. 3, Vidal et al. 2011).
Patients saw a string of characters on the screen under three
conditions. A word condition (semantic), where patients had
to discriminate whether the word was referring to a living
or nonliving object. A pseudo-word condition (phonologic),
where patients had to discriminate whether the string had
one or two syllables. Finally, a no-word condition (visual con-
trol), where patients had to discriminate whether the string
consisted of uppercase or lowercase letters. After a trial, the
feedback was shown indicating her/his performance (1.5 s).

4. Spatial working memory task (sSWM, Hamamé et al. 2012).
Patients had to memorize the positions of dots placed in
a 4 x4 array on the screen (2, 4, or 6 dots). After a pause,
consisting of an empty array (3 s), a new dot was shown on
it. Patients had to indicate whether the place of the new dot
was filled or empty in the preceding array. After each trial,
feedback indicated her/his performance (1.5 s).

5. Verbal working memory task (vWM, Hamamé et al. 2012).
We used the Stemberg’s task. Patients had to memorize
letters (2, 4, or 6 letters). After a pause, consisting of a black
screen (3 s), a new letter was shown, and the patient had to
indicate whether the new letter appeared in the preceding
strings. After each trial, feedback indicated her/his perfor-
mance (1.5 s).

For all tasks, the time window of analysis was aligned with
the apparition of the screen that indicated performance feed-
back (not the subjects’ responses). All tasks were programmed
in Presentation software (www.neurobs.com), and the responses
were delivered through a gamepad using two buttons (using one
hand for sWM, vWM, and RdT tasks and two hands for PDM and
SDM tasks).

SEEG Recordings

Intracerebral electrical activity was recorded from 128 depth-
EEG electrode sites using a video-EEG monitoring system
(Micromed). Data were bandpass-filtered online (0.1-200 Hz)
and sampled at 512 Hz. At the time of the acquisition, data were
recorded using a reference electrode located within the white
matter. Each electrode channel was rereferenced in respect
to its closest neighbor (i.e., bipolar derivation). This bipolar
montage had several advantages over standard referencing. It
helped eliminate signal artifacts common to adjacent electrode
contacts (such as the 50-Hz artifact or volumetric conductance
of distant sources). It achieved a high local specificity by
canceling out the effects of distant sources that spread equally
to both adjacent sites through volume conduction. The spatial
resolution achieved by bipolar SEEG recordings was of the order
of 3 mm (Jerbi et al. 2009).

Electrode Localization

The electrodes were anatomically localized using the individ-
ual structural MRI postelectrode resection. Each MRI was co-
registered to a standard MNI space, and the resulted coordi-
nates were evaluated using an anatomical atlas provided by
xjview 8 (http://www.alivelearn.net/xjview8). For insular cortex
parcellation, we used the division suggested by Jakab et al. (2012)
between the anterior and posterior parts. For the connectiv-
ity analysis between anterior insular cortex (AIC) and medial
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prefrontal cortex (mPFC), we used a selected electrode in insular
cortex per subject (the electrode with the higher responses) and
all the electrodes whose nearest gray matter were located in
medial part for frontal cortex, including the orbitofrontal cortex,
and part of paracentral lobe and cingulate gyrus (anterior to
coordinate MNI y = —32).

Time-Frequency Analysis

We computed time-frequency decomposition over continuous
data using a wavelet transform. A signal x(t) was convolved
with a complex Morlet’s wavelet function defined by w(t,fo) =
Ae~t'/1267 gl27fot \Wavelets were normalized, thus A = (or/7) Y2
The width of each wavelet function m = f, /ot was chosen tobe 7,
where o = %nat. Now time—frequency content was represented
as the energy of the convolved signal E(t,fo) = |w(t,fo) ® x()2.
For the presentation of continuous data, the time-frequency rep-
resentation (TFR) was z-normalized using mean and standard
deviation (SD) of the entire signal per electrode and frequency
(Fig. 1). For the segmented TFR evoked feedback, we used a z-
normalization related to a baseline period 1 s before feedback
presentation. For the analysis of the power time course (alpha,
beta, and gamma ranges), we used the Hilbert transform. Using a
zero-phase shift noncausal finite impulse filter with 0.5-Hz roll-
off, the continuous signals were first bandpass filtered in the
frequency bands of interest (alpha 5-15 Hz, beta 15-30 Hz, and
gamma 40-100 Hz). Now for each bandpass-filtered signal, we
computed the envelope using the standard Hilbert transform.
Finally, we z-normalized the resulting envelope related to a
baseline period 1 s before the stimulus.

FT Statistical Analysis

For TFRs, we used the z-normalized signal related to baseline.
We tested per each site (time x frequency bin) whether the
means were other than zero using Wilcoxon signed-rank test.

For the analysis of the frequency band of interest, we used the
z-normalized Hilbert envelope of the segmented signal of both
feedback and control stimulus presentation. For group analysis,
for both TFR and frequency band of interest, we first fitted a
general linear model (GLM) per each electrode. For each bin (time
x frequency), we computed a GLM using the following model:

E(t) = Bo + B1F + B2V

where E(t) is the z-normalized power of the frequency (form
Wavelet transform) or envelop of the signal (from Hilbert trans-
form), By is the intercept of the model that represents the com-
mon activation related to feedback and control stimulus (see
below), B1 is the estimated slope of the feedback F representing
the specific activation related to feedback (i.e., increases or
decreases related to control stimulus), and B, is the estimated
slope of the valence V (negative feedback =1) representing the
difference between negative and positive feedback (a negative
slope indicates more activity for positive feedback and vice
versa). Thus, each bin had an estimated slope and P-value per
regressor. The control stimulus used in the model was different
for the different tasks. For the PDM task, we used the appearance
of the options, for the SDM the beginning of the decision period,
for the RAT the presentation of the strings, and for the sWM and
vWM we used the presentation of the stimuli to be memorized.

