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Abstract
Query processing is an important challenge for spatial databases due to the use of com-
plex data types that represent spatial attributes. In particular, due to the cost of spatial joins,
several optimization algorithms based on indexing structures exist. The work in this paper
proposes a strategy for semantic query optimization of spatial join queries. The strategy
detects queries with empty results and rewrites queries to eliminate unnecessary spatial
joins or to replace spatial by thematic joins. This is done automatically by analyzing the
semantics imposed by the database schema through topological dependencies and topolog-
ical referential integrity constraints. In this way, the strategy comes to complement current
state-of-art algorithms for processing spatial join queries. The experimental evaluation with
real data sets shows that the optimization strategy can achieve a decrease in the time cost of
a join query using indexing structures in a spatial database management system (SDBMS).

Keywords Spatial databases · Semantic optimization · Spatial query rewriting ·
Spatial integrity constraints

1 Introduction

Query processing in spatial databases can be very expensive due to the complex data
types that represent spatial attributes. Indeed, spatial joins are one of the most expensive
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operations in spatial databases, which involve a selection based on a spatial relation, in most
cases, a topological relation such as overlap or intersect. Due to the increasing use of geo-
graphic data in different domains, there exists a large effort to design optimization methods
as part of the spatial database management systems. These methods typically rely on a pre-
filtering step using spatial indexing and the approximation of geometries in terms of their
minimum bounding boxes upon which the index partitions the data and performs internal-
memory spatial joins. Then, a refinement step verifies the exact spatial relation between
objects [2, 5, 14, 16]. The work in this paper proposes a method for semantic query opti-
mization [8, 13] that uses integrity constraints to rewrite a query that generates the same
answer set in a more efficient way. In this sense, this strategy comes to complement current
state-of-art algorithms for spatial joins.

Semantic query optimization complements existing methods for query processing by
using knowledge that is application dependent. It requires the specification of integrity con-
straints or other types of knowledge by the database designers who are not necessarily the
final users of the database. We argue that users (i.e., persons or systems) who are not the
designers of the databases may write queries that do not exploit the semantics of the data to
reduce the processing cost and, in consequence, providing automatic mechanisms for semantic
query optimization contributes to the development of more efficient information systems.

Several strategies for semantic query optimization exist: join elimination if the value is
known in advance, join addition if the result is highly selective, predicate elimination if
the predicate is always true, and predicate addition if the indexed attributes produce faster
access plan [6, 7, 15]. For relational databases, a method of query optimization based on
query rewriting is the Chase and Backchase [8]. The Chase rewrites the original query
into a query that integrates alternative pathways that are allowed by the constraints. Then,
the Backchase produces new queries by eliminating various combinations of redundancies
according to constraints [7].

For extended relational databases, the work in [17] investigates a general approach for
semantic query optimization. They use integrity constraints to partition the process of con-
junctive queries in order to reduce the number of tests on expensive conditions. The basic
idea of this work is that when a query q can be partially answered by another q ′ that is con-
siderably cheaper than q, then it can be useful to divide the process of q in three steps: (i)
answering q ′ and ignoring the tuple combinations in this answer from the original base rela-
tions, (ii) checking possible answers in the tuple combinations that are left, and then (iii)
combining answers.

A recent work [3] proposes to use an ontology and semantic integrity constraints to
reduce the number of spatial relations for knowledge discovery. The basic idea is to avoid
the computation of relations which are irrelevant to the discovery process. For example, if
an island by definition is surrounded by water, their spatial relation is explicitly specified
by the ontology or integrity constraints and does not need to be computed.

Inspired by the Chase and Backchase strategy [8], we propose in this paper a strategy that
rewrites queries, which can then be processed with efficient algorithms. Indeed, our work does
not provide a new algorithm for spatial joins, but rather algorithms that preprocess integrity
constraints and rewrite queries. The basic assumption of this work is that spatial joins are
more costly than traditional thematic joins, and therefore, by eliminating unnecessary joins
and replacing them by thematic joins, we can improve the performance of query processing.
We show in this paper that this process can be done automatically based on integrity con-
straints. Consequently, we validate our proposal with an experimental evaluation that uses a
real data set on a real SDBMS. This evaluation compares the temporal cost of join queries
with and without rewriting, and with a partition-based strategy for query optimization.



Geoinformatica (2019) 23:79–104 81

Although the theories behind previous strategies can be applicable to not only relational
databases, to the best of our knowledge, there has been no attempt to use spatial semantic
integrity constraints with optimization purposes in spatial databases. The work in this paper
uses topological dependency and topological referential constraints [4] in addition to key
constraints to optimize spatial join queries. It describes algorithms for the query rewriting
and provides an experimental evaluation to validate the usefulness of the proposed strategy.

The organization of this paper is as follows. Section 2 revises preliminary concepts that
are needed to understand the optimization method defined in Section 3. The experiments
are in Section 4 followed by conclusions and future research directions in Section 5.

2 Preliminary

In this section, we provide a brief formalization of spatial databases and the integrity constraints
used in this work.

2.1 Spatial databasemodel

A spatial database is seen as an extension of a relational database that contains both the-
matic and spatial attributes. Formally, a spatio-relational database schema is a finite set R
of relational predicates, each predicate with a finite and ordered set of attributes. We use
R(B1, . . . , Bl) to represent the predicate R with its attributes B1, . . . , Bl . To simplicity the
presentation, we will use single-spatial schemas where every R ∈ R contains at most one
spatial attribute that represents regions, lines or points.

Example 1 Consider a spatial database that stores information of places and administrative
boundaries of counties. The schema of the spatio-relational database R is composed of
a set of relational predicates R = { St(Ids, Name, Gs), Co(Idc, Ids, Name, Gc), and
Pl(Idp, Idc,Name,Gp)}. Predicate St stores information of states, where the thematic

attributes are Ids and Name, and the only spatial attribute that stores the states’ boundaries
is Gs. Predicate Co stores information of counties with thematic attributes Idc, Ids, and
Name, and a spatial attribute Gc that stores the boundaries of counties. Predicate Pl stores
information of places and has thematic attributes Idp, Name, and Idc, and a spatial attribute
Gp. Figure 1 shows an instance of this schema, in which thick lines represent boundaries of
states, dashed lines represent counties, and gray rectangles represent places.

Spatial objects are related by spatial relations, which are usually classified into distance,
orientation, or topological relations [21, 22]. Among these spatial relations, topological rela-
tions have gained much interest [10, 19], and are currently implemented in Spatial SQL
Languages (SSQLs) [18].

Topological relations and composition Topological relations are invariant under con-
tinuous transformations such as translation, rotation, and scaling. There exist eight base
topological relations between two non-empty regions x and y: Overlap(x, y), Equal(x, y),
Inside(x, y), Includes(x, y), Covers(x, y), CoveredBy(x, y), Meet(x, y), and Disjoint(x, y)

[9]1. These are called base relations because only one of them relates two given regions and,

1The names given in [9] have their equivalence in the relations in [19].
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Fig. 1 A spatial database instance

therefore, these relations can be used to represent in an unambiguous way the topological
relations between regions.

A derived topological relation is a set of base topological relations that is satisfied if
any of its base relations is true. Commonly used derived relations are Contains and Within.
Contains(x, y) holds if either Equal(x, y), Includes(x, y), or Covers(x, y) is true. Likewise,
object x is Within object y if either Equal(x, y), Inside(x, y) or CoveredBy(x, y) is true.
Using set notation, we write Contains = {Equal, Includes,Covers} and Within = {Equal,
Inside,CoveredBy}. In addition, it is also possible to distinguish topological relations
depending on the type of spatial feature (i.e., points, lines, or polygons) [11].

Current Spatial Database Systems, such as PostGIS, implement relations as defined by
the Open Geospatial Consortium [18]. They have languages with relations Overlap, Equal,
Disjoint, Meet2, and the derived relations Contains and Within. Derived relations that are
singletons correspond to their base relation, e.g., for a derived relation Tt = {Overlap},
it holds that Tt (x, y) if and only if Overlap(x, y). In this specification, these topological
relations may apply over different types of geometries depending on its realizability. For
example, the relation Equal does not apply between lines and polygons.

Table 1 contains the definitions of the topological relations currently used by PostGIS
and useful for the purpose of the work in this paper, where x and y are non-empty regions.
In the experimental evaluation we use the names of topological relations as used in current
query languages and defined in [18].

Because we define topological relations as a set of base relations, we can natu-
rally define inclusion (⊆) and intersection (∩) between them. For example, {Disjoint} ⊆
{Disjoint,Overlap} and {Disjoint} ∩ {Disjoint,Overlap} = {Disjoint}.

