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Abstract
Cities are growing at a fast rate, and transportation networks need to adapt
accordingly. To design, plan, and manage transportation networks, domain experts
need data that reflect how people move from one place to another, at what times, for
what purpose, and in what mode(s) of transportation. However, traditional data
collection methods are not cost-effective or timely. For instance, travel surveys are
very expensive, collected every ten years, a period of time that does not cope with
quick city changes, and using a relatively small sample of people. In this paper, we
propose an algorithmic pipeline to infer the distribution of mode of transportation
usage in a city, using mobile phone network data. Our pipeline is based on a
Topic-Supervised Non-Negative Matrix Factorization model, using a Weak-Labeling
strategy on user trajectories with data obtained from open datasets, such as GTFS and
OpenStreetMap. As a case study, we show results for the city of Santiago, Chile, which
has a sophisticated intermodal public transportation system. Importantly, our
pipeline delivers coherent results that are explainable, with interpretable parameters
at each step. Finally, we discuss the potential applications and implications of such a
system in transportation and urban planning.

Keywords: Mobile phone networks; Urban informatics; Commuting; Non-negative
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1 Introduction
People spend their time not only within places, but also moving from one place to another.
As Charles Montgomery says in his book, Happy City: “City life is as much about moving
through landscapes as it is about being in them” [1]. Some trips are crucial in people’s
lives, such as the trip from home to work, and vice versa. This recurrent activity, called
commuting, has several effects in quality of life, both, positive and negative [2, 3]. For in-
stance, for some people it is the least liked daily activity [4]. Therefore, an understanding
of commuting patterns would provide opportunities to improve quality of life at scale in a
city. Moreover, by understanding commuting, it would be possible to inform public-policy
design, the planning of transportation networks, and correlate commuting to factors such
as health, social habits, exposure to pollution, stress, among others.

Traditionally, commuting has been studied with well-known methods such as travel sur-
veys [5], focus groups [6], and traffic counts [7]. Surveys have a number of drawbacks,
including the lack of repeated observations over time and reporting biases and errors [8,
9]; focus groups may allow for repeated observations, but their sample size tends to be
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very small; and traffic counts are not scalable at the city level. In modern contexts, these
methods are not able to keep the pace of city growth and change, making relevant dynamic
phenomena to be invisible for transportation and urban planners.

The availability of large amounts of digital traces has allowed to study urban phenom-
ena at spatio-temporal granularities that traditional methods cannot. One of these data
sources is the set of billing records from mobile phone networks, known as Data Detail
Records (XDR) [10]. XDR provides a cost-effective way to perform studies about human
behavior [11], because mobile operators already generate, store, and analyze the data for
billing and marketing purposes.

In this paper, we seek to answer the following research question: how to infer the distri-
bution of mode(s) of transportation in commuting within a city using mobile phone network
data? The answer would provide insights to manage, plan, and design urban transporta-
tion systems, urban infrastructure, and public-policy, among other applications. To do so,
we propose an interdisciplinary approach: using methods and tools from Data Science
[12] and Transportation [13], we define a pipeline that is able to infer one or two modes
of transportation chosen for commuting by users.

The main step of our pipeline refers to the analysis of trips inferred from XDR. We fo-
cus on the billing records generated while commuting, which we represent in a waypoint
matrix, similar to document-term matrices in Information Retrieval [14]. We decom-
pose this matrix using Topic-Supervised Non-Negative Matrix Factorization (TS-NMF),
a method that mixes NMF [15] with Semi-supervision [16] through Weak-Labeling [17].
The pipeline extends our prior work: in [18] we proposed a method to infer trips from
XDR, and in [19] we explored how plain NMF behaved when decomposing waypoint ma-
trices.

Here we present the following contributions: (i) A processing pipeline that, given XDR
and auxiliary data commonly available, generates the distribution of mode(s) of trans-
portation usage for commuting in a city; (ii) A case study that evaluates the proposed
pipeline in a city with more than seven million inhabitants and a public transportation
system designed for intermodality; and (iii) A discussion about the implications of using
the proposed pipeline for transportation analysis, on the basis of its explainability.

2 Methods
In XDR, the main unit of analysis is a network event [20], which indicates a billing record
for a device. Such events include calls, text and multimedia messages, and Internet down-
loads. Calls and messages are billed individually, Internet connections are billed in batches.
The number of TCP/IP network packages sent through a tower may be very high, but
billing is performed according to the number of megabytes transmitted. We work with
anonymized XDR data, where each network event contains the ID of the tower, a times-
tamp, and a tokenized device ID. Device IDs are coherent in the dataset, i.e., two events
with the same ID describe the trajectory of the same device.

In transportation, the core unit of analysis is a trip, with its corresponding attributes, e.g.,
trip origin, destination, departure time, traveled distance, purpose, and mode(s) of trans-
portation [13]. Trips can be aggregated into Origin-Destination (OD) matrices, which en-
code the number of trips from one area of the city to another. These areas can be blocks,
neighborhoods, municipalities, among other administrative divisions. Transportation ex-
perts usually work with OD matrices that are representative at the county or municipal
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level, due to the limitations of data-collection methods. For instance, in Santiago, Chile,
the last travel survey is representative at the municipal-level, meaning that, even though
there is individual trip information available, only the municipal-level analysis is repre-
sentative of city behavior.

This paper focuses on a transportation problem: the inference of mode(s) of transporta-
tion for commuting. Since commuting refers to a recurrent, routinary trip, it is possible to
go one level up in the analysis pipeline, and move from trips to commuters. Thus, our main
unit of analysis will be devices used by commuters. From now on, we refer to commuters
or users indistinctively.