For the entire time/frequency series, we corrected the P-value
using two approaches. For all analyses that have less than 30
observations (e.g., group analysis with less than 30 electrodes),

we corrected using cluster-based permutation test (see below,
cluster threshold detection P <0.01, cluster corrected P <0.01)
and FDR q <0.01 otherwise. The rationale of these approaches
is trying to maintain a similar rate of both false positive but also
false negative.

For the analysis of frequency band of interest, we say that
an electrode is feedback and/or valence modulated if it has a
significant modulation (corrected P < 0.01) for at least 50 ms.

For the correlation between task difficulty and beta activity,
we selected the electrode within the AIC, having the highest
response per subject in RAT task (the mean of the t-values during
the 200 ms for which the maximum significant modulation
was found). The difficulty of each task was estimated per each
patient using the percentage of error. Then, the data (both
error rate and beta responses) were rank transformed per each
electrode, to avoid differences given by different electrode expo-
sition. We used both the nonparametric Spearman correlation
and the mixed linear model using random effect in the intercept
and slope. In the latter approach, we used patients and tasks
as grouping factor, in order to control the variance due to the
difference in the electrode locations among patients. For these
analyses, we tested the activity related to both the feedback
and the valence. For the trial-by-trial correlation, we used the
electrodes with the highest feedback response per patient. We
used the mean during the 200 ms around the points of the
maximum modulation per task in order to compute the power
per trial. Thus, we correlated the power with the possibility to
obtain positive feedback. This probability was estimated with
different parameters for each task. For the PDM task, we used
the logit transform of the probability of winning given by the
colored area associated with the chosen option (explicitly given
to the subject during the task). For the SDM task, we used the
logit transform of the probability of obtaining an acceptance
(given by the simulation, and learning by the subject across
the task, for more details see prior work (Billeke et al. 2013,
2014a, 2014b, 2015; Melloni et al. 2016)). For the RdT, we used the
difficulty of the three conditions given above (difficulty order:
no-word condition < pseudo-word condition < word condition).
Finally, for the memory tasks (VWM and sWM tasks), we used
the number of items to keep in memory. In all these trial-by-
trial correlations, we used both the nonparametric Spearman
correlation and linear robust regression. Additionally, for a group
analysis, we assessed if the rho value for all AIC electrodes and
tasks presented positive or negative modulation by testing the
mean of the rho value against zero. For this, we used the sign
rank Wilcoxon test.

Phase-Amplitude Coupling

For a given frequency pair, the raw signal was filtered separately
in both frequencies (zero phase shift noncausal finite impulse
filter with 0.5 Hz roll-off). Lower frequency ranges from 0.5
to 35 Hz, (0.4 Hz increments, 0.8-Hz filtered bandwidth), and
the higher ranged from 5 to 120 Hz (1 Hz increments, 5-Hz
filtered bandwidth). The phase of the lower and the amplitude
of the higher frequency range were computed using the Hilbert
transform. For each epoch of interest (0-1 s after feedback for
feedback processing and —1 to 0 s before feedback for baseline
period), we computed the circular-linear correlation between
the phase of lower frequencies and the amplitude of higher
frequencies, and then we computed the mean per electrode.
At group level analysis, per each frequency pair, we compared
if the correlation coefficient was statistically different between
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Figure 1. Neural response of the AIC to behavioral feedback during cognitive tasks. (a) Location of recording electrodes in the anterior insula in a subject on magnetic
resonance imaging (S1). (b)) Wideband electrical recordings (0.1-200 Hz) of the bipolar derivation of the Al electrodes and the time-frequency decomposition of x’3-
x'2 derivation during the same period. Colors represent z-score. O: option presentation, P: presentation of the probability of each option, D: patient’s decision, F:
performance feedback presentation (red circle: negative feedback, green circle: positive feedback). (c) Time-frequency chart and event-related potential evoked by
performance feedback presentation in three different tasks (x'3-x’2 derivation, P1). Highlighted areas represent significant modulation related to baseline (Wilcoxon
test and FDR, q <0.01). (d) Group analysis of the same three tasks. Highlighted areas represent significant modulation related to the task model (see Methods and
Supplementary Fig. 8 for group analysis per all tasks).
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the feedback period and the baseline using the Wilcoxon sign
test. We correct for multiple comparisons using a cluster-based
permutation test (Maris and Oostenveld 2007). The initial thresh-
old for cluster detection was P < 0.05, and the final threshold for
the significant cluster was P <0.01. For the analysis of the PAC
in the frequency range of interest, the LFP signal was bandpass
filtered for slow-wave and beta and gamma oscillations (1-3,
15-25, and 40-100 Hz, zero phase shift noncausal finite impulse
filter with 0.5-Hz roll-off). Then, the derived signal was Hilbert
transformed, and the angle for the lower and the power for
higher frequency band were extracted. The amplitude was then
z-normalized related to a baseline period 1 s before feedback. We
then performed a linear-circular correlation between the phase
of lower oscillation and the amplitude of higher oscillation.
Additionally, we computed a Rayleigh test. For this analysis, we
compared whether the angle of the lower frequency in time
points when the higher frequency has a power over 3 SD over
the baseline period was nonuniform distributed in the circle.
Using this approach, we computed the mean of the angles per
each trial. We then compared whether these “preferred angles”
were different between negative and positive feedback using a
circular multisample test for equal means (circular ANOVA). The
same approach was used for the PAC between the phase of the
AIC beta oscillation and the power of gamma oscillation in other
cortical areas.