It is worth to notice that each topological relation has its converse relation. In particu-
lar, Disjoint, Meet, Equal, and Overlap are symmetric relations such that they are also their
converse relations. Within and Contains, however, are the converse relation to each other.

An important concept used later for semantic query optimization is the notion
of the composition of topological relations (see [9] for a complete description of
the composition of topological relations). The composition of two topological rela-

2Note that PostGIS uses the name Touches instead of relation Meet.
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Table 1 Definition of topological relations by the Open Geospatial Consortium [18]

Relation Is true if . . .

Disjoint(x, y) The intersection of x and y is the empty set

Meet(x, y) The only points in common between x and y lie in the union of the
boundaries of x and y

Overlaps(x, y) The intersection of x and y results in a value of the same dimension as
x and y that is different from both x and y

Equal(x, y) x and y are equal

Within(x, y) x is completely contained in y

Contains(x, y) x is completely inside of y

tions T1(x, y) and T2(y, z) over a common object y, denoted by T1(x, y) ⊗ T2(y, z),
enables the derivation of the topological relation between objects x and z. For exam-
ple, Overlap(x, y) ⊗ CoveredBy(y, z)=T⊗(x, z), where T⊗={Overlap,CoveredBy, Inside}
and thus, if Overlap(a, b) and CoveredBy(b, c) are true, we know that either Overlap(a,

c), CoveredBy(a, c), or Inside(a, c) is also true. Table 2 shows the composition of base
topological relations between regions [12].

2.2 Integrity constraints

We complement the definition of the database schema with a set of integrity constraints that
define the valid states of the database instances. The work in this paper concentrates and
generalizes a subset of spatial semantic constraints as defined in [4].

Table 2 Composition of basic
topological relations [12]



84 Geoinformatica (2019) 23:79–104

In what follows, we denote x1, . . . , xn, u, z variables in thematic attributes;
x̄1, . . . , x̄n, ū, z̄, possible empty, sequences of distinct variables in thematic attributes;
g, g1, . . . , gn variables in spatial attributes; and when necessary for space, ∀ and ∃̄ are
universal and existential quantifications, respectively, over all variables (e.g., ∀x1y1z1...).

Given a database schema R, P and R two, not necessarily different, relational predicates
in R, and a topological relation T, a spatial semantic integrity constraint (SSIC) is one of
the following:

Topological Dependencies (TDs)

∀x̄ȳg1g2(P(x̄, g1) ∧ R(ȳ, g2) ∧ ϕ → T(g1, g2)),

where x̄ ∩ ȳ = ∅ and ϕ is a possibly empty CNF formula of equalities or inequalities
between variables in x̄ and/or ȳ.

Example 2 (Example 1 cont.) Possible TDs for the schema in Example 1 are:

∀( St(x1, y1, g1) ∧ St(x2, y2, g2) ∧ x1 = x2 → Equal(g1, g2)) (1)

∀( Co(x1, y1, z1, g1) ∧ Co(x2, y2, z2, g2) ∧ x1 = x2 → Equal(g1, g2)) (2)

∀( Pl(x1, y1, z1, g1) ∧ Pl(x2, y2, z2, g2) ∧ x1 = x2 → Equal(g1, g2)) (3)

∀( Co(x1, y1, z1, g1) ∧ Co(x2, y2, z2, g2) ∧ x1 �= x2 → Meet(g1, g2) ∨ Disjoint(g1, g2)) (4)

∀( St(x1, y1, g1) ∧ St(x2, y2, g2) ∧ x1 �= x2 → Meet(g1, g2) ∨ Disjoint(g1, g2)) (5)

The first three TDs are classical dependency constraints applied over spatial attributes, that
is, they express that two tuples of states, counties, or places with the same identification
must have the same geometry. The last two TDs express that two different counties or states
must have geometries that are disjoint or meet to each other.

Spatial Referential Dependencies (RDs)

∀ūx̄g1(P(ū, x̄, g1) → ∃v̄ȳg2(R(v̄, ȳ, g2) ∧ ū = v̄ ∧ T(g1, g2))),

where ū, x̄, v̄ and ȳ are all disjoint, and where if ū = [u1, u2, . . . , un] and v̄ =
[v1, v2, . . . , vn], then ū = v̄ denotes the conjunction (u1 = v1)∧. . . ∧(un = vn).

For the purpose of the optimization strategy, we assume that the referencing attributes of
every foreign and referential dependency is set to be not null.

Example 3 (Example 1 cont.) Possible RDs for the schema in Example 1 are:

∀x1y1z1g1( Pl(x1, y1, z1, g1) → ∃x2y2z2g2( Co(x2, y2, z2, g2) ∧ y1 = x2 ∧ Within(g1, g2))) (6)

∀x1y1z1g1( Co(x1, y1, z1, g1) → ∃x2y2g2( St(x2, y2, g2) ∧ y1 = x2 ∧ Within(g1, g2))) (7)

The first RD expresses that for every place, there must be a county that contains it. Simi-
larly, the second RD expresses that for every county, there must exist a state that contains it.
�

Relational key constraints In addition to the spatial integrity constraints, we also have the
well-known primary-key and foreign-key constraints provided by the relational database
model. Recall that primary keys satisfy functional dependencies and foreign keys satisfy
referential dependencies over thematic attributes.
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Example 4 (Example 1 cont.) Given the schema in Example 1, for each predicate the
following thematic attributes are the corresponding primary and foreign keys.

Predicate Primary key Foreign key

St Ids –
Co Idc Ids

Pl Idp Idc

Remark 1 When identifying primary keys, it is possible to automatically derive TDs.
Indeed, the first three TDs of Example 2 are constraints derived from primary-key con-
straints. Also, if we have spatial semantics for foreign-key constraints between predicates
with spatial reference, we can express spatial referential dependencies. For example, by
knowing that foreign-key constraints imply an inclusion relationship, we could express
constraints of Example 3.

2.3 Spatial join queries

We concentrate on join queries, which are conjunctive queries of the form:

q(x̄) : ∃z̄(P(ȳ1, g1) ∧ R(ȳ2, g2) ∧ ψq ∧ Tq(g1, g2)),

where x̄ are free variables, this is, x̄ = (ȳ1 ∪ ȳ2 ∪ {g1, g2}) \ z̄, and ψq is a possibly empty
formula of equalities or inequalities of variables in ȳ1 ∪ ȳ2.

Example 5 (Example 1 cont.) A possible join query in the schema of Example 1 is:

q(x1, x2, g1, g2) : ∃y1z1y2z2( Co(x1, y1, z1, g1) ∧ Co(x2, y2, z2, g2) ∧ Meet(g1, g2)).

This query requests the identification and geometries of counties that meet each other.

A join query compares the spatial attributes from two tuples in order to find the pairs of
spatial attributes where the topological search condition T(g1, g2) holds true. The execution
cost of queries that involve search conditions over spatial attributes is high in comparison
with queries using search conditions on thematic attributes.

3 Semantic query optimization

Given a spatial join query over a database instance that satisfies a set of TDs and RDs, we
propose an optimization strategy that:

(i) detects if the answer to the query is the empty set, or
(ii) generates a new query, which is equivalent to but less expensive than the original

query, what we call rewriting.

The method detects an empty answer by finding a contradiction between the spatial
restriction (i.e, restriction expressed by the topological relation) of the query with respect
to the spatial restriction imposed by the integrity constraints. When rewriting the query,
the main idea is to derive the topological relation that exists between spatial attributes and
reformulate the query to remove the spatial condition (i.e., spatial join). In case we cannot
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remove the spatial condition the method tries to create a more selective query by adding a
new thematic condition what will filter tuples over which to check topological relations.

As it was stated before, a well-known strategy for query rewriting is the Chase and
Backchase [8], which basically expands and then refines the query in terms of integrity con-
straints. In principle, because our constraints are expressions in first order logic, we could
apply the same strategy by using the spatial constraints and composition of topological rela-
tions in the Backchase step. In what follows, we present an implementation of the semantic
optimization that precomputes the knowledge about topological relations derived from con-
straints and composition, and that can be applied to any query. This avoids the process of
Chase and Backchase for each query. We argue that this is a good approach because the
number of constraints is usually much less than the number of queries imposed to a database.

The basic idea is to match relational predicates and the topological relation of a query
with the predicates and the topological relation of spatial integrity constraints which are
known to be satisfied by the database instance. Because we assume that the data satisfies
the topological relations imposed by the constraints, we can simplify queries by removing
conditions that are known to be satisfied. This is a simple idea, but the challenge is to create
a systematic way to apply it.