To solve the problem, we propose a pipeline that takes XDR as input, generates a list
of commuters, with home and work location, and their assigned mode(s) of transporta-
tion. The result can be a single mode or a combination (e.g., bus and metro). Figure 1
shows a schematic view of the problem. Starting from XDR, an algorithm infers trips for
each device (Section 2.1). These trips are then used to identify home and work locations
for a device, allowing to assign trip purpose, and thus, effectively labeling commuting
trips (Section 2.2). Next, each tower is labeled according to their proximity to relevant
urban/transportation infrastructure, using crowd-sourced geographical data and public
transportation network feeds (Section 2.3). With the set of non-pedestrian commuting
trips, a user-tower matrix is built, according to the towers that users connected to while
moving. Using the tower labels, some users that do not perform pedestrian trips can be
weakly-associated to a mode of transportation. These users are considered as seeds for
a semi-supervised model (Section 2.4), which, is next used to group users into modal
clusters (Section 2.5). In those cases that do not have enough information as input for
the model, we identify whether the unlabeled home/work trajectory is pedestrian (Sec-

Figure 1 Example of a XDR trajectory for a trip from home to work. The trip is intermodal, with several stages:
bus, metro, and bus. The red dotted line depicts the trajectory built by following the user connections. The
assignment of towers to each XDR event is approximated by a Voronoi tessellation of the space according to
the tower positions. Some mobile phone towers are close to the route followed by the user, however, the user
does not necessarily connect to all of them (e.g. his/her device could connect to towers far from the route)
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tion 2.6). Finally, by aggregating all commuters and their labels, we are able to estimate
the distribution of usage of mode(s) of transportation in a city, also known as modal par-
tition in transportation terms (Section 2.7).

The remaining part of this section explains each stage of the pipeline in detail.

2.1 Trip inference through activity detection
This stage models the task of inferring trips for a given spatio-temporal trajectory using
computational geometry techniques and transportation rules. A trip is considered one of
the many activities that can be performed within a day. Let J be the set of tuples for device
u at a given day:

Ju =
{(

Ai, (tiO, tiD), (piO, piD), Ii
)}

. (1)

In the tuple i, Ai is an activity type, pi (and ti) are the positions (and times) associated to
the origin (piO) and destination (piD) of Ai, and Ii is the set of intermediary points in the
trajectory from piO to piD. Activities can be of types trip, stay, and unknown (i.e., activi-
ties that cannot be classified due to lack of data). The intermediary points are denoted as
within-trip waypoints.

To identify activities, we assume that, during a day, a set of turning points exist [18].
A turning point is a moment of the day, at a specific position, where the device owner
started to perform an activity (and, by definition, ends performing a previous activity). To
build the list of turning points, we define the following vector per each user u:

�u =
[
(t0, p0), (t1, p1), . . . , (tn, pn)

]
, (2)

where each element in �u corresponds to an event of u in a day, with a timestamp t, and a
tower position p. These vectors can be projected into a 2D plane: the x-axis is the elapsed
time during the day, and the y-axis is the accumulated distance from the starting point of
the day:

di =
i∑

j=1

E(pj, pj–1), (3)

where E is the Euclidean distance function between two points in space.
Next, we build a spatio-temporal trajectory over the turning points of �u:

Tu =
[
(ti, di) : ∀i ∈ [0, n]

]
. (4)

To identify turning points, we simplify Tu into Su using the Visvalingam–Whyatt line sim-
plification algorithm [21]: the points identified as relevant by the algorithm are considered
turning points. The algorithm assigns a weight to each point in the trajectory, and keeps
only those with a weight above a given threshold. The weight of a point is defined as the
Euclidean area formed by the triangle of the previous, current, and following point. The
greater the weight, the greater the importance of the point. By definition, the starting and
ending points of the trajectory have infinite weight, and thus, under any threshold they
are always present in the result of the algorithm. Note that prior work [18] used a different
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algorithm (Ramer–Douglas–Pecker), however, Visvalingam–Whyatt has a threshold with
interpretable units, namely, distance multiplied by time. The points from Tu not included
in Su are saved into Ii as waypoints.

The points in Su are chained to build a list of segments that represent activities. To do
so, we employ a set of rules. Unknown segments are those where the total covered dis-
tance is greater than 50 kilometers. In those cases we cannot distinguish between trips
and unknown situations, such as when mobile phones are connected to distant towers
that are on top of a hill, or when the mobile number is associated to a vehicle (e.g., a taxi).
While these are indeed displacements in time and space, they are so large for the city
scale that the dataset may have missed inter-events (e.g., due to connection to WiFi net-
works). Stays are stationary activities. Some stationary activities involve displacements
(e.g., working/studying in a big campus), but the speed of movement is much slower than
when performing a trip. Thus, if there is a distance displacement, but the time is greater
than 180 minutes, we still identify the activity as a stay. Finally, trips are segments that are
not unknown or stay.

We merge contiguous segments tagged with the same activity. Two or more segments
are merged into an activity by keeping the first time and position in the segment as origin,
and the last time and position in the segment as destination. Additionally, there is an spe-
cial case when two trips surround a stay. If the duration of the latter is lesser or equal than
15 minutes, its activity is changed to trip, and merged accordingly. This scenario corre-
sponds to situations when users in public transport make a connection, or when vehicles
are stuck in traffic.

After merging all activities, for each user there is daily set of activities Ju for each day in
the dataset. Note that the turning points of merged activities are saved as waypoints in Ii.

2.2 Trip purpose
A commuting activity is a trip within two stays: one at home and one at work. This implies
that, for a given device, we need to infer these two important locations: home and work.

In general, people follow daily routines where they spend most of the nights at home,
and most of the hourly days at work in business days. This enables to infer these important
locations in several ways, such as heuristics [22] or pattern recognition [23]. Given that
we seek for interpretability in all stages of the pipeline, we implemented the heuristics
defined in [22]: home is the most frequent area with stays at night, and work is a frequent
area with stays at work hours that is more distant than others. This procedure allows to
add an additional label to each trip in a set of activities Ju: whether it is a commuting trip
or not.