Phase Synchrony

We calculated phase synchrony in brain signals using the phase-
locking value (PLV) computed between the pairs of electrodes
(Lachaux et al. 1999). The PLV measures the inter-site-phase-
clustering. To compute the PLVs, we used a complex Morlet’s
wavelet function of seven cycles. Through this complex wavelet
transform, an instantaneous phase ¢1.”(t,f) is obtained for each
frequency component of signals i (electrodes) at each trial (tr).
The PLV between any pair of signals (i, k) is inversely related to
the variability of phase differences across trials:

Nir
1 H(ptr _olr
PLVie (8.) = ZeXP’(¢' -0 )|
tr=1

where Ny is the total number of trials. If the phase difference
varies little across trials, its distribution is concentrated around
a preferred value and PLV ~ 1. In contrast, under the null hypoth-
esis of a uniformity of phase distribution, PLV values are close to
zero. Finally, to assess whether two different electrodes are func-
tionally connected, we calculated the significance probability of
the PLVs by a Rayleigh test of uniformity of phase. According
to this test, the significance of a PLV determined from N can
be calculated as P = exp~NePLV?) (Fisher 1995). To correct for
multiple testing, the cluster-based permutation test (Maris and
Oostenveld 2007) was applied to the time-frequency chart.

Causal Interactions

To evaluate the influence of the Al region over other feedback
activated regions, we estimated Granger causality (GC) (Bressler
and Seth 2011) between selected recording sites. The causality
was calculated over time series across trials during performance
feedback processing (0-1 s windows after feedback presenta-
tion). Each time-series was then detrended, demeaned, and first-
order differencing was applied. The stationary of the processed
data was tested using the autocorrelation function for each

electrode. No violations of covariance stationarity were detected.
Since neither the Akaike nor Bayesian information (Seth 2005)
criterion yielded an optimal model order conclusively, the lowest
order that led to 80% of the data to be captured by the autore-
gressive model was used. Then, the GC terms were computed.
The significance of the difference of influence terms was deter-
mined using permutation testing (500 permutations) using two
approaches. First, as in prior work (Perrone-Bertolotti et al. 2012),
we permuted the signal in time windows (100 ms each), leading
a measure of the significant in causal influences between the
two sites. Second, pooling the trials related to feedback and
control stimuli, and then selected a random group of the same
number of the original feedback group. The latter approach gives
us a measure of the significant influence between sites which
is specific to feedback processing (that is, greater than that of
control condition). The similar methods were used to calculate
spectral GC (Geweke 1982). For a given spectral GC influence,
we used the bootstrap method (500 bootstrap iterations) across
epochs to estimate the 95% confidence intervals in order to
determine whether the GC influences in both directions were
significantly asymmetric. Under the null hypothesis, GC influ-
ences in both directions stem from the same distribution, and
their expected difference is zero. Therefore, we observed the
differences between GC influences that were tested against that
the value of zero.

Software and Statistics Summary

Processing of anatomical images and electrode localization
procedures were performed using the SPMS8 (http://www.fil.
ion.ucl.ac.uk/spm. RRID:SCR_007037) and in-house MATLAB
routines (available online as LANtoolbox, http://neurocics.udd.
cl, RRID:SCR_017629). Signal analysis and statistics were also
implemented in LANtoolbox (Zamorano et al. 2014; Billeke et al.
2014a). For circular analysis, we used CircStat (RRID:SCR_016651).
For GC, we used the MVGC multivariate GC toolbox (Seth 2010,
RRID:SCR_015755). P < 0.05 was considered significant. We used
in most cases nonparametric tests (e.g., Wilcoxon, permutation
test). For all parametric tests, data were normally distributed
as indicated by nonsignificance in the Kolmogorov-Smirnov
test.

Results

Beta Oscillatory Activity in the AIC Reflects
Performance Feedback Processing

We recorded electrical brain activity from 19 patients with intra-
cortical electrodes located in the insular cortex. Patients were
evaluated in at least two out of five cognitive tasks (see Meth-
ods), all of which included a visual cue that provided feedback
on behavioral performance on each trial. For neither task, the
feedback was aligned with the subject’s responses. Patients
carried out two decision-making tasks (PDM, Supplementary Fig.
1; and SDM, Supplementary Fig. 2), one RdT (Supplementary Fig.
3), and two working memory tasks (VWM, Supplementary Fig. 4;
and sWM, Supplementary Fig. 5). In the decision-making tasks,
a positive feedback represents a symbolic monetary reward
outcome, while a negative feedback represents a nonreward
result without a loss (no real money was given to the subject).
In the remaining tasks, feedback consisted of an indication of
subject performance on each individual trial (negative feedback
indicated an error). The proportion of negative/positive valence
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of the feedback varied by the context given by both tasks and
conditions (see Supplementary Table 1). Both decision-making
tasks presented greater ratio of negative valence feedback (PDM:
0.39, SDM: 0.5), whereas the other task presented less ratio of
negative feedback (RDT: 0.13; viWM: 0.22; sWM: 0.07).