To apply a matching process between constraints and queries, we first want to obtain
the knowledge that can be used in this process. In consequence, we apply an inference
process described in the next subsection that takes the original constraints and derives
all possible additional constraints. This process includes combinations of TDs, RDs, and
foreign-key conditions as we show below. Thus, given an original set of TDs and RDs, we
first infer additional TDs and a generalization of TDs, called extended topological depen-
dencies (ETDs). ETDs are a generalization of TDs as defined in [4] that can have more than
two relational predicates. This step can be done as an off-line preprocess before processing
any query.

3.1 Inference over spatial integrity constraints

In this section, we describe different types of inferences over combinations of RDs, TDs,
and key constraints.

A) A first type of inference is possible when combining RDs and foreign-key conditions.
Consider a RD of the form

∀ūx̄g1(P(ū, x̄, g1) → ∃v̄ȳg2R(v̄, ȳ, g2) ∧ x̄ = v̄ ∧ T(g1, g2)),

which expresses that if there exists a tuple in the relational predicate P, there must be a tuple
in R where the thematic condition x̄ = v̄ and the topological relation T(g1, g2) hold.

The RD alone does not ensure that the tuple in R such that x̄ = v̄ holds is unique.
However, combining the RD with the foreign-key (FK) condition such that attributes in v̄

are a super key of R, we can derive a new TD that imposes that, whenever x̄ = v̄ holds, the
topological relation T(g1, g2) between geometries in tuples P(ū, x̄, g1) and R(v̄, ȳ, g2) will
also hold. This is formalized with the following proposition.

Proposition 1 Given a database schema R, a set of SSICs � and a topological relation T, if
the RD ∀ūx̄g1(P(ū, x̄, g1) → ∃v̄ȳg2R(v̄, ȳ, g2) ∧ x̄ = v̄ ∧ T(g1, g2)) ∈ � and v̄ is a super
key of R, then the TD ∀̄(P(ū, x̄, g1) ∧ R(v̄, ȳ, g2) ∧ x̄ = v̄ → T(g1, g2)) is implied by �.
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Proof ∀ūx̄g1(P(ū, x̄, g1) → ∃v̄ȳg2R(v̄, ȳ, g2) ∧ x̄ = v̄ ∧ T(g1, g2)) with v̄ a super key of
R. Assume now that ∀ūx̄g1v̄ȳg2(P(ū, x̄, g1) ∧ R(v̄, ȳ, g2) ∧ x̄ = v̄ → T(g1, g2)) is not
true. Then, there must be tuples in P and R with x̄ = v̄ such that T(g1, g2) doesn’t hold.
However, because v̄ is a super key of R, there is only one tuple in R that holds x̄ = v̄ and
satifies T(g1, g2). We reach a contradiction.

Notice that if we derive a TD involving predicates P and R from a RD as in Proposition 1
with thematic conditions x̄ = v̄, and we have another TD with the negation of x̄ = v̄,
expressed as ¬(x̄ = v̄), we have the complete knowledge about the topological relation
between spatial attributes in any pair of tuples of P and R.

Example 6 (Example 3, 4 cont.) Considering the RD (6) in Example (3), primary key of
Co in Example (4), and Proposition 1, we can infer the following constraint:

∀x1y1z1g1x2y2z2g2( Pl(x1, y1, z1, g1) ∧ Co(x2, y2, z2, g2) ∧ y1 = x2 → Within(g1, g2)).

Similarly, from the RD (7), the primary key of St, it is possible to infer:

∀x1y1z1g1x2y2z2g2( Co(x1, y1, z1, g1) ∧ St(x2, y2, g2) ∧ y1 = x2 → Within(g1, g2)).

B) A second type of inference extends the notion of composition of topological rela-
tions [9] to the composition of TDs, which is formalized in the following axiom.

Proposition 2 Given a database schema R, a set of SSICs � and topological relations
T1 and T2, if the TDs ∀x̄ȳg1g2(P(x̄, g1) ∧ Q(ȳ, g2) ∧ ϕ1 → T1(g1, g2)) ∈ � and
∀ȳz̄g2g3(Q(ȳ, g2)∧R(z̄, g3)∧ϕ2 → T2(g2, g3)) ∈ �, then the TD ∀̄(P(x̄, g1)∧Q(ȳ, g2)∧
R(z̄, g3) ∧ ϕ1 ∧ ϕ2 → T(g1, g3)), with T = T1 ⊗ T2 is implied by �.

Proof Direct from the composition of topological relations.

Notice that the result of the composition produces a rule with more than two predicates
and, therefore, we refer to this constraint as an extended topological dependency (ETD).
This additional predicate is necessary to keep the conditions on the thematic attributes that
involve all three predicates.

Given an ETD or RD φ, we will denote by TP(φ) the pair of atoms whose spatial
attributes are compared by the topological relation in φ. For example, for φ1:(P(x1, x2, g1)∧
Q(y1, y2, y3, g2) ∧ R(z1, g3)∧ x1 = y1 ∧ y2 �= z1 → Overlap(g1, g3)), and φ2 :
P(x1, x2, g1) → ∃y1, y2, y3, g2(Q(y1, y2, y3, g2) ∧ x2 = y1 ∧ Within(g1, g2)) we have
TP(φ1) = [P(x1, x2, g1),R(z1, g3)] and TP(φ2) = [P(x1, x2, g1),Q(y1, y2, y3, g2)]. Note
that for a RD φ, TP(φ) is exactly the only two atoms of φ.

Example 7 (Example 6 cont.) Let us consider the TDs inferred in Example 6.

∀x1y1z1g1x2y2z2g2( Pl(x1, y1, z1, g1) ∧ Co(x2, y2, z2, g2) ∧ y1 = x2 → Within(g1, g2)).

∀x1y1z1g1x2y2z2g2( Co(x1, y1, z1, g1) ∧ St(x2, y2, g2) ∧ y1 = x2 → Within(g1, g2)).

Based on Proposition 2 and the composition of topological relation shown in Table 2, a new
ETD φ that constraints the topological relation between geometries in Pl and St through
predicate Co is:

∀x1y1z1g1x2y2z2g2x3y3z3g3( Pl(x1, y1, z1, g1) ∧ Co(x2, y2, z2, g2) ∧ St(x3, y3, g3)

∧y1 = x2 ∧ y2 = x3 → Within(g1, g3)).
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In this case, TP(φ) = [ Pl(x1, y1, z1, g1), St(x3, y3, g3)].

We can generalize the previous derivation to consider the composition of a sequence of
topological dependencies, which is formalized with the following proposition.

Proposition 3 Given a database schema R and a set of SSICs � if all the following hold:
∀x̄1x̄2g1g2(P1(ū1x̄1, g1) ∧ P2(x̄2, g2) ∧ ϕ1 → T1(g1, g2)) ∈ �

...
∀x̄i x̄i+1gigi+1(Pi (ūi x̄i , gi) ∧ Pi+1(x̄i+1, gi+1) ∧ ϕi → Ti (gi , gi+1)) ∈ �
...
∀x̄n−1x̄ngn−1gn(Pn−1(x̄n−1, gn−1) ∧ Pn(x̄n, gn) ∧ ϕn−1 → Tn−1(gn−1, gn)) ∈ �

then the ETD ∀(P1(x̄1, g1) ∧ . . . ∧ Pn(x̄n, gn) ∧ ϕ1 ∧ . . . ∧ ϕn−1 ∧ T(g1, gn), with T =
T1 ⊗ . . . ⊗ Ti ⊗ . . . ⊗ Tn−1 implied by �.

The proof is a straight forward extension of the proof for Proposition 2.
It is easy to see that this proposition can be also generalized to consider the composition

of ETDs.

C) Because RDs can infer TDs (see Proposition 1), and from this TDs we can infer ETDs,
it is also possible to have propositions to infer ETDs from the composition of RDs.
We are particularly interested in these ETDs because we can ensure that they can be
applied to tuples that are enforced to exist due to the referential dependencies. This is
better explained with the following example.

Example 8 Let us consider example 7 where the following ETD is implied:

∀x1y1z1g1x2y2z2g2x3y3z3g3( Pl(x1, y1, z1, g1) ∧ Co(x2, y2, z2, g2) ∧ St(x3, y3, g3)

∧y1 = x2 ∧ y2 = x3 → Within(g1, g3)).

This constraint is relevant to optimize join queries over predicates Pl and St. However, only
if there exists a tuple in Co that satisfies the given thematic conditions y1 = x2 ∧ y2 = x3,
the topological relation can be used to optimize the query. The existence of RDs (6) and (7)
in Example 3 makes it possible to ensure that such tuple does indeed exist.