2.3 Tower labeling using urban infrastructure data
In parallel to trip inference, we associate towers to modes of transportation as a way to
provide weak labels to the inference process.

A tower provides connectivity to the devices around it, however, those devices may be
within different contexts. For instance, the people connected to a tower installed within
a metro station are more likely to be commuting than the people connected to a tower
within a park. In a similar way, the people connected to a tower near a highway are more
likely to be commuting by car than people connected to a tower in a main street, where
several bus services are available. Likewise, car drivers are more likely to be on local streets
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than in main ones [24], and passenger loads imply that, even if there are more cars than
buses in main streets, a device in a main street with bus routes is arguably more likely to
be in a bus than in a car. Regarding bikes, we leave them out of analysis. We explain the
reasons in the Future Work section.

Having these assumptions into account, we associate each tower to one or more modes
of transportation according to their proximity to urban infrastructure: highways and sec-
ondary streets are associated to cars; primary streets, to buses, if there are available bus
routes; and bus corridors, to buses. Towers near metro over surface are also associated to
metro. This last distinction is relevant as the underground metro network has dedicated
towers identified as such. As result, for each mode of transportation m, we have a set of
towers Tm that contains the corresponding associated towers. To increase distinction be-
tween several modes of transportation, we filter each Tm by removing towers that belong
to more than one set.

2.4 User modeling from trajectories
Given the granularity of XDR, identifying the mode(s) of transportation of a single trip is
unlikely. Consider a trip that lasts 45 minutes: according to a typical granularity of 15 min-
utes between records, in the best scenario this trip has three events: a trip start, a within-
trip waypoint, and a trip end. Hence, to identify the mode(s) of transportation, we have
only one event: the within-trip waypoint. To avoid this limitation we propose to aggregate
commuting trips, which, by being recurrent, allow to have a complete picture of what is
the urban infrastructure associated to user routines.

The first step is to build a waypoint matrix W , defined as:

wi,j =
# of within-trip events of user ui at tower tj

# of within-trip events of user ui
. (5)

This schema is equivalent to the row-wise normalized document-term matrices found in
Information Retrieval [14], where users are the equivalent of documents, and towers are
the equivalent of terms.

Our hypothesis is that, by decomposing W with matrix factorization, we will effectively
arrange towers into clusters (or latent components) according to their co-occurrence in
users’ daily routines. To do so, we decompose this matrix into two:

W = A × B, (6)

where A is a |u| × k matrix that encodes k user latent features for |u| users, and B is a
k × |t| matrix that encodes k latent tower features for |t| different cell towers. As ma-
trix decomposition method we work with Non-Negative Matrix Factorization (NMF)
[25, 26], in which by definition all wi,j ≥ 0. We choose NMF over other matrix decom-
position methods such as SVD [27] (usually used to perform Principal Component Anal-
ysis or PCA [28]) because it has shown superior performance for the task of clustering
[19, 29–31]. Moreover, the non-negativity constraint results in more interpretable latent
features, since any user (rows) or tower (columns) in the W matrix can be represented
as a weighted sum of parts [25, 29], all positive or zero. Then, using NMF, the matrix W
is decomposed into two non-negative matrices, which gives a lower rank approximation
for W , such that W ≈ A × B [32]. For solving NMF, the problem has been formulated in
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Figure 2 Depiction of the Non-Negative Matrix Factorization (NMF) stage of the proposed pipeline. We built
aWaypoint Matrix W where rows encode users and columns encode towers, in analogy to document-term
matrices. A cell inW denotes how frequently its corresponding user connects to its corresponding tower
while commuting. The NMF decomposesW into two matrices that can be interpreted as the association
between users and latent components (A), and towers and latent components (B). To interpret these latent
components as modes of transportation, we used a Semi-Supervised approach to perform the NMF

several ways (e.g., Frobenius and Kullback-Leibler losses [25, 31]), and different methods
have been proposed to solve it (e.g., multiplicative method, coordinate descent, etc. [33]).
In our work, we start with the traditional formulation based on the Frobenius norm in
order to further extend it to incorporate constraints based on our data. Figure 2 shows
a diagram that explains the rationale behind using NMF to cluster users into modes of
transportation with NMF.

NMF can be formalized as the following optimization problem:

min
A,B

‖W – A × B‖F , (7)

subject to A and B be non-negative, where number of rows in A and the number of columns
in B correspond to the desired lower-rank approximation k. In the original algorithm, the
parameter k must be chosen manually, and its value should be decided jointly between
data scientists and domain experts. In prior work [19], we found that, for several values of
k, the clusters determined by NMF were of two types: urban areas delimited by contiguity,
and transportation networks. As such, there is potential on guiding the algorithm to focus
only in transportation features. To encode this prior information in the NMF algorithm,
we use a semi-supervised approach named Topic-Supervised NMF (TS-NMF) [16]. With
this method, we are able to provide examples to the algorithm about some users that we
already know to which cluster they belong. This information is based on how we associated
towers to modes of transportation in the previous step. Thus, we propose to use k = 3,
where the clusters are metro, bus, and car. Based on MacMillan et al. [16], the previous
formulation now incorporates constraints of users and modes of transports in a matrix L,
and thus the original NMF formulation extends to:

min
A,B

∥∥W – (L � A) × B
∥∥2

F , (8)

where � is the Hadamard product operator. The matrix L contains the user labels, defined
as:

Lu,m =

⎧
⎨

⎩
1, if P(u|m) ≥ h,

0, otherwise,
(9)
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where h is a threshold probability (e.g., 0.8). The factor P(u|m) is the probability of user u
being strongly associated to a specific mode of transportation m, given the set of towers
Tm, defined as:

P(u|m) =
∑

t∈Tm

wu,t . (10)

If other prior information is known, such as socio-economic information (e.g., census data)
of the area in which user u lives (inferred in a previous step), then P(u|m) can be updated,
for instance, using Bayes Theorem.