The presentation of the visual performance feedback evoked
a prominent oscillatory response, specifically in those electrodes
located in the AIC (see Fig. 1, e.g, Patient S1). This activity
was absent during the presentation of most of the other rel-
evant stimuli during all of the five behavioral tasks used. The
spectral response was characterized by an early low-frequency
response (1-15 Hz, Fig. 1c), followed by a burst of activity in a
higher frequency range (main burst: 15-30 Hz; secondary burst:
40-100 Hz; Fig. 1c and Supplementary Figs 6-8). Group analy-
sis from all electrodes in the AIC is shown in Fig. 1d, Supple-
mentary Fig. 8. For our subsequent analysis, we first focused
on the beta frequency range (15-30 Hz) because this oscilla-
tory activity presented the most pronounced peak in the spec-
trogram (see Supplementary Figs 6 and 7 for other frequency
bands).

In order to quantify the active (responsive) electrode over
all the cortex, we used the activity in the feedback during RdT,
which is a task that all subjects carried out to select active
electrodes. We found 44 active electrodes (out of 247) in the
insular cortex, where the proportion of active/inactive electrode
was no different in relation to the rate of the active electrode
all over the cortex (12 patients with active electrodes, rate of
active electrodes in insular cortex, 0.16, all over the cortex 0.17,
P=0.68, permutation test). By contrast, for the electrodes located
in AIC (following division proposed in Jakab et al. 2012), the pro-
portion of active electrodes was significantly higher than both,
all the cortex and the posterior insular cortex altogether (0.46, 31
electrodes out of 67, 7 patients out of 15, P=1e~°, permutation
test, see Supplementary Fig. 7). Indeed, the posterior insular
cortex presented a significantly lower rate of active electrodes
in comparison with all the cortex (0.08, 13 out of 159, P=8e™>).
The AIC seems to have a specific feedback response; hence,
the subsequent analysis was focused on AIC electrodes (n=67,
patients=15).

Since prior work has shown a specific role of the insula in
the error processing, we then tested if the feedback process-
ing related to AIC beta activity was different between negative
and positive feedback. To this end, we studied the time course
of beta oscillatory power during the processing of different
task-relevant stimuli. We used the instantaneous amplitude of
the signal (bandpass filtered and Hilbert transformed), and per
each temporal bin, we fitted a GLM (see Methods for more
details). In this model, we used two regressors, namely the
performance feedback and its valence (negative or positive).
Using the former regressor, we assessed whether the beta oscil-
latory activity was higher for feedback processing than for the
processing of other salient stimuli during task performance
(e.g., option presentation during the PDM task; see Methods).
Additionally, using the latter regressor, we assessed for pos-
sible beta activity modulation between positive and negative
feedback.

From the 31 active electrodes (7 patients out of 15) in the AIC,
we found 24 electrodes (7 patients out of 15) that presented an
additional modulation by feedback valence during RAT. Figure 2a
shows an example of an electrode exhibiting similar responses
for both negative and positive feedback, while Figure 2b shows
an example for an electrode with higher responses to positive
feedback in a task (represented by the blue line). In Figure 2d,
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we show a density map of electrodes with significant beta
oscillatory responses during at least two tasks. We also found
significant beta oscillatory activity in the precentral motor area,
the inferior frontal gyrus (IFG), and the SMA/dACC (Fig. 2c). Addi-
tionally, we explored both gamma (40-100 Hz) and alpha (5-
15 Hz) bands during feedback response. Supplementary Figure 6
shows the density map of electrodes with modulation in those
frequency ranges. Although gamma and alpha responses were
comparable with beta responses, the number of AIC electrodes
with the beta activity was higher (Supplementary Figs 6-8). Inter-
estingly, when comparing the valence modulation throughout
different tasks, we found a variation in this response among
tasks (Supplementary Figs 8 and 11).

The Amplitude of AIC Beta Oscillatory Activity
Correlated with the Probability of Feedback Valence
(Unsigned Prediction Error)

As we found that the valence response changed in relation
to the task (Supplementary Figs 8 and 11) and that different
tasks have a different ratio of negative feedback, we tested if
variation in beta power encoded the probability to obtained
valence feedback other than the obtained one.

For this, in each AIC electrode and across tasks, we com-
pared both the estimated feedback response (i.e., the “feedback”
regressor of the GLM which represents the beta power increase
during both positive and negative feedback in comparison with
other relevant stimuli during each task; see above and Methods)
and the estimated feedback valence response (i.e., the “valence”
regressor of the GLM which represents the beta power difference
between negative and positive feedback). We found that tasks
with more difficulty (i.e., greater ratio of negative feedback,
e.g., during SDM and PDM tasks) were associated with more
beta power on positive feedback. Conversely, a task with less
difficulty (i.e., a smaller ratio of negative feedback, e.g., during
vWM and sWM tasks) was associated with less beta power on
negative feedback (Supplementary Figs 10 and 11).

In order to evaluate the statistical significance of this mod-
ulation, in each subject, we selected the electrode with the
highest feedback response in RdT task. We correlated its esti-
mated feedback response with the error rate (used as a proxy
of task difficulty and estimated per each subject and task; see
Methods). We found a statistically significant correlation for
feedback responses (15 AIC electrodes [one per patient] and
S tasks, n=42, note that not all the subjects carried out all the
S tasks, rho=0.487, P=0.001, Fig. 3). We confirmed this result
using a mixed linear model (Bagiella et al. 2000) in order to
rule out differences given by the intersubject variability on elec-
trode location (tso=3.48, P=0.001; random effect for intercept
and slope, patients and tasks as grouping factor). Hence, beta
oscillatory activity seemed to be larger when positive feedback
valence was less probable to obtain, given the context of the
difficulty of the task performed.