As the previous example shows, we will be particularly interested in ETDs that are
derived from a sequence of RDs so that we can be sure there exist tuples for each atom in
the ETDs. Keeping this in mind, and using the propositions described in this section, we
now introduce the notion of a composition-dependency graph in a constructive fashion. This
graph is an operational structure that stores the information of the TDs and ETDs that are
derived during the preprocess of constraints and are useful for the optimization process.

3.2 Composition-dependency graph

Definition 1 Given a schema R and a set of SSICs �, let :

(i) �PK = {ψ ′
1, ψ

′
2, . . . , ψ

′
k} be the set of TDs in � derived from primary keys.

(ii) �RD = {φ1, φ2, . . . , φn} be the set of RDs in � of the form ∀ūx̄g1(P(ū, x̄, g1) →
∃v̄ȳg2(Q(v̄, ȳ, g2) ∧ x̄ = v̄ ∧ T(g1, g2))), with v̄ a super key of Q and P �= Q;
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(iii) �T D = {ψ1, ψ2, . . . , ψm} be the set of TDs in � that are not derived from primary
keys.

Without loss of generality we will assume that for every predicate P ∈ R its atoms in
�PK ∪ �RD ∪ �T D use the same variables.

The composition-dependency graph (CDG) 〈V, E, λr , λp, λs, λc, λt 〉 contains the rela-
tional predicates in � as vertices in set V , a set E of directed edges that represent TDs/ETDs
between those vertices, and four labeling functions for the edges. Given an edge e, λr(e)

returns the ordered pair of endpoints in V including their variables, λp(e) returns the con-
junction of predicates in V that form part of the TD/ETDs excluding the endpoints (or True
if there is no such predicates or conditions), λs(e) labels the edge with the way in which
the edge was created, which is codified by colors in the following description, λc(e) returns
the thematic conditions under which the constraint is triggered (or True if there is no such
condition), and λt (e) returns the topological relation associated with the edge.

The CDG is constructed iteratively with the following steps.

(G1) For every φ ∈ � ′
PK with φ : ∀x̄1ȳ1x̄2ȳ2g1g2(P(x̄1, ȳ1, g1) ∧ P(x̄2, ȳ2, g2) ∧ ϕ →

Equal(g1, g2)), let eφ ∈ E with λr(eφ) = TP(φ) = [P(x̄1, ȳ1, g1),P(x̄2, ȳ2, g2)],
λp(eφ) = True, λs(eφ) = red (solid line), λc(eφ) = ϕ and λt (eφ) = Equal(g1, g2).

(G2) For every φ ∈ �RD with φ : ∀x̄1x̄2g1g2(P1(x̄1, g1) → ∃x̄2, g2(P2(x̄2, g2) ∧ ϕ1 ∧
T1(g1, g2))) and ϕ1 a condition of the primary key of P2, we can deduce by Propo-
sition 1 a TD φ′ : ∀x̄1x̄2g1g2(P1(x̄1, g1) ∧ P2(x̄2, g2) ∧ ϕ1 → T1(g1, g2)). For
each of these φ′, let eφ′ ∈ E with λr(e

′
φ) = TP(φ′) = [P1(x̄1, g1),P2(x̄2, g2)],

λp(e′
φ) = True, λs(e

′
φ) = green (dashed line), λc(e

′
φ) = ϕ1 and λt (e

′
φ) = T1(g1, g2)

(G3) For every φ ∈ �T D with φ : ∀x̄1x̄2g1g2(P1(x̄1, g1) ∧ P2(x̄2, g2) ∧ ϕ → T(g1, g2)),
let eφ ∈ E with λr(eφ) = TP(φ) = [P1(x̄1, g1),P2(x̄2, g2)], λp(eφ) = True,
λs(eφ) = blue (dotted line), λc(eφ) = ϕ and λt (eφ) = T(g1, g2).

(G4) For every e1, e2 ∈ E such that λs(e1) = green, λs(e2) = green, λr(e1) =
[P1(x̄1, g1), P2(x̄2, g2)], λr(e2) = [P2(x̄2, g2),P3(x̄3, g3)], and using Proposition 3
add, if it does not exist, an edge e3 to E such that λr(e3)=[P1(x̄1, g1), P3(x̄3, g3)],
λp(e3) = λp(e1) ∧ P2(x̄2, g2) ∧ λp(e2), λs(e3) = green, λc(e3) = λc(e1) ∧ λc(e2)

and λt (e3) = λt (e1) ⊗ λt (e2).
Do this step until no new green edges are added.

(G5) For every e1, e2 ∈ E such that λs(e1) = green, λs(e2) = blue, λr(e1) =
[P1(x̄1, g1), P2(x̄2, g2)], λr(e2) = [P2(x̄2, g2),P3(x̄3, g3)] and P1 �= P3, using
Proposition 2 add e3 to E with λr(e3) = [P1(x̄1, g1),P3(x̄3, g3)], λp(e3) =
λp(e1) ∧ P2(x̄2, g2) ∧ λp(e2), λs(e3) = red , λc(e3) = λc(e1) ∧ λc(e2), λt (e3) =
λt (e1) ⊗ λt (e2).

Do this until no more red edges can be added
(G6) Do the following until no more changes can be made:

(a) If an edge e ∈ E has an inconsistent λp(e) ∧ λc(e), then remove e from E.
(b) If two parallel edges e1, e2 ∈ E are such that λc(e1) → λc(e2) then let

λt (e1) := λt (e1) ∩ λt (e2).
(c) If two edges have the same labels λr , λp , λs , λc and λt , remove one of the edges.
(d) For each edge, we eliminate redundancy in the conditions and predicates that

are not used in both thematic and topological conditions.

The CDG as defined above includes a set of edges that represent: (i) TDs derived from
primary key constraints (as red edges). (ii) Original TDs (as blue edges). (ii) TDs derived
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Fig. 2 Example of a composition-dependency graph (Red edges as solid lines, green edges as dashed lines
and blue edges as dotted lines)

from RDs by Proposition 1 (as green edges). (iii) ETDs derived from composition of edges
(Proposition 3) derived from (ii) (as green edges). (iv) ETDs derived from the composition
of edges derived from (ii) plus an original TD (as red edges). When deriving new edges,
red edges are not used for any further composition because they represent primary-key
constraints that can lead to undesirable loops or because they are TDs whose composition
with other edges cannot guarantee the existence of tuples that make possible the composition
as we explained in the previous section.

Even though the composition-dependency graph does not have all the possible
TDs/ETDs we can infer from a set of SSICs �, it includes the ones that are useful for the
optimization process detailed in the next section.

Example 9 (Example 6 cont.) Figure 2 illustrates the composition-dependency graph
derived from the constraints in Examples 2, 3, and 4. The graph is complemented with the
Table 3 to describe the edges of the graph.

In this example, edges e1 to e3 can be automatically derived from primary-key conditions.
Edges e4 and e5 add a spatial semantics to foreign-key constraints. Edges e6 and e7 are

Table 3 Description of edges of graph in Fig. 4

E λr λp λs λc λt

e1 [ Pl(u, n, c, gp), Pl(u′, n′, c′, g′
p)] True red u = u′ Equal(gp, g′

p)

e2 [ Co(v,m, s, gc), Co(v′,m, s′, g′
c)] True red v = v′ Equal(gc, g

′
c)

e3 [ St(w, e, gs), St(w′, e′, g′
s )] True red w = w′ Equal(gs , g

′
s )

e4 [ Pl(u, c, n, gp), Co(v,m, s, gc)] True green c = v Within(gp, gc)

e5 [ Co(v, s, n, gc), St(w, e, gs)] True green w = s Within(gp, gc)

e6 [ St(v, s, gc), St(w, e, gs)] True blue v �= w Meet(gc, gs)∨
Disjoint(gc, gs)

e7 [ Co(v, s, n, gc), Co(w, e, s, gs)] True blue v �= w Meet(gc, gs)∨
Disjoint(gc, gs)

e8 [ Pl(u, c, n, gp), St(w, e, gs)] Co(v, n, s, gc) green (c = v) ∧ (s = w) Within(gp, gs)

e9 [ Co(v, s,m, gc), St(w, e, gs)] True red s �= w Meet(gc, gs)∨
Disjoint(gc, gs)

e10 [ Pl(u, c, n, gp), St(w, e, gs)] Co(v, s, n, gc) red (c = v) ∧ (s �= w) Meet(gc, gs)∨
Disjoint(gc, gs)
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semantic constraints that should be specified by the database designer. Edges e8 to e10 are
derived automatically from our strategy.

Among the derived edges, a further process to eliminate redundancy was applied to edge
e9. Originally, by applying (G5) we obtain a ETD of the form:

∀( Co(v, s, m, gc) ∧ St(u, p, g′
s ) ∧ St(w, e, gs) ∧ s = u ∧ u �= w → Meet(gc, gs) ∨ Disjoint(gc, gs)).