2.5 Inference of mode(s) of transportation
In this step we work with the matrix A, which contains the user associations with latent
components. We first normalize the matrix row-wise, to convert it into a matrix A′ of
probabilities, such that au,m is the inferred probability of user u choosing mode of trans-
portation m for his/her commuting.

Since the several values of au,m lie in the continuous range [0, 1], we still need to assess
the decision boundaries to classify u as user of specific modes of transportation. One way
to interpret these values into a label such “metro” or “bus and metro” is by performing an
additional clustering step on these associations. This step requires a manually specified
parameter k′, which should be higher than the number of latent components k from the
previous stage; otherwise, intermodality will not be detected. Hence, we use k-means [34]
to obtain modal clusters, which effectively quantize the rows of A′.

After quantization, a transportation expert may examine the centroids of each modal
cluster, and then may proceed to label them, including his/her knowledge about the city
into the model. For instance, a centroid {metro : 0.6, bus : 0.3, car : 0.1} may be labeled
either as “metro” or “metro and bus,” depending on how the users closest to that centroid
distribute in the city. Then, users are assigned a modal cluster label based on the expert’s
interpretation.

As result of this step, users have a tag that identifies their mode of transportation usage
for commuting.

2.6 Identification of pedestrian trips
It is possible that some users do not generate within-trip events due to how they consume
data from the Internet, or due to short trips that do not allow the billing cycle to capture
events in the middle of a trip. In this step we try to classify those users that were not
classified into specific modes of transportation into pedestrian commuters. Those users
that were not classified into either are flagged with a null value.

Pedestrian trips have decision variables that differ from other modes of transportation,
including distance, available infrastructure, and safety [35]. Of these factors, distance is
arguably the most critical. As such, we label users as pedestrian or not based on their
distance from home to work. This distance may be manually selected by knowing the typ-
ical walk distances in a city, through transportation studies [36] (which indicates a typical
maximum of 750 meters for pedestrian trips), or fitted using regression if there is access to
a labeled set of trips. In both cases, care must be taken due to the characteristics of mobile
phone network data: trips have starting and destination towers, not specific locations.
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2.7 Estimation of the modal partition
At this stage, for each commuter we have an assignment of a modal cluster, or a pedes-
trian flag, or a null flag. We discard those users without modal cluster or pedestrian
flags, as we cannot classify them into a specific mode of transportation. Then, we ag-
gregate users to estimate the modal partition, i.e., the transportation term to denote
the distribution of mode of transportation usage. Particularly, we follow two aggrega-
tion strategies: first, according to home locations; second, according to home/work lo-
cation pairs into an Origin-Destination (OD) matrix. Here, location can be any adminis-
trative unit; surveys are typically representative at the county or municipal level. These
aggregations are commonly used by transportation experts in their day to day work [13],
and, with this pipeline, we expect to generate data that is coherent and comparable to
those collected through surveys, with greater granularity levels—either spatial, temporal,
or both.

3 Datasets and initial steps of the pipeline
In this section we describe the datasets employed in our case study, and the results up to
the tower labeling stage of the pipeline. Our case study is performed in the urban area of
Santiago, the capital of Chile. Santiago is a city with almost 8 million inhabitants, with 35
administrative units denoted municipalities within its urban area. For a description of its
socio-economic characteristics in the same period of study, please refer to previous work
using similar datasets [37, 38].

Santiago has a public transportation system named Transantiago [39]. By design,
Transantiago provides feeder (bus) and trunk services (bus, metro), thus, given the ex-
tension of the city (837.89 km2), it is expected that a relevant fraction of trips includes
more than one mode of transportation.

We worked with the following datasets: (i) an anonymized XDR from Telefónica Movis-
tar, the largest operator in Chile (30% market share), dated in August 2016; (ii) the socio-
economic national survey CASEN held in 2015 in Chile, representative at the municipal
level, which we use to build prior probabilities; (iii) an OpenStreetMap (OSM) dump of
August 2016, and a General Transit Feed Specification (GTFS) of Transantiago for August
2016, which we use to associate towers to modes of transportation; and (iv) the travel sur-
vey held in 2012 in Santiago, Chile, representative at the municipal level, which we use to
compare our results, and to define the areas of home and work locations in the pipeline.

3.1 CASEN survey
As prior information we used the CASEN (CAracterización Socio-Económica) survey. This
survey is held every two years, and the 2015 edition is the last one released at the time of
reporting this work. One of its questions is: What is your choice of mode of transportation
to go to work/study? We used the answers to build a set of prior probabilities of using public
transportation or cars (note that the answer “public transportation” does not specify bus,
metro, or the potential usage of both).

This survey, including its expansion factor, considers a commuter population of
2,732,290 inhabitants in the municipalities under consideration. Figure 3 shows the modal
partition per municipality, sorted by car usage. Figure 4 gives geographical context to this
partition, and also depicts the segregation of the city through the distributions of pub-
lic transportation (61.95% of trips) and car usage (22.25%). Note that non-motorized and
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Figure 3 Relative distribution of mode of transportation usage (modal partition) per home municipality in
Santiago, according to the CASEN survey. The municipalities are sorted with respect to car usage. The public
transport category contains buses, metro, and the connections between both modes

Figure 4 Spatial distribution of mode of transportation usage (modal partition) per home municipality in
Santiago, according to the CASEN survey. The maps show how public transport and car usage reflect the
socio-economic segregation of the city

other modes (e.g., bikes) have a small share of the distribution. In addition to the lack of
suitable infrastructure in the city that would allow to weakly-label users, this is one of the
reasons we have not included these modes in our model. We discuss this further in the
Future Work section.

