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Abstract
Chronic alcohol consumption is a major cause of liver 

disease. The term alcoholic liver disease (ALD) refers 
to a spectrum of mild to severe disorders including 
steatosis, steatohepatitis, cirrhosis, and hepatocellular 
carcinoma. With limited therapeutic options, stem 
cell therapy offers significant potential for these 
patients. In this article, we review the pathophysiologic 
features of ALD and the therapeutic mechanisms of 
multipotent mesenchymal stromal cells, also referred 
to as mesenchymal stem cells (MSCs), based on 
their potential to differentiate into hepatocytes, their 
immunomodulatory properties, their potential to 
promote residual hepatocyte regeneration, and their 
capacity to inhibit hepatic stellate cells. The perfect 
match between ALD pathogenesis and MSC therapeutic 
mechanisms, together with encouraging, available 
preclinical data, allow us to support the notion that 
MSC transplantation is a promising therapeutic strategy 
to manage ALD onset and progression.
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Core tip: Chronic alcohol consumption is a major cause 
of liver disease. Stem cells, in particular multipotent 
mesenchymal stromal cells (MSCs), have been envi-
sioned as a promising tool for the development of 
therapeutic strategies to treat alcoholic liver diseases 
(ALD). The advantages of MSC include the regulation of 
exacerbated inflammatory process, their differentiation 
into hepatocytes, the production of trophic factors 
that prevent the apoptosis of parenchymal cells, 
and the induction of the proliferation of endogenous 
progenitors. Here, we revise the pathophysiology of 
ALD to identify therapeutic targets for MSCs. Also, we 
discuss the rationale to propose an MSC-based therapy 
to treat ALD.
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ALCOHOLIC LIVER DISEASE
Chronic alcohol consumption is a major cause of liver 
disease[1-3]. Moreover, alcohol consumption negatively 
impacts the natural history of other types of chronic 
liver diseases such as nonalcoholic steatohepatitis, 
and hepatitis B and C, favoring fibrosis progression[3-5]. 
Alcoholic liver disease (ALD) comprises a broad 
spectrum of disorders, encompassing simple steatosis, 
steatohepatitis, and cirrhosis. The pathomechanism 
associated with ALD involves complex interactions 
between the deleterious effects of alcohol and its 
toxic metabolites on various cell types in the liver, the 
induction of reactive oxygen species (ROS), and the 
up-regulation of the proinflammatory cascade[1,3].

Alcoholic steatosis, the earliest manifestation 
of ALD, is present in more than 90% of heavy 
drinkers, and is pathologically characterized by 
microvesicular and macrovesicular fat accumulation 
within hepatocytes, minimal inflammatory reaction, 
and no hepatic fibrosis[1]. This stage is asymptomatic 
and reversible with alcohol abstinence[6]. Alcohol 
consumption increases the ratio of NADH/NAD+ in 
hepatocytes, which disrupts mitochondrial β-oxidation 
of fatty acids, leading to steatosis development[7]. 
Alcohol consumption also increases fatty acid trigly-
cerides synthesis through the upregulation of the 
sterol regulatory element binding protein 1c[8] and the 
downregulation of the peroxisome proliferator-activated 
receptor-α[9]. ALD progression is characterized by 
steatosis, a superimposed inflammatory infiltrate of 
predominantly polymorphonuclear leukocytes and 
hepatocellular damage. When the inflammation and 
hepatocellular injury are severe, the condition is 
termed steatohepatitis and is associated with a high 
mortality rate[10,11].

The pathogenesis of alcoholic steatohepatitis 
is complex and multifactorial. In the liver, alcohol 
is metabolized primarily into acetaldehyde by the 
enzymes alcohol dehydrogenase in the cytosol, 
cytochrome P450 in microsomes, and catalase in 
peroxisomes[12]. Acetaldehyde is highly toxic to 
hepatocytes because it binds to proteins and DNA, 
forming adducts that promote glutathione depletion, 
lipid peroxidation, and mitochondrial damage[13,14]. 
Additionally, these adducts act as antigens that activate 
the adaptive immune response, leading to lymphocyte 
recruitment to the liver[15]. Acetate resulting from 
acetaldehyde breakdown is rapidly released from the 
liver into circulation and then metabolized into CO2 via 

the tricarboxylic acid cycle in skeletal muscle, brain, and 
heart. Although acetate has no direct hepatotoxicity, 
it is believed that it can regulate the inflammatory 
response in patients with alcoholic steatohepatitis 
through the upregulation of proinflammatory cytokines 
released by macrophages[16].