However, this ETD can be simplified by having that s = u ∧ u �= w → s = w and
topological conditions applied to attributes of only two predicates. So, we finally obtain:

∀( Co(v, s, m, gc) ∧ St(w, e, gs) ∧ s �= w → Meet(gc, gs) ∨ Disjoint(gc, gs)).

3.3 Semantic query preprocessing

We describe the proposed optimization strategy based on a semantic query preprocessing in
terms of a join query of the form

q(x̄) : ∃z̄(P(ȳ1, g1) ∧ R(ȳ2, g2) ∧ ψq ∧ Tq(g1, g2)),

where x̄ are free variables, this is x̄ = (ȳ1 ∪ ȳ2 ∪ {g1, g2}) \ z̄, and ψq is a possibly empty
formula of equalities or inequalities of variables in ȳ1 ∪ ȳ2.

Given a set of constraints � that are satisfied by the data, the strategy works by matching
the relational predicates in the query q with respect to relational predicates in TDs or ETDs
in �. When the match occurs, the strategy analyzes query conditions (i.e., equalities or
inequalities of thematic attributes and topological relations) to conclude if a query has empty
results or it can be rewritten. The rewritten of a query can eliminate spatial-join conditions
(i.e., topological relations) or add thematic conditions to reduce the number of tuples over
which to check topological relations.

The optimization strategy uses integrity constraints to derive possible topological rela-
tions between spatial attributes and reduce, therefore, the computation cost of spatial joins.
As we described in the previous section, if we have a TD of the form ∀(P(x̄, g1)∧Q(ȳ, g2)∧
ϕ1 → T(g1, g2)) and another TD of the form ∀(P(x̄, g1) ∧ Q(ȳ, g2) ∧ ϕ2 → T′(g1, g2)),
where ϕ2 = ¬ϕ1, we can completely characterize the topological relation between the
geometry of any pair of tuples in P and Q.

In general terms, an ETD can be seen as a formula of the form �∧ψ → T (g, g′), where
� is a conjunction of relational predicates and thematic conditions, g and g′ are variables
of spatial attributes in predicates of �, and ψ is a equality or inequality of variables in �.
Notice that there is a mapping from this expression to edges in a CDG G, such that for
an edge e ∈ G, � is a conjunction of the predicates in λ(e) and predicates and condition
in λp(e), ψ is λc(e), and T (g, g′) is λt (e). Now, if we have two ETDs of the form φ1 :
� ∧ ψ → T (g, g′) and φ2 : � ∧ ¬ψ → T ′(g, g′), where � is known to be true, then φ1
and φ2 cover all possible cases to derive the topological relation between g and g′.

We are now in condition to introduce the semantic preprocessing to rewrite join queries.
Let us also consider a schema R, a set of SSICs �, the CDG G =

〈V, E, λr , λp, λs, λc, λt 〉 derived from �, and a join query q(x̄) : ∃z̄(P(ȳ1, g1)∧R(ȳ2, g2)∧
ψq ∧ Tq(g1, g2)). If there exists an edge e ∈ E such that λr(e) = [P(ȳ1, g1),R(ȳ2, g2)], it
is possible to rewrite the query based on the three following cases, which are summarized
in Table 4:

(C1) λt (e) ∩ Tq = ∅:
This means that under the condition imposed by λp(e) and λc(e), the topological

relation of any pair of tuples does not satisfy Tq and, therefore, under this condition,
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Table 4 TD/ETD-based optimization

Case Condition Rewritting

(C1) λt (e) ∩ Tq = ∅ q∅

(C2) λt (e) ⊆ Tq

∃̄P(x, g1) ∧ R(y, y2) ∧ λp(e) ∧ λc(e) ∧ ψq

(C3) Otherwise ∃̄P(x, g1) ∧ R(y, y2) ∧ λp(e) ∧ λc(e) ∧ ψq ∧ Tq

the result is empty, i.e., q∅. Consequently, we have to check for pairs of tuples that
satisfy ψq and λp(e), but not λc(e), that is, tuples that satisfy ¬λc(e). As we stated
in the previous section, ETDs included in the CDG guarantees that there exist tuples
that satisfy λp(e), which makes possible to evaluate conditions in λc(e) or ¬λc(e).

(C2) λt (e) ⊆ Tq :
This means that under the condition imposed by λp(e) and λc(e), pairs of tuples

satisfy not only λt (e) but also Tq . Consequently, tuples that satisfy λp(e) and λc(e)

and also ψq will satisfy the topological relation Tq . Notice, however, that λc(e) and
ψq may be in contradiction, (e.g., ψq : a = b and ψq : a �= b), in which case, the
answer to this query will be empty. In addition, we have to check for those pairs of
tuples that satisfy ¬λc(e) but still may satisfy Tq .

(C3) Otherwise, this is, if λt (e) ∩ Tq �= ∅:
In this case and because none of the previous conditions are satisfied, we run the

query by adding λp(e) and λc(e), if any, to have a possibly more selective query
with additional conditions that reduce the tuples over which to check topological
relations. In this process, redundant conditions are eliminated.

We can describe the query preprocessing as a sequence of steps for a join query q(x̄) :
∃z̄(P(x̄1, g1) ∧ R(x̄2, g2) ∧ ψq ∧ Tq(g1, g2)).

(S1) Construct the CDG G from integrity constraints. This is an off-line preprocessing.
(S2) Search for an edge e in G such that λr(e) = [P(x̄1, g1),R(x̄2, g2)]. If such edge e

exists, go to the following step (3). If such edge does not exist, then check if there
exists e′ in G such that λr(e

′) = [R(x̄2, g2),P(x̄1, g1)]. If e′ exists, go to the follow-
ing step (S3) making the query q(x̄) : ∃z̄(R(x̄2, g2) ∧ P(x̄1, g1) ∧ ψq ∧ Tc

q(g2, g1)),
where Tc

q is the converse of Tq . If there is no such e′, then return the original q.
(S3) Rewrite q into q1 based on the comparison between λt (e) and Tq using Table 4.
(S4) Check if there exists another e′ in G such that λr(e) = λr(e

′) and λc(e) = ¬(λc(e
′)).

If this e′ exists, then create a new query q2 based on the comparison between λt (e
′)

and Tq using Table 4. If e′ does not exist, then make q2 : ∃̄P(x, g1) ∧ R(y, y2) ∧
λp(e) ∧ ¬(λc(e)) ∧ ψq ∧ Tq .

(S5) Create query qo as the union of q1 and q2. This is equivalente to a disjunction of q1
and q2.

(S6) Eliminate possible duplication of thematic conditions in qo and detect any possible
contradiction between thematic conditions. If there is any contradiction or if there is
condition False in a subquery of qo, the result of the subquery is the empty set.

This iterative process will result in a new query that can add relational predicates and the-
matic conditions as it happens when using a Chase and Backchase technique [1]. As we
will see in the experimental evaluation, adding these conditions produces a query that can
be processed more efficiently.
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In the process described above, there may be many possible ETDs or TDs to apply in
the query preprocessing. In such case, one could analyze which of the possible rewritings
will produce queries whose process is more efficient and where the priority is to void the
computation of the topological condition of the query.

Example 10 Let us consider the schema and constraints in Examples 2, 3, and 4, upon which the
CDG G in Example 9 is derived. Also, let us have query q(x1, x2) : ∃y1g1y2g2 St(x1, y1, g1)∧
St(x2, y2, g2) ∧ Meet(g1, g2), with ψq : True (i.e., an empty thematic condition). Edge e3
matches predicates and, because {Meet} ∩ λt (e3) = ∅, we can apply case (C1) in Table 4
giving as a first result q∅. Following step (S4) of the methodology, we find edge e6 such that
λr(e6) = λr(e3) and apply case (C3) in Table 4. Then a second result q2 is:

q2(x1, x2) : ∃y1g1y2g2( St(x1, y1, g1) ∧ St(x2, y2, g2) ∧ ¬(x1 = x2) ∧ Meet(g1, g2)).

Then, q(x1, x2) is rewritten into qo(x1, x2) by making the union of q∅ ∪ q2(x1, x2), which
doesn’t have contradictions, resulting in:

qo(x1, x2) : ∃y1g1y2g2( St(x1, y1, g1) ∧ St(x2, y2, g2) ∧ ¬(x1 = x2) ∧ Meet(g1, g2)).