3.2 Travel survey
To evaluate our model we used the Santiago Travel Survey held in 2012. It is the most
recent travel survey available for the city (the previous one was from 2002). We considered
the commuting trips of 15,116 respondents, who, after expansion with the survey weights,
represent a population of 2,909,352 inhabitants. This number is similar to the expanded
sample from the CASEN survey.

The travel survey defines a set of Traffic Analysis Zones, which have a finer spatial gran-
ularity than municipalities (there are 740 in the urban area under study). As unit of home
and work locations we used these zones, depicted in Fig. 5. They are similar to census
tracts, but have into account important factors for urban and transportation planning,
such as floating population. Additionally, using zones allows to respect customer privacy,
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Figure 5 Municipalities in the urban area of Santiago, Chile (black border), and Traffic Analysis Zones under
study (grey border), used to assign home and work locations to commuters

Figure 6 Maps of urban features analyzed in the algorithmic pipeline: the network of cell phone towers in
the city, both under consideration and discarded (e.g., indoor towers); the street network, particularly
highways and primary streets, from OpenStreetMap (OSM); the metro network, both, underground and over
surface, also from OSM; and the set of labeled towers with respect to mode of transportation, according to
their proximity to urban features and GTFS

and also improves classification. For instance, due to network congestion it is possible that
a device may connect to different towers through several days, even when the trajectory
followed by the device is similar. Conversely, the aggregation of towers into zones show
less variability. Moreover, since zones respect administrative boundaries, there is a clear
mapping between zones and municipalities.

3.3 Urban context: towers, OpenStreetMap and GTFS
The mobile operator has 1374 mobile phone towers in the city. Of them, 787 are rele-
vant for this study, as we discarded towers that were installed in pedestrian streets and
indoor contexts (e.g., hospitals, malls, offices, etc.). Figure 6 shows the spatial distribu-
tions of towers, the street and metro networks of the city, and the association of tow-
ers to modes of transportation. The urban networks were obtained from an August 2016
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dump of OpenStreetMap (OSM) data. The association to modes of transportation used
two sources of information. On the one hand, some towers have meta-data that allow to
associate them to urban networks, e.g., underground metro towers have a “Metro” pre-
fix in their names, and some highway towers have “Autopista” (highway) prefix in their
names. On the other hand, we associated towers according to their proximity to the ur-
ban network obtained from OSM, considering a threshold ratio of 250 meters. For trunk
buses with routes in non-bus corridors, we used the GTFS dataset, which contains 376
bus routes. We considered the same threshold of distance to these routes when associat-
ing towers.

3.4 Trip inference, home and work location, and OD matrix
The XDR dataset contains all clients with data plans of the mobile operator. Both types
of users, contract and pre-paid, are considered. After executing our pipeline, there were
662,665 commuters with a valid modal cluster of pedestrian flag.

Figure 7 displays the spatial distribution of inferred home/work locations in the city.
To validate our home location estimation with the CASEN distribution, we estimated the
Spearman rank-correlation coefficient ρ , where a value of ρ = 0 indicates no correlation;
ρ = 1 indicates perfect positive correlation of the ranks in the data; and ρ = –1 indicates
perfect inverse correlation. The result was a coefficient of ρ = 0.71 (p < 0.001). While the
correlation is high, it shows that there is non-negligible deviation. This deviation could
be alleviated by weighting users based on their residential distribution. Since the scope of
this paper is to provide a method to estimate the modal partition of the city, we leave this
weighting for future work.

Figure 7 Heatmaps of home and work locations (based on traffic analysis zones), inferred from XDR data. The
work locations map shows how commuting destinations are concentrated in specific areas of the city. The
density was estimated using Kernel Density Estimation. Note that to ease interpretation the first level of the
estimation has been omitted, as it covers the remaining areas of city
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Figure 8 Origin-Destination (OD) matrix from XDR-inferred commuting trips (left). Rows are home
municipalities, columns are work municipalities. The matrix on the left is row-normalized and then multiplied
by 100 to ease interpretability. The matrix on the right shows the difference with an OD matrix built from the
Santiago Travel Survey held in 2012. Each cell in this second matrix is colored with a divergent color palette:
grey cells show similar values, orange cells depict OD pairs where XDR infers more trips, and purple cells
depict OD pairs where the Travel Survey reports more trips

Regarding work locations, which seem to concentrate on few municipalities, there are
several factors that explain this result, including the segregation of the city. These munic-
ipalities are characterized by the presence of civic districts, business districts, educational
institutions, health institutions, parks and recreation areas, and shopping malls [38]; this
explains their prominence on commuting patterns. Destination analyses from other data
sources reveal similar results [40, 41]. In fact, when we aggregate commuters into an OD
matrix, and compare the results with the matrix from the travel survey, we observe that
the differences concentrate on intra-municipality trips. Figure 8 shows this analysis: the
matrix on the left is the XDR OD matrix, row-normalized and multiplied by 100. One
can see that intra-municipality trips are common, and that three municipalities concen-
trate a majority of the rest of commuting trips: Santiago Downtown, Providencia, and Las
Condes. The matrix on the right depicts the difference between the XDR OD matrix and
the one built from the travel survey. Purple cells indicate OD pairs where we observe less
trips than in the survey; orange cells, where we observe more trips; and grey cells show
a similar proportion of trips. To evaluate how similar are our results to the travel sur-
vey, we estimated the Spearman correlation with respect to the cells in which the travel
survey reports trips: 904 of 1156 matrix cells. As result, there is a coefficient ρ = 0.77
(p < 0.001), which indicates that the model results are highly similar to what the survey
indicates.

To test whether the distribution of trips is the same, we estimated the Mann–Whitney
U statistic, a non-parametric test used to determine whether two independent sam-
ples were selected from populations having the same distribution. For the entire set of
trips, U = 325,489 (p < 0.001), which means that the distributions are statistically differ-
ent.