Alcohol abuse also results in changes in colonic 
microbiota and increased gut permeability, leading 
to translocation of bacterial products, such as 
lipopolysaccharide, into the portal circulation[17]. In 
Kupffer cells, lipopolysaccharide activates the MyD88-
independent signaling pathway through toll-like 
receptor 4, resulting in the production of oxidative 
stress and proinflammatory cytokines such as tumor 
necrosis factor (TNF)-α, contributing to hepatocellular 
damage[18,19].

Histologic features of alcoholic steatohepatitis 
include inflammation and necrosis, which are more 
prominent in the centrilobular region of the hepatic 
acinus, while hepatocytes are classically ballooned, 
leading to compression of the sinusoid and portal 
hypertension[20,21]. Alcoholic cirrhosis is the end 
stage of ALD and is characterized by distortion of the 
hepatic architecture, septum formations, rings of scars 
that surround hepatocyte nodules, the formation of 
regenerative nodule, and the loss of liver function[22].

Extracellular matrix (ECM), particularly collagen 
type Ⅰ, is mainly produced by activated hepatic stellate 
cells (HSCs), located in the space of Disse between 
the hepatocytes and sinusoids. HSCs can be activated 
by neutrophils, damaged hepatocytes, and activated 
Kupffer cells through various profibrogenic mediators, 
including transforming growth factor (TGF)-β, TNF-α, 
and ROS[3,23]. Additionally, ROS downregulate the 
action of metalloproteinases and upregulate tissue 
inhibitor of metalloproteinase-1, resulting in greater 
collagen accumulation[24].

Along with other liver diseases, patients with 
cirrhosis are at risk for hepatic decompensation 
(ascites, variceal bleeding, and encephalopathy) and 
the development of hepatocellular carcinoma[25,26]. 
Although the most important risk factor for ALD is 
the absolute amount of alcohol intake, only approxi-
mately 35% of heavy drinkers develop advanced 
ALD, indicating that other factors are involved in host 
susceptibility to the disease. These factors include sex, 
obesity, drinking pattern, dietary factors, non-sex-
linked genetic factors, and cigarette smoking[27-30].

CURRENT ALD TREATMENT
Despite the profound economic and health impacts 
of ALD, little progress has been made in the manage-
ment of patients with this condition, and medical 
treatment has not changed significantly in the last 
45 years[10,31,32]. Although nutritional and supportive 
management are important, alcohol abstinence is 
the mainstay therapy for patients with all stages of 
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ALD[33,34]. However, the benefits of alcohol abstinence 
may not be sufficient for patients with decompensated 
ALD, such as cirrhosis or severe alcoholic hepatitis[35,36].

Corticosteroids were one of the first pharmacologic 
therapies investigated for the treatment of alcoholic 
hepatitis. Despite the widespread awareness and use 
of this therapy, controversy still exists regarding its 
true efficacy[37]. Taking into account the participation 
of TNF-α in ALD pathogenesis, TNF-α antagonists 
have also been studied for this condition. Although 
the initial studies were promising, larger clinical 
trials demonstrated an increased risk of infection 
and mortality with these agents[38]. In addition, 
pharmacologic therapy with medications such as 
disulfiram, baclofen, colchicine, vitamin E, and nal-
trexone have been considered, although their efficacies 
are limited[3,39,40].

The most effective therapy for advanced cirrhosis 
is liver transplant, however, the scarcity of donors, 
surgical complications, immunologic suppression and 
rejection, and high medical cost limit its availability and 
clinical utility[41]. Moreover, liver transplantation is not 
an option for most patients, and, until now, no other 
treatment has demonstrated superiority over steroids. 
Therefore, alternative therapies are needed. To this 
end, alternative approaches that circumvent the use 
of the whole organ, such as transplantation of cells of 
diverse origins, have been proposed in recent years[42].

CELLULAR THERAPY FOR LIVER 
REGENERATION
It is well known that the liver has a high regenerative 
capacity. Under normal conditions, recovery of liver 
mass occurs mainly via proliferation of remaining adult 
hepatocytes. On the other hand, under pathologic 
conditions in which the proliferation of hepatocytes is 
inhibited, liver progenitor cells (oval cells) proliferate 
and differentiate into hepatocytes or biliary epithelial 
cells[43]. Chronic ethanol exposure and sustained in-
flammation have been shown to inhibit DNA synthesis 
in the damaged liver[44,45]. This impaired hepatocyte 
proliferation is the consequence of oxidative damage 
by the ROS produced from alcohol metabolism[46]. 
Moreover, ethanol could inhibit early differentiation 
of hepatic progenitor cells into functional mature 
hepatocytes[47].