To evaluate whether the proceeding between-task modu-
lation was related to a within-task modulation, we explored
the trial-by-trial modulation in the power of beta oscillatory
activity for each patient and each task. As a proxy of trial
difficulty, we used specific task indicators of the probability of
obtaining positive feedback, for instance, the amount of items
to memorize for memory tasks or the explicit probability to
win in PDM task. Thus, we found that, within the same task,
there was a correlation between the probability of obtaining
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Figure 2. Beta oscillatory activity in the AIC in response to feedback presentation during the PDM task. (a,b) Single trial time-course of the amplitude of beta frequency
band (1540 Hz) related to feedback and option presentation. Color represents the power of the beta band in z-score (baseline between —1.5 and 0 s). Line plot depicts
the time-course of t-values of each regressor in the model (see Methods). Red represents the feedback regressor (i.e., power response during performance feedback), and
blue shows the valence regressor (i.e., the difference in power response between negative and positive feedback). Colored rectangles represent areas where regressors
are significant (corrected using FDR q < 0.01). (c) Time course of t-values of regressors per electrodes in Patients S1 and S2. Note the robust response in the AIC, and
the weaker activation of PMA, SMA; IFG and FO. (d) Density map representing the number of active electrodes in all 19 patients. Both hemispheres are pooled. See
also Supplementary Figure 6. PIC: posterior insula cortex; mSFG: medial superior frontal gyrus; dACC: dorsal anterior cingulate cortex; PMA: primary motor area; SMA:
supplementary motor area; FO: frontal operculum; IFG: inferior frontal gyrus; AIC: anterior insular cortex; Ag: amygdala. See also Supplementary Figs 8-11.

positive feedback and the amplitude of beta oscillatory activity
(RAT: 67 electrodes, 15 patients, mean rho=-0.17, Wilcoxon
test testing that rho for all electrodes was other than zero,
P=0.0005; see Fig. 3b—e for individual electrode examples). For
negative feedback, we found the opposite pattern for both the
PDM and SDM tasks (11 electrodes, 3 patients, mean rho=0.11,
P=0.02;individual electrode examples: DM S1,rho=0.38,P =0.02,
linear robust model, t3; =1.4, P=0.16; SDM S2, rho=0.5, P=0.003,

linear robust model tyg =3.06, P =0.004). For the other tasks (RdT,
sWM, and vWM), there were not enough cases of negative feed-
back to carry out the correlation analysis. Hence, AIC activ-
ity correlated with the probability of obtaining a result differ-
ent than the obtained one. These results could indicate that
beta oscillatory activity in the AIC encodes unsigned prediction
error of feedback valence, which is compatible with a saliency

signal.
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Figure 3. (a) Correlation between error rate (as a proxy of task difficulty) and beta oscillatory response in the AIC. For each subject (n=15), we selected the electrode
with the greatest response in RdT. Circles represent the mean of the rank transformed of power of beta oscillatory activity and rank transform of difficulty per task
(for visualization purpose only). The line represents standard errors. (b—f) Individual examples of electrodes where we carried out a single trial correlation per task.
(b,c) Single-trial correlations between the probability of obtaining monetary reward (logit transform) and beta oscillatory activity during positive feedback in both PDM
(b) and SDM tasks (c). (d) Single trial correlation between difficulty of task conditions and beta oscillatory activity during positive feedback in the RdT. (ef) Single trial
correlations between memory loads and beta oscillatory activity during positive feedback in both vWM (e) and sWM (f) tasks. Lines represent robust linear regressions.
Rho values were estimated using Spearman correlation. Individual examples are as follows: (b) PDM S1, rho=—0.36, P=0.02, linear robust model t3g =—2.69, P=0.02;
(c) SDM S2, rho=-0.41, P=0.01, linear robust model T43 =-2.33, P=0.02; (d) RAT S4, rho=-0.73, P=0.0038, linear robust model T1; =—3.17, P=0.008; (¢) VWM S4:
rho=-0.43, P=0.02, linear robust model ty4 =—2.1, P=0.05; (f) SWM S6, rho=—0.34, P=0.03, linear robust model T3g =—2.16, P=0.03.

Phase-Amplitude Coupling between Delta Waves and
Beta Oscillatory Activity Encodes Feedback Valence

Recent studies suggest that neural activity encodes and
transmits information through a structured oscillatory activity,
which can be reflected in nested oscillations (Staresina et al.
2015). Thus, to explore the mechanism by which oscilla-
tory activity encodes feedback information, we computed
phase-amplitude coupling (PAC) relationships during neural
processing of performance feedback. We first computed the
circular-linear correlation between low-frequency (from 0.5
to 35 Hz) phases and high-frequency (from 10 to 120 Hz)
powers. We next compared these correlations during feedback