Importantly, it is possible to explain the two most important differences between the
two matrices. On the one hand, the diagonal is clearly underrepresented in XDR, mainly
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due to the tower distribution. As seen on Fig. 6, the spatial distribution is not uniform, and
many municipalities have a low density tower network. The network is denser in places
where more people dwell during the day: Santiago Downtown, Providencia, and Las Con-
des.

4 Modal partition results
In this section we report the results of the later stages of the pipeline. First, we describe the
number of labeled users according to their probabilities of using a mode of transportation,
P(u|m). In total, we associated 67,559 users to metro, 79,770 users to cars, and 55,545 to
buses. As threshold values we used a distinct one for each mode: the 0.9 quantile of the
estimated associations according to the waypoint matrix. For each user, we updated their
prior probability for each mode with the distributions from the CASEN survey. We did
so using the Bayes Theorem. As threshold for identification of pedestrian commuting, we
considered a maximum distance of one kilometer.

After applying the TS-NMF method, we obtained the A (user-component) and B (tower-
component) matrices. Figure 9 displays the spatial distribution of towers according to
their association to each component or mode of transportation. One can see that, even
though the set of labeled towers was not extensive (cf., Fig. 6), the model propagated
the influence of each mode to other towers, by considering the user labels in L. For
instance, in case of the metro component, the metro network is clearly depicted, as
well as near towers, and towers near bus routes that are used as feeders for metro ser-
vices.

The matrix A contains the association of users and the mode of transportation com-
ponents. However, these associations lie in a continuous space, and thus, we needed to
discretize them using k-means. We used k = 4, with the aim of finding a modal cluster for
each mode of transportation, plus one that represents metro and bus. We assumed that
metro and car, and car and bus were not needed, because these are not common combi-
nations of mode of transportation in the city. Figure 10 shows the centroids of each modal
cluster.

Figure 11 displays the spatial distribution of home locations, per mode of transportation,
based on the modal clusters. Since the home location was performed at the zone level,

Figure 9 Spatial distribution of the column-normalized tower-component matrix B. Each map visualizes a
column of the matrix, i.e., the tower associations to each mode of transportation. Each tower is depicted as a
purple circle with a size that is proportional to its corresponding association
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Figure 10 Depiction of themodal clusters obtained after applying k-means to the user-component matrix. In
this visualization, each column contains the centroid coordinates of its corresponding modal cluster

Figure 11 Heatmaps of home location (based on traffic analysis zones) with respect to mode of
transportation, estimated with Kernel Density Estimation. Note that to ease interpretation the first level of the
estimation has been omitted

one can see subtle differences within municipalities. Figure 12 shows the modal partition
per municipality, sorted by car usage. One can see that the shape of the car distribution
is similar to the one from CASEN (cf., Fig. 3), however, the order is not the same. The
difference in the distribution with respect to home municipalities is shown on Fig. 13.

Figure 14 shows the differences between the inferred OD matrices and the correspond-
ing ones from the Travel Survey. One can see the XDR OD matrix for each modal cluster
(top row), the differences with the Travel Survey OD matrix (middle row), and the distri-
bution of the differences using Kernel Density Estimation (bottom row). One can see that
the highest correlation with the survey is the one for metro trips, which is expected, as
underground stations have their own towers. It is interesting that pedestrian trips have a
high correlation too, even though a non-negligible amount of pedestrian trips is not in-
ferred in our data (2.37% versus 10.19% prior from CASEN). There are three observable
patterns in the difference matrices. First, bus, car, and pedestrian matrices exhibit less trips
in the diagonal than in the travel survey. This was discussed earlier, when we compared
the global trip matrix. Second, for metro trips, we observe more trips than expected in
the Santiago Downtown, Providencia, and Las Condes municipalities. This pattern also
repeats from the previous analysis. Third, the metro and bus combination shows the op-
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Figure 12 Relative distribution of XDR-inferred mode of transportation usage (modal partition) per home
municipality in Santiago. The municipalities are sorted with respect to car usage

Figure 13 Spatial distribution of the differences of XDR-inferred mode of transportation usage with the
modal partition from the Travel Survey. A divergent color palette was used to fill each municipality: grey
municipalities exhibit similar values to those from the Travel Survey; orange municipalities have more
XDR-inferred trips than in the survey; and purple municipalities have less XDR-inferred trips than in the survey

posite behavior: there are less trips than expected in the three municipalities that attract
more trips, and more trips than expected in the diagonal. Arguably, both aspects can be
explained. On the one hand, the intra-municipality trips may be shorter, and thus, com-
muters may have a varied set of public transportation routes to choose from, including
bus or metro. On the other hand, the trips to the most frequent destination municipalities
may have shifted from intermodal trips to single-modal ones, as Transantiago is designed
for multiple boardings, but people may find more value in a single, longer trip, where seat
availability is less uncertain [42].

In the bottom row of Fig. 14, we explored the behavior of the model by analyzing the
differences as residuals of the pipeline. One can see a distribution with high kurtosis cen-
tered in zero; such fat-tailed distributions imply that there are many similar cells in both
matrices, but also some with extreme differences.