Cell therapy for the treatment of hepatic fibrosis 
has been evaluated in different animal models, and 
some findings have been very encouraging. The 
transplantation of mature hepatocytes into human 
patients has provided insights into the way in which 
human liver disease could be treated by cellular 
therapies[48]. However, the high number of cells 
needed for the transplantation, the availability of fresh 
cells or the quality of cryopreserved ones, and the 
necessity of immunosuppression to avoid the rejection 
of transplanted cells are the main limitations of adult 

hepatocyte transplantation[49,50]. Immunosuppression 
is a particularly important point, as the hepatic 
failure itself increases the risk of developing septic 
complications, which are worsened by the use of 
immunosuppressive drugs.

Numerous studies have focused on investigating 
the ability of a variety of stem cells that can be readily 
isolated using noninvasive procedures to give rise to 
hepatocytes both in vitro and in vivo[51]. Considering 
that some of these stem cell populations are present 
in adults, it would be possible to produce personalized 
immunologically matched hepatocytes[52]. Moreover, 
adult stem cells have the ability to reduce the hepatic 
proinflammatory microenvironment, inhibit the acti-
vation or induce apoptosis of HSCs, and promote the 
regeneration of residual hepatocytes[53,54].

MESENCHYMAL STEM CELLS AS A 
TOOL FOR THE INDUCTION OF TISSUE 
REGENERATION
The aim of regenerative medicine is to develop 
therapeutic strategies for the management of se-
vere injuries or chronic diseases in patients whose 
endogenous regenerative mechanisms have failed to 
restore the impaired functions. Over the past years, 
stem cells have been envisioned as the best tool for 
this purpose. Stem cell-based intervention is known 
to act through multiple mechanisms, which is a clear 
advantage when facing diseases with a complex 
pathophysiology, such as ALD.

In general terms, adult stem cells are found in all 
nonembryonic tissues, where they contribute to both 
maintenance of cellular homeostasis and regeneration 
of damaged organs. These cells are multipotent and 
can be isolated from a fetus, newborn, child, or adult, 
and due to their limited self-renewal potential, they are 
not teratogenic. Some of them also have plasticity, i.e., 
they can differentiate into cells from lineages different 
from their origin[55].

As adult stem cells pose fewer bioethical and 
technical concerns than embryonic stem cells, the 
first candidate for a stem cell-based strategy to treat 
liver regeneration was bone marrow-derived stem 
cells[53,56-58]. Bone marrow harbors at least two distinct 
adult stem cell populations: the hematopoietic stem 
cells that give rise to blood and endothelial cells[59] 
and the multipotent mesenchymal stromal cells, also 
referred to as mesenchymal stem cells (MSCs), that 
provide support to hematopoietic stem cells and drive 
the process of hematopoiesis[60]. In addition to bone 
marrow, MSCs have now been isolated from numerous 
tissues, including liver, lung, umbilical cord, skeletal 
muscle, dental pulp, spleen, and adipose tissue[61-63]. 
Thus, it has been postulated that MSCs play a critical 
role in organ homeostasis by providing supportive 
factors to the surrounding tissue.
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Table 1  Proposed cellular and molecular mechanisms that could contribute to hepatic protection by mesenchymal stem cells in 
alcoholic liver disease
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Furthermore, MSCs have been administered to more 
than 1000 human patients with no evidence of adverse 
effects or tumor formation[70] (Table 1).

MSC TRANSPLANTATION: A PROMISING 
STRATEGY TO TREAT PATIENTS WITH 
ALD
Multiple mechanisms have been suggested to play 
a role in amelioration of liver diseases after MSC 
administration, such as: trans-differentiation of MSCs 
into hepatocytes, immunomodulation, inhibition of 
fibrosis development, protective effects on hepatic 
cells, and restoration of hepatic cell proliferation 
capacity (Figure 1).

Differentiation of MSC into parenchymal cells
The high degree of plasticity of MSCs has been widely 
described over the last decade or so[55,71]. Thus, 
MSCs have the potential cross the germ line barrier 
and differentiate into non-mesodermal cells (such as 
hepatocytes and neurons)[72]. It is important to note 
that MSC-derived hepatocytes need to not only express 
the genes found in mature liver cells, but express 
them at a level that is close to what is observed in 
the normal liver. Therefore, it is crucial to define 
which characteristics are needed for a differentiated 
cell to be comparable to a primary hepatocyte. The 
minimal set of functions of a true hepatocyte includes: 
(1) metabolic function (detoxification of xenobiotics 
and endogenous substances); (2) synthetic function 
(production of albumin, clotting factors, and comple-
ment); and (3) storage function (storage of glycogen 
and fat-soluble vitamins)[73].