responses and baseline periods (0-1 s and —1 to 0 s at about the
feedback presentations, respectively, in all AIC electrode during
RdT, 15 patients, see Supplementary Fig. 12 for all tasks). This
yielded a cluster that showed an increase in PAC (Fig. 4a) where
delta oscillation (1-3 Hz) phase-modulated the power of beta
oscillations (20-30 Hz). In order to explore the relation between
this modulation an evoked responses derived from a stimulus,
we correlated the cross-frequency modulation with intertrial
phase coherence and power modulation in delta oscillation.
We did not find a significant correlation, indicating that this
modulation seems not to be given by an evoked response in
delta range (absolute rho values < 0.12, P values >0.3, canonical
and partial Spearman correlations, n=67 electrodes, 15 patients,
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Figure 4. PAC during feedback processing in the AIC. (a) Color scale represents the increase in circular-linear correlation during feedback in comparison with baseline
period all electrodes in the AIC (67 electrodes, 15 patients, during RdT). Statistically significant clusters are highlighted (Wilcoxon test and FDR, q < 0.05). (b,c). Probability
of occurrence of power increments for high-frequency activity sorted by the phase of low-frequency activity during PDD and SDM task (11 electrodes, 3 patients).
Feedback is separated by positive (dark) and negative (light) valence. Note significantly different phase preferences for both positive and negative feedback in delta
(1-3 Hz) to beta (15-30 Hz) modulation. Shaded areas represent 95% confidence intervals. (b,c) Are individual examples of significantly modulated electrodes. See also

Supplementary Figure 12.

RdT). In the task that elicited more negative feedback (PDM
and SDM tasks), other clusters occurred where beta oscillation
(20-35 Hz) phase-modulated the power of high gamma oscilla-
tion (80-100 Hz, Supplementary Fig. 12). This result could point
to the existence of a structured oscillatory activity that may
potentially encode feedback-related information. Thus, for each
trial, we computed the PAC of the delta and beta oscillations.
In this analysis, we used only the PDM and SDM tasks because
they presented relatively balanced amounts of negative and
positive feedback cases (a mean of 43.4% negative feedback). For
each of the 11 electrodes analyzed (three patients), we found
significant modulations (P <0.05, Rayleigh test and circular-
linear correlation). When comparing negative and positive
feedback, the preferred phases differed by a mean of 39.8° (the
difference was significant in 8 out of the 11 electrodes, P < 0.05,
circular multisample test for equal means, one-factor ANOVA;
Fig. 4b). Since broadband, rather than narrowband, modulation
has been correlated with local neuronal population spiking rates
(Manning et al. 2009), we next explored whether the phase of
beta oscillations modulated the amplitude of broadband gamma
activity (60-120 Hz). In fact, we found significant modulation in
10 out of the 11 electrodes (P <0.05, Rayleigh test and circular-
linear correlation). We did not find consistent differences
between positive and negative feedback for the preferred phases
of this PAC. These results suggest that the AIC encodes feedback
information throughout structured cross-frequency coupling
among delta, beta, and gamma oscillations. Moreover, specific
feedback valence information is encoded via the preferred phase
of the delta-beta PAC.

Beta Oscillatory Activity in AI Modulates mPFC

Since the synchronization of beta oscillations has been recently
associated with feedback projection in top-down processes
(Buschman and Miller 2007; Pesaran et al. 2008; Wang 2010;
Buschman et al. 2012; Bastos et al. 2014), we explored phase
synchrony between the AIC and cortical areas in the medial
prefrontal region. For this, we explored connectivity between
the AIC electrode with the highest response per subjects (during
RAT) and any electrodes located in the medial prefrontal region
(see method for electrode localization, 19 pairs of electrodes,
4 patients, see Fig.2d and Supplementary Figs 7, 9 and 13).
We first computed phase synchrony (i.e., inter-site-phase-
clustering, phase locking value) and found a beta-band synchro-
nization after feedback presentation (Fig. 5a). Synchronization in
the beta band can potentially exert its influence by changing the
firing rate and broadband gamma power in target cortices (Wang
2010). We thus explored whether the phase of beta oscillations in
the AIC modulated the gamma power of target cortical regions.
We found that the phase of AIC beta oscillations significantly
modulated the power of the gamma band activity (0-1 s after
feedback presentation, Fig. 5b). These results provide evidence
for a putative mechanism used by AIC to modulate the activity
of frontal regions.

In order to establish a causal influence of the AIC on mPFC,
we computed the GC (in both time and frequency domains)
between the AIC and the frontal regions that exhibit feed-
back response (0-1 s after the feedback presentation). We also
tested whether these influences during feedback processing
were highest than those during the processing of other relevant
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Figure 5. Functional connectivity between the AIC and medial prefrontal areas. (a) Inter-site-phase-clustering. Color scale represents the PLV. Statistically significant
clusters are highlighted (cluster-based permutation test). (b) The phase of the beta frequency band (15-30 Hz) in the AIC modulates the power of gamma band (40—
100 Hz). Red lines represent the probability of gamma power increase over 3 SD in comparison with the baseline. Black lines represent the permutation distribution
(see Methods). P-values were computed using both the Rayleigh test (top) and circular-linear correlation (down). (c) Frequency domain of the Granger causal influence.
See also Supplementary Figure 10. Shaded areas represent 95% confidence intervals. For all figure, 19 pairs of electrodes, four patients, during RdT.

Table 1 Single trial correlation of Granger causal influence
(AI— ACC) in beta range (15-30 Hz) during PDM task (n=84 trials,
Patient S1)

Slope SE t P
Intercept 0.267 0.063 4.219 0.0001
Feedback valence (positive) —0.01 0.14 —0.07  0.9446
Probability (logit) —0.08 0.029 -2.784 0.0067
Interaction F x P 0.1223  0.06 2.052 0.3323
Payoff —0.249 0.229 —1.09 0.28

stimuli (see Methods). The most consistent influence was a
causal interaction of the AIC to medial frontal cortices (four
out of four patients, P <0.02). In Supplementary Figure 11, we
detail the location of all electrodes in the medial frontal region,
where the AIC causally influenced oscillatory activity. Causal
influences were mainly generated by beta oscillations (15-30 Hz,
Fig. 5c, and Supplementary Fig. 13). Finally, we focused on the
PDM task, since payoffs and the probability of the feedback were
independent. Using single-trial variations in the Granger causal
influence, we explored the information transmitted from the
AIC to the dACC during feedback processing. The variation in
the Granger influence in the beta range mainly correlated with
the probability of feedback valence and did not correlate with
either payoffs or valence per se (Table 1 and Supplementary Fig.
14). Our results suggest that AIC beta activity causally influences
medial prefrontal regions, transmitting specifically an unsigned
prediction error signals.