Table 1 summarizes the results, in terms of modal partition, Spearman rank-correlations,
Mann–Whitney U statistical tests, and means and standard deviations of residual analysis.
As result, the XDR modal partition, even though similar for all modes of transportation
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Figure 14 Top row: Origin-Destination (OD) from XDR-inferred trips for each modal cluster. Middle row:
difference of XDR-inferred OD matrices with those from the Travel Survey, using a divergent color scale to
understand where the matrices differ. Bottom row: distribution of the differences in the middle row,
estimated with Kernel Density Estimation

Table 1 Summary results from our proposed pipeline. Each row is a modal cluster or choice of one
or more modes of transportation for commuting trips. The Travel Survey column shows the
distribution of these modes according to collected data in 2012. The XDR column shows the inferred
distribution used our methods. Since the Travel Survey does not contain trips in all possible
Origin-Destination (OD) pairs, the third column shows the number of comparable pairs for
evaluation. We compared the Spearman rank-correlation coefficient ρ for each modal cluster to
evaluate coherence between inferred and known commuting flows, and performed the
Mann–Whitney U test to measure whether both distributions were the same. Results indicate a high
level of similarity but statistically different distributions. Legend: ∗ : p < 0.05; ∗∗ : p < 0.01; ∗∗∗ : p < 0.001

Mode of
Transportation

Travel Survey XDR Comparable
OD-Pairs

OD ρ OD U OD Res. μ OD Res. σ

Bus 23.69% 21.67% 585 0.63∗∗∗ 171,055 0 4.42
Metro 8.43% 23.90% 225 0.68∗∗∗ 23,692 0.69 7.12
Metro & Bus 14.38% 30.07% 492 0.59∗∗∗ 105,465∗∗∗ 0 5.48
Car 29.60% 22.00% 652 0.60∗∗∗ 198,109∗ 0 4.82
Pedestrian 23.40% 2.37% 126 0.59∗∗∗ 6408∗∗ 0 5.75

(correlations range from 0.59 to 0.68), exhibits different distributions to what is expected
from the travel survey, except for unimodal public transportation, where the U test was
not significant.

5 Discussion
We presented a method to infer mode of transportation usage in a city, having mobile
phone network data as input. We tested it in a big city with an intermodal transportation
system, and found that results are coherent with what would be expected from known
commuting flows in the city. Care has to be taken when analyzing the differences in the
inferred distributions with travel surveys, as surveys have their own drawbacks. As such,
we performed a descriptive case study where we provided plausible explanations of these
differences.
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In terms of implementation for planning purposes, transportation planners work with
models that, in addition to trips, work with features at originating areas, such as home lo-
cations. In this aspect, we are aligned with their way of work. We have worked closely with
the transportation agency from the government to align our methods with their needs,
however, there is still a long way ahead, as this pipeline still needs short-term improve-
ments. A first step into extending our pipeline would be the extension for non commuting
trips. Other kind of trips are less predictable than commuting; conversely, tower associa-
tions do propagate, as the transportation network is the same regardless of trip purpose.
Hence, trips can be labeled even if they are not commuting trips, provided that they have
enough within-trip events that allow to find an association to one of our modal clusters.
One would ask whether this extension needs as much input data as our case study. We
have tested the method with 60K users and two weeks of XDR (as in [19]), and results are
comparable. Still, consider that the travel survey expands to almost 3M users with 15K re-
spondents. Moreover, applying the model to an unobserved user is straightforward using a
matrix projection. In case of tower network changes, the answer varies. A radical change,
for instance, through the installation of new towers within a new metro line, is harder to
implement, as it will depend on whether they superimpose with existing towers or not.
Incremental update of NMF models is an active research line that could be explored to
solve this problem [43].

An important implication of our work is related to explainability and transparency. NMF
is considered an explainable model, mainly because of its direct interpretation as learning
parts of an object. Parts which, in our case, are the several modes of transportation that
comprise commuting trips. In our previous work we showed that plain NMF exhibits this
behavior, particularly when compared to Principal Component Analysis [19]. However,
our pipeline is more explainable than just NMF, because every step provides an explainable
algorithm or method with known units and procedures. Arguably, by checking which OD
pairs or municipalities the model differ from the expectations, it is possible to infer which
step/parameters need tuning. In our experience, this lack of black boxes has allowed us
to communicate the model to transportation experts and to other roles involved in policy
making and planning, as well as to define alternative sources of input. For example, if a
municipality has a low share of intra-municipality trips, a custom, less expensive survey
or a different dataset could be used.

Finally, potential applications of this method include the definition of time-specific OD
matrices, which would enable the evaluation of transportation and urban interventions
in a city: (i) the estimation of fare evasion in buses, which is high in Santiago [44], by
comparing our bus and metro matrices with those derived from smart-card data [40];
(ii) the study of walkability [45], by focusing on the pedestrian trips found; and (iii) the
correlation of mode of transportation usage with several urban characteristics, including
pollution, safety, crime, among others.

5.1 Future work
We devise two research lines. The first one is the inclusion of bikes into the model. In cities
like Santiago the cycling infrastructure is not massive, and thus, labeling towers based on
proximity to bikelanes did not produce meaningful results. To be able to include bikes, we
could resort to non-traditional data sources like logs from bike applications, but these can
only be accessed at each application provider. Furthermore, cyclists may not have regular
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routes, and they choice of commuting mode may change day to day due to several factors
[46].

The second line of research is the disaggregation of car trips. In its current form, cars
include private cars, cabs, and shared cabs, and potentially bikes. It is not clear whether
including this information in the prior probabilities is enough, and the raise of ride-hailing
applications, such as Uber and Cabify, blur the line in this aspect.

5.2 Scope and limitations
Even though we proposed our model towards transportation planning, critics may rightly
say that our results do not conform to those of the travel survey, or that it depends on prior
probabilities to be known.

With respect to the comparison with the Travel Survey, we expected that there would
be important differences. The tower distribution and the changes in the city since the sur-
vey was collected, are factors that the model doest not consider. Additionally, our model
is based on assumptions at every level; a relevant one for this discussion is that cars are
more prominent in secondary streets than feeder buses. This is arguably true, particularly
in richer areas, and where it is not, the prior probabilities solve the problem. Thus, the de-
pendence on prior probabilities is not actually a limitation, but a feature of the model that
allows to include such assumptions. Perhaps a limitation would be the actual estimation
of such probabilities. In this work we built them from a survey with municipal representa-
tivity, that is by itself costly. However, since we just need the mode of transportation dis-
tribution, the prior probabilities could be manually specified by transportation experts, or
through non-traditional datasets, such as smart-card data [40]. Other approaches would
include the use of scaling parameters to solve the issue [47].