Although the protocols for hepatocyte induction 
have been standardized for cultured MSCs[74,75], an 
organ-specific microenvironment is the most suitable 
place for them to differentiate into the required 
cell types. In this sense, Sato et al[76] were the first 
to demonstrate the in vivo hepatic differentiation 

One of the main technical difficulties associated with 
the therapeutic use of MSCs is the lack of a specific 
antigen for their identification. Therefore, in 2006, the 
International Society for Cellular Therapy proposed 
minimal criteria to define human MSCs (hMSCs): 
(1) must be plastic-adherent when maintained 
under standard culture conditions; (2) must express 
CD105, CD73, and CD90, and lack the expression 
of CD45, CD34, CD14, CD11b, CD19, and class Ⅱ 
human leukocyte antigen surface molecules; and 
(3) must differentiate into osteoblast, adipocytes, 
and chondroblasts under in vitro differentiation 
conditions[64,65].

Despite the scarcity of MSCs (< 0.01% of the 
mononuclear cells present in the bone marrow), they 
can be considered as ideal candidates for cell therapy 
because: (1) they can be obtained from donors 
without major complications; (2) they can be easily 
expanded ex vivo; (3) when MSCs are systemically 
administered, they can selectively migrate to and 
engraft damaged tissue. The migration of MSCs is 
facilitated by the release of several molecules from 
the damaged tissues that interact with different 
receptors expressed by the MSCs[66,67]; (4) it has been 
suggested that MSCs cross the germ line barrier and 
generate cells from the endodermal and ectodermal 
lineages[55]; (5) MSCs secrete a broad range of bio-
active growth factors, including vascular endothelial 
growth factor (VEGF), basic fibroblast growth factor, 
insulin-like growth factor (IGF), hepatocyte growth 
factor (HGF), and epidermal growth factor (EGF)[68]. 
Therefore, MSCs could provide trophic support to 
injured tissue by modifying the microenvironment to 
induce local precursor proliferation and differentiation, 
improving damaged tissue irrigation, and preventing 
parenchymal cell apoptosis[55,68]; and (6) MSCs are 
hypo-immunogenic[69], which represents the main 
advantage of MSCs over hematopoietic stem cells 
for clinical use, as histocompatibility between donor 
and receptor is not required and the recipients do not 
need to be conditioned before MSC transplantation[70]. 

MSCs in liver inflammation
   Inhibit the proliferation of CD8 cytotoxic T lymphocytes and increase the relative rate of CD4 Th2 lymphocytes[97,100]

   Inhibit the maturation of monocytes into dendritic cells[94]

   Inhibit the secretion of TNF-α, INF-g, and IL-12 by dendritic cells and increase their secretion of IL-10, reducing the proinflammatory potential[95]

   Suppress the proliferation, cytolytic activity, and cytokine secretions of the NK cells[96]

   Express indoleamine 2,3-dioxygenase upon INF-g stimulation, leading to tryptophan depletion and the inhibition of T-cell proliferation[98]

MSCs in liver fibrosis
   Reduce the proliferation of HSCs and the synthesis of collagen type Ⅰ through the secretion of TNF-α[125]

   Induce HSCs apoptosis[124]

   Express matrix metalloproteinase-9, which degrades the extracellular matrix[128,129]

MSCs in liver regeneration
   Secrete trophic factors (HGF, EGF, and IGF-1) that promote hepatocyte proliferation and function during liver regeneration[68,128,130]

EGF: Epidermal growth factor; HGF: Hepatocyte growth factor; HSC: Hepatic stellate cell; IGF-1: Insulin-like growth factor-1; IL: Interleukin; INF-g: 
Interferon-g; MSC: Mesenchymal stem cell; TNF-α: Tumor necrosis factor-α.
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potential of hMSCs. In this study, hMSCs were directly 
xenografted to the liver of allyl alcohol-treated rats, and 
they observed that some of the administered hMSCs 
differentiated into hepatocyte-like cells one month 
later. Additionally, the in vivo hepatic differentiation 
potential of MSCs has been demonstrated in rats[77], 
mice[78], sheep[79], and humans[51].

On the other hand, in vitro differentiated cells 
were found to express hepatocyte markers (alpha-
fetoprotein, albumin, CK18, CK19, CYP1A1, CYP3A4, 
G6P, and human growth hormone-releasing factor)[80], 
store glycogen[81], clear ammonia and produce urea[82], 
and to secrete albumin and uptake low-density 
lipoprotein[83,84]. However, it is much more challenging 
to determine whether a cell is a true hepatocyte in 
vivo. Immunostaining for albumin, CK18, or hepatocyte 
nuclear factor are recognized indicators of hepatocyte 
trans-differentiation but not cellular functionality. It is 
important to note that differentiated MSCs still express 
mesenchymal markers such as CD90, α-smooth 
muscle actin, vimentin, and fibronectin, suggesting 
that complete trans-differentiation is not achieved[85].