Let us consider now a second query q(x1x2) : ∃y1z1g1y2g2 Pl(x1, y1, z1, g1) ∧
St(x2, y2, g2) ∧ Meet(g1, g2), with ψq ′ : True. From CDG G, we get the edge e8 such that
{Meet} ∩ λt (e8) = {Meet} ∩ {Within} = ∅ and a first result q∅. In (S4) the methodology
finds a second edge e10 that matches relation predicate in query q ′ and satisfies case (C3)
in Table 4, which produces a second query q2:

q2(x1x2) : ∃y1z1g1y2g2x3y3z3g3( Pl(x1, y1, z1, g1) ∧ Co(x3, y3, z3, g3) ∧ St(x2, y2, g2) ∧
y1 = x3 ∧ y3 �= x2 → Meet(g1, g2)).

Then, q(x1, x2) is rewritten into qo(x1, x2) by making the union of q∅∪q2(x1, x2) resulting in:

qo(x1x2) : ∃y1z1g1y2g2x3y3z3g3( Pl(x1, y1, z1, g1) ∧ Co(x3, y3, z3, g3) ∧ St(x2, y2, g2) ∧
y1 = x3 ∧ y3 �= x2 → Meet(g1, g2)).

The preprocessing as defined above terminates. This can be guaranteed because there is
a finite number of useful TDs and ETDs, and a finite number of cases in Table 4.

3.4 Algorithms

This section gives the algorithms for constructing a CDG and algorithms for the query rewriting.
Algorithm 1 constructs a CDG as described in Definition 1. The algorithm starts by

creating nodes and adding edges derived from the set of topological dependencies �T D ,
a set denoted by � ′

T D , and referential dependencies �RD ; that is, adding loop edges on a
single predicate of TDs in � ′

T D and edges between different relational predicates in TDs
and RDs in �T D and �RD , respectively. Then, the algorithm derives new edges by the
composition of topological relations as it is described in steps (G4) and (G5) of Definition 1.
Recall that by Definition 1, an iterative process can expand the composition of several green
edges, but a composition between green and blue edges will end with a single composed
red edge. We apply this composition in a breadth-search fashion, adding new green edges
to the queue of previously existing edges.
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Let n1, n2 and n3 the number of constraints in �RD , �T D , and �PK , respectively. The
complexity of the Algorithm 1 is divided into three steps: (i) Add the initial edges from
�PK , �T D and �RD . (ii) Add edges from the composition of green edges or between
green and blue (Algorithm edgeComposition). (iii) Eliminate redundancies on thematic
conditions. Step (i) has a cost of O(n1 + n2 + n3), assuming no duplication of constraints.

For the step (ii), only constraints in �RD and �T D are used. In the first part, the Algo-
rithm edgeComposition creates new green edges from the composition of TDs derived
from �RD . In the worse case, the algorithm will complete a graph, which has initially a
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single path between any pair of nodes and, at the end, it has edges between any pair of
nodes. For n1 number of constraints, there are in the worse case, n1 initial green edges.
A first set of green edges is created by composing two adjacent edges in the initial graph.
Using adjacency-matrix representation of the CDG with direct access to adjacent nodes, this
implies O(n1 − 1) checks, producing at most (n1 − 1) edges. Notice that the nodes of these
edges already exist in the graph. The new derived edges in the worst can then be composed
with an original green, producing (n1 − 2), following a breadth search. Thus, the process
is upper bound by �

n1−1
i=1 (n1 − i), which is in O(n2

1). For the second part of Algorithm
edgeComposition, the composition needs just one iteration over green edges to find a blue
edge with whom to be composed, given a cost equal to the total number of possible green
edges, which in the worst case, it is in O(n2

1). Consequently, the total cost of (ii) is upper
bound by O(n2

1).
Finally, the step (iii) refines the CDG by checking edges for redundancy. Using a struc-

ture with direct access to edges over the same pair of nodes gives us a linear cost with respect
to the number of edges, which in the worst case it is upper bound by O(n2

1+n2+n3). Notice
that in practice, this upper bound does not affect the cost of query processing because values
of n1, n2, and n3 are much lower than the number of tuples in the database instance.

Algorithm 3 applies the query preprocessing following the strategy defined in Section 3.3
using Table 4. In this algorithm, q∅ is a query with empty results and ψq is, a possible empty,
conjunction of thematic equalities or inequalities in the join query. Finally, the Algorithm 3
calls a subroutine cleanQuery to eliminate redundant conditions and to check contradiction
of thematic conditions, in which case, the algorithm returns q∅. Using direct access to edges
in the CDG between two specific predicates, the algorithm run in linear time with respect
to the number of edges in the CDG that match the predicates.
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4 Experimental evaluation

We run an experiment to compare the time cost of processing join queries with and without
rewriting. The experimental evaluation uses a real data set extracted from the TIGER/ Line
Shapefile of the U.S. Census Bureau.3 The data set consists of tables about states ( St),
counties ( Co), places ( Pl), landmarks ( Lm), census tracks ( Ct), census blocks ( Cb),
urban areas ( Ua), and primary roads ( Rd) of U.S.A, which cover data of the benchmark
of spatial database performance in [20]. Table 5 shows the details of the data used in the
experimental evaluation, where underlined attributes are primary keys, FKey are foreign
keys, Size is the size of the tables in Postgres, and Index refers to the size of the indexed
spatial attributes using R-tree. Note that in this table, the relation schema Pl has a foreign
key to St and not to Co as in Example 1.

We include data about administrative boundaries in tables St and Co and spatial features
of Pl and Lm, which have a hierarchical structure represented through foreign keys. The
spatial semantics of these relations is then formally expressed by topological dependency
and referential constraints.

We use subset of queries and data from an existing benchmark [20] to make the experi-
mental evaluation replicable with respect to a benchmark found in the literature. In addition,
we add Ct, Cb, Ua, and Rd to use larger data sets and features of type lines. As the exper-
imental evaluation will show, using such common constraints as topological dependencies
for primary keys results in a query rewritten that reduces the cost of processing spatial join
queries.

To run the preprocessing, the data set is complemented with the set of spatial integrity
constraints. Besides the traditional dependency constraints on thematic attributes that arise
from primary and foreign key constraints, there are also topological dependencies that
enforce primary keys on spatial attributes and topological and referential dependencies that
capture the spatial semantics of the data.

For this experimental evaluation, the topological dependency constraints are:

(i) ∀( St(x1, y1, z1, g1) ∧ St(x2, y2, z2, g2) ∧ x1 = x2 → Equal(g1, g2))

(ii) ∀ Co(x1, y1, z1, g1) ∧ Co(x2, y2, z2, g2) ∧ x1 = x2 → Equal(g1, g2))

(iii) ∀ Pl(x1, y1, z1, g1) ∧ Pl(x2, y2, z2, g2) ∧ x1 = x2 → Equal(g′, g))

(iv) ∀( Lm(x1, y1, z1, g1) ∧ Lm(x2, y2, z2, g2) ∧ x1 = x2 → Equal(g1, g2))

3http://www.census.gov/geo/maps-data/data/tiger.html

http://www.census.gov/geo/maps-data/data/tiger.html
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Table 5 Data of the experimental evaluation

Schema FKeys Tuples Size (Mb) Index (Mb)

St(sid,name,division,geom) − 56 15 15

Co(cid,sid,name,geom) sid 3234 129 128

Pl(pid, sid,name,geom) sid 28556 206 134

Lm(lid,sid,name,geom) sid 902664 141 51

Ct(ctid,sid,cid,name,geom) cid,sid 74133 650 469

Cb(cbid,ctid,sid,cid,name,geom) ctid,cid,sid 11709632 13000 2801

Ua(uid,name,geom) − 3601 139 132

Rd(prid,name,geom) − 11574 51 20

(v) ∀( Ct(x1, y1, z1, w, 1, g1) ∧ Ct(x2, y2, z2, w2, g2) ∧ x1 = x2 → Equal(g1, g2))

(vi) ∀( Cb(x1, y1, z1, w, 1, v1g1) ∧ Cb(x2, y2, z2, w2, v2, g2) ∧ x1 = x2 →
Equal(g1, g2))

(vii) ∀( Ua(x1, y1, g1) ∧ Ua(x2, y2, g2) ∧ x1 = x2 → Equal(g1, g2))

(viii) ∀( Rd(x1, y1, g1) ∧ Rd(x2, y2, g2) ∧ x1 = x2 → Equal(g1, g2))

(ix) ∀( St(x1, y1, z1, g1) ∧ St(x2, y2, z2, g2) ∧ x1 �= x2 → Disjoint(g1, g2) ∨
Meet(g1, g2))

(x) ∀( Co(x1, y1, z1, g1) ∧ Co(x2, y2, z2, g2) ∧ x1 �= x2 → Disjoint(g1, g2) ∨
Meet(g1, g2))

(xi) ∀( Ct(x1, y1, z1, w1, g1) ∧ Ct(x2, y2, z2, w2, g2) ∧ x1 �= x2 →
Disjoint(g1, g2) ∨

Meet(g1, g2))

(xii) ∀( Cb(x1, y1, z1, w1, v1, g1) ∧ Cb(x2, y2, z2, w2, v2, g2)∧ x1 �= x2 →
Disjoint(g1, g2) ∨

Meet(g1, g2))

Several of these constraints can be automatically derived from primary key conditions.
Indeed, constraints (i) to (viii) are automatically derived. The designer is in charge of
expressing additional topological constraints as the application requires, such as constraints
(ix) to (xii).