A potential source of bias is the market share of the mobile operator. Since the data is
anonymized, it is not possible to weight users according to their socio-economic status. To
solve this, we estimated the modal partition at the municipality level, and performed our
analysis with row-normalized matrices. As the scope of this paper is to provide a method
to infer mode of transportation, rather than generate a balanced dataset, we leave this for
future work when implementing our proposal within applied contexts.

6 Related work
Mobile phone network data (XDR and other types) has enabled a flurry of studies about the
laws behind behind human mobility [48, 49], as well as behavioral and societal analyses
[11]. The interest in XDR is not only theoretical, it also provides a cost-effective way of
understanding behavior in developing and emerging countries [50], which may not have
institutional or economical means to gather data.

In our context, mobile phone network data has been used to infer trips and to aggre-
gate them into OD matrices [18, 20, 22, 51, 52]. Some of these approaches go as far as
expanding the sample to be representative of the population, for instance, by incorporat-
ing other sources of data, such as traffic counts [51]. However, XDR has not been used to
effectively include mode(s) of transportation into OD matrices. On the one hand, current
approaches to infer mode(s) of transportation make naive assumptions; for instance, it is
assumed that trips are unimodal (i.e., one mode of transportation per trip), that there are
only two types of motorized transportation (car and public transportation, usually bus),
and that average vehicle speed follows a bimodal distribution [53, 54]. The bimodality as-
sumption is feasible [55], however, it has two important problems. On the one hand, it is
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not applicable in congested cities, in cities with more than two main modes of transporta-
tion (e.g., availability of metro), or where intermodality in trips is common. The variability
of travel times is a current research line for transportation experts [56], showcasing how
such assumptions based on time (and, thus, on speed) may not be desirable for complex,
growing cities like Santiago. On the other hand, XDR data is comprised by several types
of billing records, including several granularity levels. For instance, some XDR datasets
include triangulated device positions instead of towers; others may have temporal delays
in event timestamps [23]. In our case, we use an arguably low granularity XDR stream: an
average of 15 minutes between events, and tower-based positions. This granularity hin-
ders the estimation of variables that are used in previous works: travel time [53] and speed
[54].

A different way of approaching the problem of mode inference is by analyzing trip routes.
Using GPS data, the inference of mode(s) of transportation is a solved problem, as it pro-
vides acceleration patterns and followed routes [57, 58]. GPS has a spatio-temporal granu-
larity that is orders of magnitude finer than XDR, as it is collected many times per second,
allowing the usage of methods like map-matching between points and transportation in-
frastructure [59]. Although available on almost any commodity smartphone, GPS drains
battery, it is not always activated, and requires specific applications to be installed to gather
data. Another approach is the usage of sensor data from mobile phones, which has similar
limitations to that from GPS. For instance, accelerometer data allows to identify mode of
transportation, as different modes exhibit different patterns of acceleration [60]. XDR, in
contrast, is passive data, in the sense that it is always generated regardless of user actions;
it does not reveal specific locations, but areas of tower coverage; and it is cost-effective, as
it is already generated and stored.

Hence, there is a limitation in the current state of the art regarding inference of mode of
transportation using XDR. To improve this state, we focused on commuting, which rep-
resents a major portion of the trips within a city, and it is a recurrent trip that allows to
aggregate tower connectivity. The core method in our proposal is the usage of a dimen-
sionality reduction technique called Non-Negative Matrix Factorization (NMF) [32], that
is equivalent to performing spectral clustering [30] of the two different types of entities
in our data: devices (and, by extension, their users) and cell phone towers. NMF is inter-
pretable, as it learns how to separate objects into a sum of its parts [26]. It has been applied
in computational biology [61], urban analysis [62], and, with XDR, on trip purpose infer-
ence [63]. As such, our hypothesis was that NMF clusters aggregated trajectories, allowing
to interpret them as a sum of the chosen modes of transportation. In our previous work,
we found that NMF finds clusters that are spatially separable, in contrast to those found
with other techniques such as Principal Component Analysis [19]. Some of these clus-
ters were related to transportation infrastructure; here we proposed to guide the learning
process toward transportation clusters only through Topic-Supervised NMF [16].

Even though we have centered the discussion around mobile phone network data, it is
possible to infer transportation and urban patterns from other kinds of datasets: smart-
card data [40, 64, 65]; Twitter, which has been shown to be a good predictor of commuter
flows [66] and mobility patterns [67]; and Flickr, that has been used to fit mobility models
[68]. Indeed, any data source that allows to count the number of people that goes from one
place to another can be used to fit gravity or radiation models (see [69] for a comparison).
The limitation, in our context, is that such models do not consider within-trip waypoints,
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and thus, limit the inference of mode of transportation to variables that may not be reliable,
such as speed or travel time.

7 Conclusions
In this paper we presented an interdisciplinary approach to infer the distribution of mode
of transportation usage for commuting. The approach follows the conventions and pa-
rameters of the area of application, Transportation [13], and uses tools and methods from
Data Science [12] applied to a non-traditional data source: billing records from mobile
phone networks. By performing a case study in a big city, Santiago, we found that the
proposed method delivers coherent results, as all modes of transportation under study
exhibit similar rank-correlations with the travel survey (from 0.59 to 0.68). Furthermore,
our algorithmic pipeline is explainable, in the sense of being able to associate differences
in the results with those from a travel survey with specific steps and parameters. Given
that the current source of this kind of insight for transportation experts are surveys, that
may be outdated, we believe that our work contributes to both disciplines, Data Science
and Transportation. Finally, by considering the proposed methods and its results, domain
experts will be able to augment their work in a cost-effective way by performing a finer
analysis of how people lives and moves in their cities.
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