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Abstract

Carbon monoxide (CO) is a gaseous transmitter that is known

to be involved in several physiological processes, but surpris-

ingly it is also becoming a promising molecule to treat several

pathologies including stroke and cancer. CO can cross the

plasma membrane and activate guanylate cyclase, increasing

the cGMP concentration and activating some kinases, includ-

ing PKG. The other mechanism of action involves induction of

protein carbonylation. CO is known to directly and indirectly

modulate the function of ion channels at the plasma mem-

brane, which in turn have important repercussions in the cellu-

lar behavior. One group of these channels is hemichannels,

which are formed by proteins known as connexins (Cxs). Hem-

ichannel allows not only the flow of ions through their pore

but also the release of molecules such as ATP and glutamate.

Therefore, their modulation not only impacts cellular function

but also cellular communication, having the capability to affect

tissular behavior. Here, we review the most recent results

regarding the effect of CO on Cx hemichannels and their pos-

sible repercussions on pathologies. VC 2015 IUBMB Life,

67(6):428–437, 2015
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Introduction
Connexins (Cxs) are a family of proteins that share a common
plasma membrane topology: four transmembrane domains, two
extracellular loops, one intracellular loop, and both the C- and

N-termini located on the cytoplasmic side (Fig. 1A). At least 20
isoforms have been described in mammals (1), which are named
according to their predicted molecular weight (i.e., Cx46 is pre-
dicted to have a MW of 46 kDa). Cx isoforms exhibit consider-
able homology; however, the C-terminus is the most variable
region, which in addition varies in length between isoforms.
Thus, Cx23 presents a very short C-terminus when compared
with Cx62, which has the longest one. Moreover, the C-terminus
contains a number of regulatory sites, including consensus phos-
phorylation (2–5), oxidation (6–9), protein–protein interaction
(10–12), and cleavage sites (13,14). Similar to the C-terminus of
Cx channel, some post-translational modifications have been
reported in the N-terminus and the intracellular loop (15). These
modifications include ubiquitination (16), SUMOylation (17), acet-
ylation (18), and hydroxylation (19). It is worth mentioning that
the N-terminus is projected into the channel pore, which means
that it forms part of the channel pore (only probed for Cx26; ref.
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20). Hence, the N-terminal is a core element in the permeability
and voltage dependency of Cx base channels (21). Therefore,
any post-translational modification to this segment is supposed
to have profound repercussions on channel permeability, con-
ductance, and open probability.

Almost all Cxs (except for Cx23; ref. 22) have six conserved
extracellular cysteines (Cys), which have been proposed to form
intramolecular disulfide bonds that are essential for hemichannel
docking and the formation of gap junction channels (GJCs; ref.
23). However, it has been recently suggested that, at least in
Cx46, some of these extracellular Cys can be in the form of ASH,
being part of the hemichannel redox sensor (24). Finally, it is
important to note that in mammals, almost all cell types express
one or more Cxs and that there are major differences between
tissue expressions of Cx isoforms. For example, Cx43 is the most
ubiquitously expressed (25–27), whereas Cx46 has been described
in the lens (28) and lungs (29). The wide expression of Cxs sug-
gests that they are important in several physiological processes
and, because of their unique properties, they can support cellular
processes that cannot be replaced by any other Cx type (30).

GAP Junction Channels and
Hemichannels

Gap Junction Channels
Gap junction channels are formed by the docking of two hemi-
channels at the so-called junctional membrane of adjacent
cells. GJCs mediate passive fluxes of ions and other solutes

between adjacent cells both in vivo and in vitro. It is well
accepted that channels formed by Cxs have pores that allow
the passage of molecules up to 1.2 kDa because of their large
diameters (about 14 Å; ref. 20). However, experimental data
strongly suggest that GJCs filter molecules not only based on
their size but also their charge and shape, involving specific
interactions within the pore wall (31). Thus, neighboring cells
can share molecules such as ATP, ADP, glucose, glutathione,
glutamate, and second messengers such as cAMP, IP3, and
Ca21 (32–37). Nevertheless, the particular solute selectivity of
GJCs will depend on the Cx isoforms expressed in a given tissue.
This is so because Cxs can form GJCs (and also hemichannels)
formed by more than one type of Cx (heterotypic/heteromeric;
for more details see ref. 38). Unfortunately, permeability and
general characteristics of the so-called heterotypic/heteromeric
GJCs have been less explored because of technical difficulties.
However, it seems very relevant to overcome this lack of
knowledge because in vivo heterotypic/heteromeric GJC-
mediated communication could be present at a higher propor-
tion than that of GJC formed by only homomeric/homotypic
channels.