Discussion

Our results provide evidence for a role of and suggest a
mechanism by mean the AIC process both the valence and the
probability of performance feedback valence. During feedback
signaling consequences of a decision, the AIC is engaged in
structured oscillatory activity. The structure of this oscillatory
activity seems to be related to the encoding/transitions of
different properties of performance feedback. In particular, the

PAC between delta and beta oscillations reflects the valence of
the feedback, while the beta oscillations reflect the coding and
transition of the probability of performance feedback valence
(the probability to obtain a feedback valence other than the
obtained one, i.e., unsigned prediction error) to other cortical
areas.

The AIC has been observed to be involved in high-level cogni-
tive processes, such as task switching, inhibition, and error pro-
cessing (Uddin 2014; Bastin et al. 2016). Previous work shows that
the AIC presents more activity in relation to negative feedback or
error, than to positive feedback (Dosenbach et al. 2006; Ham et al.
2013; Neta et al. 2014; Bastin et al. 2016). Indeed, evidence from
fMRI studies shows stronger AIC activity when an error takes
place than that generated when a salient infrequent stimulus is
detected (Wessel et al. 2012). Based on such evidence, it has been
proposed that the AIC has a role in error awareness (Klein et al.
2013). In contrast, we found that beta oscillatory activity in the
AIC was associated with both positive and negative performance
feedback. In low-difficulty tasks, robust beta oscillatory activity
was associated with errors, or negative feedback. In contrast, in
high-difficulty tasks (i.e. error rate > 30%), beta oscillatory activ-
ity was larger for positive feedback than for negative feedback.

Interestingly, a recent across-task study (Neta et al. 2015)
shows that performance feedback processing activates a brain
network, which includes several of the cortical areas we
described in the analysis of all our patients (Fig. 2d). Contrary
to our results, the study did not find a significant effect of
accuracy in insular cortex activation. This discrepancy may
be due to the fact that most studies typically use tasks with
low error rates (<25%; Dosenbach et al. 2006; Neta et al. 2015).
Importantly, the beta amplitude modulation that we found
across tasks also occurred trial-by-trial within the same task.
That is, positive feedback under challenging trials generated
stronger beta activity than that generated in easy trials during
the same task. Thus, our findings are in agreement with the
notion of an unsigned prediction error or saliency signal. In
other words, the AIC seems to signal the probability of obtaining
a feedback valence other than the obtained one, irrespective
of its specific nature (positive or negative). Thus, a possible
interpretation is that subjects generate an internal signal of
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the expected feedback valency, which is contrasted with the
obtained feedback. Thus, the beta oscillatory modulation can
reflect the unexpectedness of feedback valence. This property,
which has often been generically referred to as salience,
provides support for the view that the AIC is involved in learning.
For instance, BOLD signals reported in AIC have been shown to
be related to both aversive and appetitive learning (Seymour et
al. 2005). Indeed, recent fMRI studies showed that the activity
in AIC is part of a brain network that governs an adaptive
learning rate (McGuire et al. 2014; Jiang et al. 2015). These
studies proposed that AI/IFG encodes the need to change/adapt
the learning rate related to changes in the uncertainty of the
environment. Interestingly, AIC BOLD activity has shown to
correlate with medial prefrontal activations, in the region where
we found significant causal influence from AIC. These medial
frontal regions are thought to be related to the implementation
of subsequent cognitive control (Shenhav et al. 2013). Thus, the
role of the mPFC, as an action-outcome predictor (Alexander and
Brown 2011), may depend crucially on the information provided
by the AIC. Taken together, we propose that the AIC encodes to
which extent the information of performance feedback entails
the need to adapt both the expectations related to future
stimulus but also the behavioral strategy. This interpretation
is consistent with several fMRI studies that showed robust AIC
activity related to cues indicative of changes in either strategy
or difficulty (Dosenbach et al. 2006, 2007).