Topological referential constraints are then used to impose a spatial semantics to the for-
eign key constraints. For example, if there is a county, then there exists a state that spatially
contains the county. This also applies for places and landmarks with respect to states, and
for census blocks with respect to census tracks, as the following constraints express:

(ix) ∀x1y1z1g1( Co(x1, y1, z1, g1) → ∃x2y2z2g2( St(x2, y2, z2, g2) ∧ y1 = x2 ∧
Within(g1, g2)))

(x) ∀x1y1z1g1( Pl(x1, y1, z1, g1) → ∃x2y2z2g2( St(x2, y2, g2) ∧ y1 = x2 ∧
Within(g1, g2)))

(xi) ∀x1y1z1g1( Lm(x1, y1, z1, g1) → ∃x2y2z2g2( St(x2, y2, g2) ∧ y1 = x2 ∧
Within(g1, g2)))

(xii) ∀x1y1z1g1( Cb(x1, y1, z1, w1, v1, g1) → ∃x2y2z2g2( Ct(x2, y2, z2, w2, g2) ∧ y1 =
x2 ∧ Within(g1, g2)))

(xiii) ∀x1y1z1g1( Ct(x1, y1, z1, w1, g1) → ∃x2y2z2g2(Co(x2, y2, z2, w2, g2)∧z1 = x2 ∧
Within(g1, g2)))
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Fig. 3 The composition-dependency graph for the experimental evaluation (Red edges as solid lines, green
edges as dashed lines and blue edges as dotted lines)

Figure 3 and Table 6 show the CDG with the useful TDs and ETDs derived from the
constraints, where the first eight edges can be automatically derived from primary key con-
ditions, edges e9 to e17 are the 9 constraints that required to be specified and the last edges
e18 to e25 are derived from the algorithm.

We use 15 join queries, where queries q1 to q8 are basic queries to analyze scalability
in terms of number of tuples, and queries q9 to g15 are queries that exploit different cases
where the optimization process may have an effect. Because the data satisfy the integrity
constraints, there should be no answers to q11 and q12. Table 7 shows the original queries qi

and how they are rewritten into qo
i using the preprocessing based on the integrity constraints

and the derived CDG.
The experiments compared the time cost of processing the original query and the query

after preprocessing or rewritten on a database management system. To distinguish the effect
of spatial indexing used by the DBMS, we also tested processing cost with and without indexing.

In addition, and following a partition-based optimization [17], we compared our
approach with a strategy that partitions a unique table in tables by states such that join
queries apply over smaller number of tuples. This strategy can add additional cost by apply-
ing queries to several tables, but as we will see with the experimental results, it provides a
basic optimization useful in several queries.

Notice that, although the time cost depends on the algorithm for join queries used by the
SDBMS, by comparing the cost of answering the query with and without preprocessing we
are just evaluating the effect of rewritten, where the spatial joins are solved by the same
algorithm for the original and modified query.

The experiments ran in a computer with Intel Intel Xeon E3-1220 v5, 64GB DDR4
memory, and PostgreSQL 9.5.12 extended with PostGIS 2.2.1.

Table 8 shows the cost of processing queries in Table 7, where RW is the time of prepro-
cessing plus query rewriting in ms, qi is the time in ms of solving the original query, qirw is
the time used to solve the rewritten query qi , and qipart is the time to solve the query qi by
the strategy of data partition to process the query.

To clarify how well the optimization strategy works with respect to the original query,
Fig. 4 shows a graph of the time ratio between a query optimized by rewritten (qi{rew} ) and
by partitioning (qi{part} ) with respect to the original query (qi), without (no index) or with
(index) spatial indexing.
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Table 7 Reformulation of queries for experiments

Original qi and final qo
i queries

q1(i, i
′, g, g′) : ∃( St(i, n, d, g) ∧ St(i′, n′, d ′, g′) ∧ Meet(g′, g))

qo
1 (i, i′, g, g′) : ∃( St(i, n, d, g) ∧ St(i′, n′, d ′, g′) ∧ i �= i′ ∧ Meet(g′, g))

q2(i, i
′, g, g′) : ∃( Rd(i, n, g) ∧ Rd(i′, n′, g′) ∧ Meet(g′, g))

qo
2 (i, i′, g, g′) : ∃( Rd(i, n, g) ∧ Rd(i′, n′, g′) ∧ i �= i ∧ Meet(g′, g))

q3(i, i
′, g, g′) : ∃( Co(i, n, d, g) ∧ Co(i′, n′, d ′, g′) ∧ Meet(g′, g))

qo
3 (i, i′, g, g′) : ∃( Co(i, n, d, g) ∧ Co(i′, n′, d ′, g′) ∧ i �= i′ ∧ Meet(g′, g))

q4(i, i
′, g, g′) : ∃( Ua(i, n, g) ∧ Ua(i′, n′, g′) ∧ Meet(g′, g))

qo
4 (i, i′, g, g′) : ∃( Ua(i, n, g) ∧ Ua(i′, n′, g′) ∧ i �= i′ ∧ Meet(g′, g))

q5(i, i
′, g, g′) : ∃( Lm(i, n, d, g) ∧ Lm(i′, n′, d ′, g′) ∧ Meet(g′, g))

qo
5 (i, i′, g, g′) : ∃( Lm(i, n, d, g) ∧ Lm(i′, n′, d ′, g′) ∧ i �= i′ ∧ Meet(g′, g))

q6(i, i
′, g, g′) : ∃( Pl(i, n, d, g) ∧ Pl(i′, n′, d ′, g′) ∧ Meet(g′, g))

qo
6 (i, i′, g, g′) : ∃( Pl(i, n, d, g) ∧ Pl(i′, n′, d ′, g′) ∧ i �= i′ ∧ Meet(g′, g))

q7(i, i
′, g, g′) : ∃( Ct(i, n, d, e, g) ∧ Ct(i′, n′, d ′, e′, g′) ∧ Meet(g′, g))

qo
7 (i, i′, g, g′) : ∃( Ct(i, n, d, e, g) ∧ Ct(i′, n′, d ′, e′, g′) ∧ i �= i′ ∧ Meet(g′, g))

q8(i, i
′, g, g′) : ∃( Cb(i, n, d, e, f, g) ∧ Cb(i′, n′, d ′, e′, f ′g′) ∧ Meet(g′, g))

qo
8 (i, i′, g, g′) : ∃( Cb(i, n, d, e, f, g) ∧ Cb(i′, n′, d ′, e′, f ′, g′) ∧ i �= i′ ∧ Meet(g′, g))

q9(i, i
′, g, g′) : ∃( St(i, n, d, g) ∧ Co(i′, s, n′, g′) ∧ Within(g′, g))

qo
9 (i, i′, g, g′) : ∃( St(i, n, d, g) ∧ Co(i′, s, n′, g′) ∧ i = s)

q10(i, i
′, g, g′) : ∃( St(i, n, d, g) ∧ Pl(i′, c, n′, g′) ∧ Within(g′, g))

qo
10(i, i

′, g, g′) : ∃i′′sn′′g′′( St(i, n, d, g) ∧ Pl(i′, c, n′, g′) ∧ Co(i′′, s, n′′, g′′) ∧ i = s ∧ i′′ = c)

q11(i, i
′, g, g′) : ∃( Co(i, s, n, g) ∧ Co(i′, s′, n′, g′) ∧ Overlap(g′, g))

qo
11(i, i

′, g, g′) : q∅ (empty result)

q12(i, i
′, g, g′) : ∃( St(i, n, d, g) ∧ Pl(i′, n′, d ′, g′) ∧ Overlap(g′, g))

qo
12(i, i

′, g, g′) : q∅ (empty result)

q13(i, i
′, g, g′) : ∃( St(i, n, d, g) ∧ Ct(i′, n′, d ′, g′) ∧ Within(g′, g))

qo
13(i, i

′, g, g′) : ∃( St(i, n, d, g) ∧ Ct(i′, n′, d ′, g′) ∧ Co(i′′, s′, n′′, g′′) ∧ i′′ = n′ ∧ s′ = i)

q14(i, i
′, g, g′) : ∃( St(i, n, d, g) ∧ Ct(i′, n′, d ′, e′, g′) ∧ Meet(g′, g))

qo
14(i, i

′, g, g′) : ∃( St(i, n, d, g) ∧ Ct(i′, n′, d ′, e′, g′) ∧ Co(i′′, s′, n′′, g′′) ∧ i′′ = n′ ∧ s′ = i