Hepatic trans-differentiation potential is essential 
for MSCs-based therapies in the context of ALD, in 
which the injured hepatocyte cannot regenerate. 
However, the initial optimism has been tempered by 
the recognition of many groups that fusion of MSCs 

with endogenous hepatocytes is the main mechanism 
by which new hepatocytes are produced in vivo[86,87]. 
Hence, irrespective of whether the mechanism is 
MSC trans-differentiation or fusion, these events do 
not occur at a sufficiently high frequency to account 
for the observed functional improvement after MSC 
administration. Therefore, additional mechanisms may 
be involved in the regenerative process[88-90].

Modulation of inflammation by MSCs
Liver injury caused by persistent inflammation is 
accompanied with T cell, B cell and monocyte infi-
ltration of the liver[91,92]. In this respect, MSC immuno-
modulatory and immunosuppressive properties could 
potentially be involved in the positive effects that MSC 
transplantation has in chronic and acute liver diseases.

MSCs regulate the activity of cells from both 
adaptive and innate immunity[93]. In vitro, they inhibit 
the differentiation of monocytic precursors into activated 
dendritic cells[94,95]. Thus, MSCs indirectly limit the 
cytotoxic expansion and activity of NK T lymphocytes[96]. 
Both in vitro and in vivo, MSCs downregulate the 
expression of proinflammatory molecules [interleukin 
(IL)-1β, IL-12, TNF-α, and interferon-g] and secrete 
anti-inflammatory factors (IL-4 and IL-10), shifting the 
immune response pattern toward a protective Th2 type, 
and establishing a tolerogenic microenvironment where 

Figure 1  Pathogenesis of alcoholic liver disease and possible interventions of mesenchymal stem cells. Ethanol promotes the translocation of lipopolysaccharides 
from the gastrointestinal lumen to the portal vein. In Kupffer cells and in HSCs, lipopolysaccharides increase the expression of multiple pro-inflammatory cytokines, 
reducing liver regeneration. Chronic alcohol exposure reduces the intracellular concentration of antioxidants with subsequent mitochondrial dysfunction, leading to 
hepatocyte apoptosis. Acetaldehyde is highly toxic to hepatocytes because it binds to proteins forming adducts that promote glutathione depletion, lipid peroxidation, 
and mitochondrial damage. Additionally, these adducts act as antigens that activate the adaptive immune response, leading to lymphocyte recruitment to the liver. 
HSCs can be activated by damaged hepatocytes and activated Kupffer cells through various profibrogenic mediators, resulting in ECM accumulation and fibrosis. The 
interventions of MSCs include: (1) trans-differentiation into parenchymal cells; (2) induction of endogenous regeneration (i.e., stimulation of hepatocyte proliferation, 
inhibition of hepatocyte apoptosis, and improvement of the impaired endogenous regeneration); (3) modulation of inflammation (i.e., inhibition of APC maturation, 
proliferation, activation, and/or T-cell priming activity, reduction of lymphocyte proliferation and stimulation of Treg proliferation); and (4) decrease of liver fibrosis 
(i.e., inhibition of HSC proliferation, stimulation of HSC apoptosis and induction of ECM degradation). APC: Antigen-presenting cell; ECM: Extracellular matrix; HSC: 
Hepatic stellate cell; MSC: Mesenchymal stem cell; ROS: Reactive oxygen species; TGF-β: Transforming growth factor-β.
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activated T cells are unable to proliferate and die by 
apoptosis[97].

Another candidate for the suppressive effects 
of MSCs is indoleamine 2,3-dioxygenase, which is 
expressed by MSCs upon interferon-g stimulation, 
leading to tryptophan depletion, and thus inhibition 
of T-cell proliferation[98]. This effect on T lymphocytes 
indirectly suppresses the function of B lymphocytes 
because their activation is mainly T-cell dependent. 
Moreover, MSCs can also modulate B-cell functions 
by inhibiting their proliferation, differentiation into 
antibody-secreting cells, and chemotaxis[99].

MSCs also promote the appearance of regulatory 
T cells, inducing antigen-specific tolerance[100]. Inte-
restingly, it has been shown that the immunologic 
properties of undifferentiated MSCs are retained when 
they differentiate into parenchymal cells[101]. Therefore, 
both undifferentiated and differentiated MSCs will 
contribute to the maintenance of a microenvironment 
that allows tissue regeneration.

Induction of endogenous regeneration by MSCs
It is known that MSCs have the ability to secrete, 
in vitro and in vivo, a wide range of trophic factors, 
including VEGF, basic fibroblast growth factor, HGF, 
platelet-derived growth factor, TGF-β, IGF-1, and 
EGF[68]. The biologic effects of these factors can be 
both direct, by unleashing intracellular signalization 
pathways, and indirect, by inducing other cells from 
the microenvironment to secret additional bioactive 
factors. Therefore, it has been proposed that MSCs 
have a catalytic role in tissue regeneration, as once 
in the damaged tissue, they are able to modify the 
microenvironment by secreting factors that would: 
(1) prevent parenchymal cells from dying; (2) induce 
the proliferation and differentiation of endogenous 
progenitors; (3) promote neovascularization; and (4) 
avoid/revert fibrosis development[88,90].