In addition to the documented role of beta oscillations in
motor control and organization of neuronal assemblies (Engel
and Fries 2010), recent evidence indicates that the synchroniza-
tion of the prefrontal cortex in beta frequency range has a role in
both strategy switching and selection (Buschman et al. 2012), as
well as in the maintenance of cognitive control over time (Bastin
et al. 2014; Stoll et al. 2015). Several EEG studies have shown that
performance feedback, or reward delivery, generates beta oscil-
latory activity, which can be detected in medial prefrontal scalp
electrodes (Marco-Pallares et al. 2008; Billeke et al. 2013, 2015).
This activity correlates with the BOLD signal in both the mPFC
and the IFG (Mas-Herrero et al. 2015). Interestingly, we found that
the amplitude of beta oscillatory activity in the AIC encodes the
probability of feedback valence and relays this information to
the mPFC. This could, in turn, implement adaptive behavioral
changes (McGuire et al. 2014). Moreover, the intrinsic structure of
AIC oscillatory activity, reflected in its hierarchically organized
nested frequencies, encodes other features of feedback. In fact,
we found that the amplitude of beta oscillations was modulated
by the phase of delta waves and that, according to feedback
valence (positive or negative), the preferred phase for this mod-
ulation was distinctive. Prior work has suggested that cross-
frequency coupling is a mechanism through which neuronal
assemblies organize and relay information (Lisman and Jensen
2013; Jensen et al. 2014; Billeke et al. 2017; Figueroa-Vargas et al.
2019). Indeed, in other studies of cortical recordings in humans,
it can be observed that the phase of low frequency organizes the
modulation of high-frequency oscillation amplitude depending
on the kind of visual information processed (Watrous et al. 2015).
Additionally, in prefrontal regions, the PAC between theta and
gamma oscillations is thought to reflect information transmis-
sion about task demands (Voytek et al. 2015) and information
to maintain in working memory (Roux and Uhlhaas 2013). The
strength of PAC between delta and gamma-band activities in the
fronto-parietal network has been related to performance during
an attentional task (Szczepanski et al. 2014). Thus, the organi-
zation of oscillatory activity throughnested frequencies seems

to be a general mechanism by which complex information is
processed and transmitted across the cortex (Staresina et al.
2015; Billeke et al. 2017; Figueroa-Vargas et al. 2019).

Currently, it has been proposed that both beta and gamma
activity can be better understood as a burst-like activity rather
than a sustained oscillatory activity (van Ede et al. 2018).
Although a temporal threshold to separate both activities is not
possible, the inspection of a single trial event (Figs 1b and 2a,b)
reveals that each event is sustained by at least 8-10 beta-cycles
(~500 ms). Despite that, our analysis was not able to clearly
determine the burst or sustained nature of the AIC beta activity.
For the PAC analysis, we used two approaches, one better
designed for a sustained activity (circular correlation, Fig. 4a)
and the other better designed to analyze burst-like activity
(thresholding analysis, Fig. 4b). Interestingly, both analyses are
consistent in revealing that delta-beta relation is independent
of the exact nature of the beta activity. Beyond this discussion,
during top-down modulation of cognitive processing, slow
oscillations (<30 Hz) seem to represent output projections
(Buschman and Miller 2007; Pesaran et al. 2008; Wang 2010;
Buschman et al. 2012; Bastos et al. 2014). Thus, theta to
beta oscillations can serve as a mechanism for interregional
interaction and top-down influence (Donner and Siegel 2011;
Richter et al. 2017). Accordingly, our results indicate that beta
oscillatory activity in the AIC reflects the coordinated operation
of a phase-synchronized network, which involves several
cortical regions, including the IFG, the OFC, and the mPFC
(comprising the dACC). Moreover, our causal analysis showed
that the AIC relays performance feedback-related information
to the mPFC. Such information flow is inversely proportional to
the expectancy of feedback valence, regardless of the specific
feedback valence or the feedback-associated reward. In addition
to the PAC between delta and beta oscillations, we found that the
phase of beta oscillations modulated the amplitude of gamma-
band activity. Previous reports indicate that broadband gamma
modulation is correlated with spiking rates in local neuronal
populations (Manning et al. 2009). Accordingly, we found that the
phase of beta oscillations modulates local broadband gamma
activity, likely reflecting the coordination of endogenous neural
spiking in AIC.

Moreover, the phase of beta oscillations in the AIC modu-
lated the power of broadband gamma waves in other cortical
areas, possibly suggesting that beta synchronization can orga-
nize neural spiking activity in distant cortical areas. Thus, AIC
beta influence over the medial prefrontal region may organize
broadband gamma activity in the target region in a direct way
or through beta phase-phase coupling between the two areas
that modulate beta activity and, in turn, modulates local gamma
power. Interestingly, recent evidence in macaques shows that
top-down beta activity, in fact, modulates gamma forward infor-
mation flux in visual areas (Richter et al. 2017). Hence, we
propose that the AIC generates and transmits the probability
of feedback valence (or unsigned prediction error) information
to the mPFC through synchronization in the beta frequency
band. Thus, our results suggest that locally generated beta oscil-
lations coordinate broadband gamma activity—and putatively
spiking activity—in target cortical areas. As a target region, the
mPFC may integrate the information relayed by the AIC and is
likely to combine it with the input from other cortical areas
in order to allocate cognitive resources to produce subsequent
adaptive behaviors. In spite of the greater signal-to-noise ratio
of intracortical recording, it is important to point out some of
the limitations of our research. The relatively small number of
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paired electrodes of some of the analysis requires the replication
of these results with a broader sample and different experi-
mental techniques. Although we did not analyze any site with
possible epileptic activity, it is not possible to rule out some of
the disorder effects in the results.

In summary, our results provide novel insight for a rhythmic
electrophysiological mechanism by which the AIC participates
in the neural processing of performance feedback. Through a
structured oscillatory activity, the AIC encodes the valence and
probability of feedback valence. In particular, through the gen-
eration of a phase-synchronized network in the beta frequency
range, the AIC transmits unsigned error prediction signals to
medial prefrontal areas, which likely implement cognitive feed-
back control in order to learn and adjust subsequent behavior.
Our results pinpoint an efficient dynamic neural mechanism
for performance monitoring and adaptive behavior that carries
the potential to explain the abundant evidence relating insular
lesions, or insular-related neurological disorders, with disrup-
tions in decision-making, learning, and behavioral adjustment
(Kishida et al. 2010; Uddin et al. 2010; Billeke and Aboitiz 2013;
Billeke 2016).
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