∧Meet(g, g′′))
q15(i, i

′, g, g′) : ∃( Co(i, n, d, g) ∧ Cb(i′, n′, d ′, e′, f ′, g′) ∧ Within(g′, g))

qo
15(i, i

′, g, g′) : ∃( Co(i, n, d, g) ∧ Cb(i′, n′, d ′, e′, f ′, g′) ∧ Ct(i′′, s′, n′′, d ′′, g′′)
∧n′′ = i ∧ n′ = i′′ ∧ Meet(g, g′′))

The experiments show that by replacing the spatial by classical joins reduces signifi-
cantly the processing cost of the query. The use of a spatial indexing structure plus the
preprocessing strategy improves, or at least keeps, the same time cost for query processing.
The experimental evaluation also shows that query rewriting outperforms the partition-based
strategy in most cases. In cases when this does not happen (queries 7 and 8), both strategies
outperform the cost of the original query. In these cases, the thematic constraints introduced
by the query rewriting (x �= y) are not able to filter out enough tuples to compensate the
optimization of running spatial joins with less number of tuples.

From queries 9 to 15, the results highlight the advantage of the proposal. In these cases
there is a direct or indirect relationship through composition that makes possible to filter out
tuples based on a thematic constraint and an additional relational predicate. For example,
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Table 8 Cost of query processing in ms

Query RW No Index Index

i qi qirew qipart qi qirew qipart

1 7 15987 8152 15987 14782 7512 14782

2 7 205846 172898 172898 82391 63851 82391

3 8 205205 171200 220445 123878 69189 130798

4 7 141440 71530 141440 103548 31316 103548

5 8 44721400 37469442 44721400 71884 65321 70648

6 9 1947167 1512667 1746215 144913 60884 99955

7 6 9425922 7260801 6421350 662093 377368 302666

8 8 164417336 125269852 90314947 84006668 26882090 19421200

9 9 15808 1 13 14390 1 10

10 9 163767 24 30 10378 28 41

11 6 192828 0 201346 36825 0 40379

12 6 207481 0 201647 203621 0 203004

13 43 302827 389 106 39617 416 107

14 45 386505 251329 380547 388283 255221 374017

15 44 17460515 3715014 13004515 14745648 3715647 10220999

the query that relates census blocks with counties, which can be optimized by introducing an
additional condition that relates a census block with its census tract that is also related to a
county. The original foreign-key constraints relate census blocks with census tracts, and cen-
sus tracts with counties. Then, by composition of these constraints, we introduce additional
conditions that reduce the tuples over which to apply spatial joins. This is a simple strategy
that can be systematically applied without consideration of the data itself in the tables.

Fig. 4 Time ratio between rewritten- and partitioning-based optimization strategies with respect to the
original query without and with spatial indexing
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It is also worth to notice that using spatial indexing is not always the best option. In
particular, when using a spatial join with overlap (queries 11 and 12), where the index is not
able to filter out tuples and make the query more selective.

5 Conclusions

The work in this paper presents a strategy for rewriting spatial join queries in terms of
the semantic information given by integrity constraints. The goal was to avoid the com-
putation of spatial joins when possible by using topological dependencies and topological
referential constraints to extract the topological relations that spatial attributes satisfy in a
consistent database. This strategy can complement state-of-the-art methods for spatial joins
using indexing structures. The work shows that a strategy like this can be useful even for
case with simple constraints defined by primary and foreign keys.

As future work, we would like to study the effect of null values in the query processing
and include new integrity constraints, as check constraints defined in [4]. The consideration
of other types of spatial queries is also possible; however, our preliminary results show that
for range queries most of the optimization can be done within the algorithm of searching
using the existing indexing structures.

Acknowledgements This work has been funded by Fondecyt 1170497 and by the Millennium Institute for
Foundational Research on Data, Chile.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Popa L, Deutsch A, Tannen V (2005) Query Reformulation with Constraints
2. Aref WalidG, Samet Hanan (1991) Optimization for spatial query processing. In: 17th international

conference on very large data bases, september 3-6, 1991, barcelona, catalonia, spain, proceedings, pp 81–90
3. Bogorny V, Engel PM, Alvares LOC (2005) Towards the reduction of spatial join for knowledge dis-

covery in geographic databases using geo-ontologies and spatial integrity constraints. In: Proc of the
ECML/PKDD second workshop on knowledge discovery and ontologies (KDO’2005), pp 51–58

4. Bravo L, Rodrı́guez AM (2012) Formalization and reasoning about spatial semantic integrity constraints.
Data Knowl Eng 72:63–82

5. Clementini E, Sharma J, Egenhofer MJ (1994) Modelling topological spatial relations: strategies for
query processing. Comput Graph 18(6):815–822

6. Deutsch A, Ludäscher B, Nash A (2007) Rewriting queries using views with access patterns under
integrity constraints. Theor Comput Sci 371(3):200–226

7. Deutsch A, Popa L, Tannen V (1999) Physical data independence, constraints, and optimization with
universal plans. In: VLDB, pp 459–470

8. Deutsch A, Popa L, Tannen V (2006) Query reformulation with constraints. SIGMOD Rec 35(1):65–73
9. Egenhofer M, Al-Taha K (1992) Reasoning about gradual change of topological relationships. In: Frank

A, Campari I, Formentini U (eds) Theories and methods of spatio-temporal reasoning in geographic
space, LNCS 636, Springer, pp 196–219

10. Egenhofer MJ, Franzosa RD (1991) Point-set topological spatial relations. Int J Geogr Inf Syst 5:161–174
11. Egenhofer MJ, Herring J (1990) Categorizing binary topological relations between regions, lines and

points in geographic databases, the 9-intersection. Formalism and its Use for Natural Language Spatial
Predicates Santa Barbara CA National Center for Geographic Information and Analysis Technical Report
94:1–28

12. Egenhofer MJ (1994) Deriving the composition of binary topological relations. J Vis Lang Comput
5(2):133–149



Geoinformatica (2019) 23:79–104 103

13. Grant J, Gryz J, Minker J, Raschid L (2000) Logic-based query optimization for object databases. IEEE
Trans Knowl Data Eng 12(4):529–547

14. Jacox EH, Samet H (2007) Spatial join techniques. ACM Trans Database Syst 32(1):7
15. Lee SG, Henschen LJ, Chun J, Lee T (2000) Identifying relevant constraints for semantic query

optimization. Inf Softw Technol 42(13):899–914
16. Mamoulis N, Theodoridis Y, Papadias D (2005) Spatial joins: algorithms, cost models and optimiza-

tion techniques. In: Manolopoulos Y, Papadopoulos A, Vassilakopoulos M (eds) Spatial databases:
technologies, techniques and trends, idea group, pp 155–184

17. Maher MJ, Wang J (2000) Optimizing queries in extended relational databases. In: DEXA, vol 1873 of
lecture notes in computer science. Springer, pp 386–396

18. OpenGis (1999) Opengis simple features specification for sql. Technical report Open GIS Consortium
19. Randell DA, Cui Z, Cohn AG (1992) A spatial logic based on regions and connection. In: KR, pp 165–176
20. Ray S, Simion B, Brown AD (2011) Jackpine: a benchmark to evaluate spatial database performance.

In: Proceedings of the 27th international conference on data engineering. ICDE 2011, April 11-16, 2011,
Hannover, Germany, pp 1139–1150

21. Stock O (1997) Spatial and temporal reasoning. Kluwer Acaddemic Publishers
22. Worboys M (1992) A geometric model for planar geographical objects. Int J Geogr Inf Syst 6(5):353–372

Eduardo Mella received his MSc in Computer Science from the Universidad de Concepción in 2016. He
now works as a software engineer for Woodtech MS Company, Chile.

M. Andrea Rodrı́guez is a full professor at the Department of Computer Science, Faculty of Engineering
of the Universidad de Concepción, Chile. She received a MSc and PhD in Spatial Information Science and
Engineering from the University of Maine in 1997, and 2000, respectively. Her research interests include
spatio-temporal databases and information retrieval.



104 Geoinformatica (2019) 23:79–104

Loreto Bravo received her Engineering Degree in 2000 from P. Universidad Católica de Chile and PhD in
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