Diverse studies have shown that < 1% of sys-
temically administered MSCs are still present in 
any organ, including the lung, heart, kidneys, liver, 
spleen, and gut, one week after administration[102-104]. 
However, clinically, the beneficial effects associated 
with MSC administration can be observed for much 
longer than one week.

MSC-conditioned medium (MSC-CM) administration 
can recapitulate the beneficial effects of MSCs 
regarding tissue repair; for instance, data from van 
Poll et al[105] has provided the first clear evidence that 
MSC-CM procures trophic support for injured liver by 
inhibiting hepatocellular death and by stimulating liver 
regeneration. Although no specific mechanisms of 
action have been identified, soluble factors, including 
VEGF, HGF, IGF-1, EGF, IGF-binding protein, and IL-6, 
have been implicated in those regenerative effects.

Microvesicles (MVs) have recently been considered 
as important mediators of cell-to-cell communications, 
as they carry a complex load of proteins, lipids, 

mRNA, and microRNA, which might affect several 
cellular processes and pathways[106]. MVs account 
for approximately 10% of conditioned medium 
components in terms of protein amount; therefore, 
MSC-CM therapeutic activity could thus be partially 
attributed to MVs[107,108].

In addition to the induction of liver regeneration, 
antifibrotic properties of the MSC secretome have also 
been described. In this sense, Li et al[109] demonstrated 
that transplantation of MVs derived from human 
umbilical cord MSCs can alleviate liver fibrosis induced 
by carbon tetrachloride administration. These results 
have also been recapitulated by the administration of 
ex vivo expanded MSCs[109-112]. However, other studies 
have reported that MSCs can potentially be fibrogenic 
and contribute to increased fibrosis[113-115] or have no 
effect whatsoever[116,117].

These experimental results suggest two apparently 
contradictory scenarios; a great number of variables 
contribute to the inconsistences between the different 
observations. One such inconsistency is the difference 
in the properties of MSCs prepared in different 
laboratories, due to differences in the protocols used 
for MSC isolation and ex vivo expansion. There are 
also important differences between hMSCs and rodent 
MSCs, and even between different mouse strains[55]. 
Finally, another important factor is the dependence of 
the MSC differentiation process on most of the culture 
conditions or in vivo microenvironments, especially 
those developed in damaged tissue. In most of the 
cases, the signals that drive this differentiation process 
have not been characterized, so they cannot be 
replicated in vitro.

MSC TRANSPLANTATION IN ANIMAL 
MODELS OF LIVER INJURY
Numerous studies have tried to demonstrate the 
therapeutic potential of MSCs in the treatment of acute 
and chronic liver diseases, however, to date, a gap in 
the study of MSC administration for the treatment of 
ALD remains (Table 2). This gap is due, in part, to the 
lack of experimental animal models that recapitulate the 
full progression of ALD in human patients. Nonhuman 
primates are possibly the most similar model for human 
diseases[118,119]. For example, exposure of baboons 
to ad libitum alcohol intake leads to the progression 
of all stages of liver damage associated with ALD 
in humans. However, the relevance of nonhuman 
primates as a model of ALD is outweighed by the 
prodigious cost of maintaining them, which limits 
their utility to the field as a whole. Therefore, it is 
not surprising that the majority of alcohol research 
performed in animal models involves rodents[118,119]. 
The major disadvantage of rodent models with 
regard to experimental ALD is that the obtained liver 
pathology is limited predominantly to steatosis, with 
some necroinflammatory changes. The more-severe 
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steatohepatitis and advanced liver damage observed in 
human patients (fibrosis and cirrhosis) is generally not 
observed in rodents[118,119].

Several in vivo studies have been performed to 
evaluate the therapeutic potential of MSCs in the 
context of liver fibrosis[54,56]. In most of the studies, liver 
fibrosis was induced by intraperitoneal or subcutaneous 
injection of carbon tetrachloride, however, this 
model cannot provide a perfect simulation of human 
etiology[120,121].

Application of MSCs in the in vivo models of liver 
fibrosis/cirrhosis ameliorates the development of 
the disease[54,56,111,112]. Similar results were obtained 
when MSC-CM or MVs were applied[105,108,109,122], 
suggesting that long-term survival of MSCs might 
not be necessary for their beneficial effects. In these 
studies, the reduction of fibrosis was correlated with 
the decrease in the synthesis of collagen Ⅰ and matrix 
metalloproteinase inhibitors, with a concomitant 
decrease in activated HSCs. Multiple mechanisms 
have been suggested to participate, such as im-
munomodulation[123], selective apoptosis of[124,125] or 

reversion to a quiescent state of HSCs, and production 
of protective factors[126,127].

Studies of in vitro co-cultures of MSCs with ac-
tivated stellate cells have shown that, even in small 
numbers, MSCs can paracrinally inhibit the fibrogenic 
activity of activated stellate cells. This inhibition can be 
a consequence of the secretion of IL-10 and TNF-α by 
MSCs. Moreover, MSCs are able to induce apoptosis 
in reactive stellate cells, a process mediated in part 
by the secretion of HGF[125]. These results support 
the hypothesis that the therapeutic effects of MSCs 
on fibrosis inhibition are the result of the secretion 
of paracrine factors that modulate the proliferation, 
viability, and function of resident stellate cells. The 
production of matrix metalloproteinases can also 
be effective at reverting hepatic fibrosis. MSCs are 
capable of secreting and inducing the expression of 
matrix metalloproteinase-9 and -13 in other cells, the 
latter being the main rodent and human interstitial 
collagenase[128,129].

In ALD, as well as in more prominent cirrhotic liver, 
hepatocytes are reported to have reduced proliferative 

Table 2  Preclinical studies using mesenchymal stem cells or their derivatives to treat liver injury

Model 
animal 
species 

Liver injury 
induction/kind of 

liver injury

MSCs 
administration 

route

Number and 
source of 

transplanted MSCs

Therapeutic effect Proposed mechanisms Ref.

Rat Allyl alcohol (ip 
administration)/
chronic damage

Intrahepatic 1 × 106 MSCs from 
human BM

Hepatocyte regeneration Hepatocyte differentiation without 
evidence of cell fusion

[76]

Mouse Low-level of 
radiation/

minimal, hepatic 
damage

Tail vein 2 × 104 MSCs from 
mouse BM

Hepatocyte regeneration Hepatocyte differentiation [78]

Mouse Chronic exposure 
to high fat diet/

NASH

Tail vein 0.5 × 106 MSCs from 
mouse BM

Prevention of NASH onset Paracrine promotion of hepatic 
proliferation

[110]

Preclusion of the inflammatory 
process

Increase in the fatty-acid oxidation 
enzymes expression

Mouse Chronic exposure 
to atherogenic 

diet/NASH

Splenic 
capsule

0.1 × 106 MSCs from 
mouse adipose tissue

Restoration of albumin expression 
in hepatic parenchymal cells

Modulation of inflammation [111]

Amelioration of fibrosis Increase in MMP expression
Suppression of persistent hepatic 

inflammation
Mouse CCl4 (ip 

administration)/
liver fibrosis

Spleen 0.5 × 106 MSCs from 
human amniotic 

membrane

Reduction of liver fibrosis Inactivation of HSCs [126]
Improvement of hepatic function Reduction of hepatocyte apoptosis

Promotion of liver regeneration
Differentiation of hepatocyte-like cells

Mouse CCl4 (ip 
administration)/

liver fibrosis

Tail vein 0.5 × 106 MSCs from 
human BM

Reduction of liver fibrosis Induction of MMP-9 expression [121]
Reduction in TGF-β expression

Rat D-galactosamine 
(ip 

administration)/
fulminant hepatic 

failure

Penile vein Conditioned medium 
from human BM 

MSCs

Reduction in the mortality rate Modulation of the immune response [105,122]
Reduction in panlobular 

leukocyte infiltrates
Trophic factor release (i.e., VEGF, 

HGF, and IGF-BP)
Reduction in hepatocellular death

Mouse CCl4 (ip 
administration)/

liver fibrosis

Intrahepatic Exosomes derived 
from human 

umbilical cord MSCs

Recovery of serum aspartate 
aminotransferase activity

Not determined [109]

Decrease in collagen type Ⅰ and 
Ⅲ, TGF-β1 level

BM: Bone marrow; HGF: Hepatocyte growth factor; HSC: Hepatic stellate cell; IGF-BP: Insulin-like growth factor-binding protein; ip: Intraperitoneal; 
MMP: Matrix metalloproteinase; MSC: Mesenchymal stem cell; NASH: Nonalcoholic steatohepatitis; TGF-β: Transforming growth factor-β; VEGF: Vascular 
endothelial growth factor.
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capacity, which may reflect either the inhibitory effect 
of adjacent collagen Ⅰ or that they have reached 
replicative senescence after many rounds of injury and 
repair[44,45]. MSC infusion may increase the intrinsic 
ability of hepatocytes to proliferate by the release 
of proliferative trophic factors and cytokines, or by 
facilitating the breakdown of scar tissue, thereby 
removing a block to proliferation[130].

In our laboratory, we found that intravenous admi-
nistration of bone marrow-derived MSCs into animals 
suffering from diet-induced metabolic syndrome and 
obesity restores liver function and avoids progression 
from steatosis to nonalcoholic-steatohepatitis[110]. Such 
MSC-mediated hepatoprotection was unrelated to 
metabolic syndrome reversion. Nevertheless, this has 
been associated with the potential of MSCs to enhance 
liver regeneration and/or manage the second hit 
required for the transition from steatosis to nonalcoholic-
steatohepatitis, as an increased hepatic proliferation 
rate was found as well as an increased expression of 
fatty-acid oxidation enzymes. Thus, MSC administration 
could prevent the progression of ALD by reducing the 
impairment of fatty-acid oxidation.

Finally, the question of the ideal route of MSC 
injection remains one of the main unsolved issues 
regarding efficient administration of MSCs. Even 
if the tail vein seems to be the most often used 
administration route in animals, the portal vein and 
intrahepatic injections also seem to be efficient[129,131]. 
The optimal dose of cells or conditioned medium also 
needs to be evaluated because there are significant 
variations among studies in terms of the number of 
cells injected per animal.

CLINICAL TRIALS USING MSCS
MSCs have been successfully used in humans to 
treat different pathologies such as osteogenesis 
imperfecta[132], idiopathic aplastic anemia[133], graft-
versus-host disease[134], and acute myelogenous 
leukemia[135]. Other applications have been to 
specifically avoid lung fibrosis injury after bleomycin 
challenge[136], and for the protection of cardiac function 
after a myocardial infarction[137]. In every case, clear 
therapeutic effects with no complications have been 
reported. 

In the same direction, the translation of preclinical 
research on MSCs to clinical use for cirrhotic patients 
has generated great interest due to the growing 
population of patients with advanced liver diseases and 
the critical shortage of available liver donors.

To date, some clinical trials using hMSCs to treat 
patients with liver fibrosis have been published[112,138-145]. 
Unfortunately, in general, the studies were hetero-
geneous in their design and did not distinguish between 
the various etiologies of cirrhosis. ALD patients and viral 
hepatitis patients were mixed together in small case 
series.

Recently, Jang et al[140] evaluated the effect of 
autologous bone marrow-derived MSC transplantation 
on hepatic fibrosis in patients with alcoholic cirrhosis. 
After MSC administration, liver histologic improvements 
were observed in 6/11 patients, and recovery of liver 
function in 10 patients associated with a decreased 
expression of TGF-β1, collagen type Ⅰ, and α-smooth 
muscle actin, without significant complications 
or side effects during the study period[140]. These 
results support the use of these cells as a therapy 
for patients with alcoholic cirrhosis. However, further 
prospective, controlled studies are needed before MSC 
administration can be accepted as new strategy for 
antifibrosis therapy.

POTENTIAL LIMITATIONS TO CLINICAL 
TRANSLATION
Knowledge regarding MSC biology and their application 
in liver fibrosis treatment has significantly increased 
over the past years. Nevertheless, the clinical use of 
MSCs for liver regeneration, in particular ALD, is still in 
its beginnings, and fundamental questions remain to 
be addressed.

Although clinical trials have provided hope that 
MSCs could be a valuable resource for cell-based 
therapies for liver fibrosis, these results must be 
interpreted with some caution given the limited 
number of patients enrolled in each trial and the lack 
of appropriate controls. For example, patients with 
acute alcoholic hepatitis normally receive a high dose 
of prednisone therapy. However, the effect of high-
dose steroids on the transplantation of MSCs is not 
well studied. There is some evidence that MSCs are 
glucocorticoid sensitive and are induced to differentiate 
into adipocytes with steroid exposure[146].

Clinical trials have shown that MSC-based therapy 
is relatively safe, and no serious detrimental effects 
have been reported in humans to date. However, 
some concerns have risen over the use of replicating 
cells, which may escape control as time elapses[147]. 
Some potential complications could also arise 
from intravascular administration of MSCs leading 
to vascular occlusion. Preclinical studies have not 
excluded the differentiation of injected MSCs into 
ectopic structures[148], myocardial calcification[149], 
and enhanced accumulation of fibroblasts and 
myofibroblasts in the lungs[150], as these events have 
been reported following MSC treatment.

CONCLUSION
Stem cell-based therapy represents a newly emerging 
therapeutic approach to treat ALD. MSCs are an 
attractive tool because they have been shown to 
trigger the regeneration of damaged liver tissue, with 
no evidence of significant adverse effects in either 
preclinical or clinical studies.
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Due to the relation between pathologic events 
that occur in ALD development and the cellular and 
molecular mechanisms associated with MSC therapeutic 
effects, we believe that MSC transplantation could 
be a promising therapeutic strategy to manage ALD 
progression.
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