The mechanisms for GJC opening and closing (gating)
have been studied in detail and have been recently reviewed
by Rackauskas et al. (27). Briefly, GJCs are controlled by
“transjunctional voltages” which are voltages between the
membranes of two adjacent cells. Thus, two voltage-gating
mechanisms have been described: the “fast gating” which is
located at the cytoplasmic side of the channels, and the “loop
gating” located at the extracellular face (39). It has been

Connexins and hemichannels. A: Connexins (Cxs) are transmembrane proteins formed by two extracellular loops (E1 and E2),

four transmembrane domains (TM1–4), and one intracellular loop (IL), and both the N- and C-terminals are located at the intra-

cellular phase of the plasma membrane. The N-terminus can be located in the channel pore, forming a part of it. B: The oligo-

merization of six Cxs forms a hemichannel. Under normal conditions, hemichannels are mostly closed, but when open, they

became a pathway for the interchange of molecules (green hexagons) between intracellular and extracellular space. The direc-

tion of the flow through the pore is driven by the electrochemical gradient of a given molecule. Thus, the release of molecules

such as ATP, glutamate, NAD1, PGE2, and glutathione has been observed, and also the uptake of glucose and Ca21.

FIG 1
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demonstrated in hemichannels that loop-gating voltage
dependence is strongly regulated by extracellular divalent cati-
ons (40) and involves the movement of a region composed of a
segment of transmembrane 1 (M1) and the first extracellular
loop (E1), narrowing the pore lining (41). Until now, it is
unknown if these molecular movements are also present in the
GJCs. Another control mechanism for GJCs is through phos-
phorylation. GJCs present multiple sites for phosphorylation
with several kinases, including PKC, PKA, PKG, MAPk p38,
and Src (5,42). Phosphorylation of one or more sites (including
serine, threonine, or tyrosine residues) is known to affect uni-
tary conductance (43,44), GJC turnover (5), GJC assembly (45),
and large-solute permeability (46,47). Thus, depending on the
cell status, Cx phosphorylation can modulate GJC properties,
which in turn will affect cellular and tissue functions. Addition-
ally, other molecular mechanisms have been studied, such as
intracellular acidification (48) and intracellular free Ca21

(48–50). The effect of Ca21 seems to be mainly mediated by a
calmodulin-dependent mechanism, in which direct interaction
of calmodulin with both the N- and C-termini decreases GJC
activity (49,51). However, whether calmodulin affects or not
the GJC open probability or permeability is still unknown (51).

Hemichannels
Those are composed of six Cxs monomers (Fig. 1B). They are
assembled in the endoplasmic reticulum, Golgi apparatus, or
post-Golgi vesicles and then transported to plasma membrane
(52,53). The presence of undocked hemichannels at the
plasma membrane has been demonstrated in several cell
types, using different techniques including cryomicroscopy
(54), biochemical (6,55), electrophysiological (56–58), optical
(59), and functional approaches (i.e., dye uptake or ATP
release; ref. 60). Because of the strong evidence, the presence
of hemichannels at the plasma membrane is not a matter of
controversy nowadays. However, their role in physiological or
pathophysiological processes is under thorough study.

Because hemichannels are permeable to molecules up to
1.2 kDa, it was believed for several years that they had to be
closed to prevent cell damage and death. Accordingly, if hemi-
channels were to remain open, molecules such as ATP, amino
acids, and cofactors would be lost, and Ca21 would enter the
cells, thus having deleterious effects. However, recent studies
show that, in some circumstances, hemichannels can open
under physiological conditions without affecting cell viability.
Hemichannels partially exert their action by allowing the
release of signaling molecules such as ATP (61,62), cyclic ADP
ribose (63,64), prostaglandin E2 (PGE2; ref. 65), glutamate,
and aspartate (66). Although some of these studies were car-
ried out under nonphysiological conditions (i.e., in the absence
of Ca21 and Mg21), it is clear that hemichannels may open in
solutions with physiological concentrations of Ca21 and Mg21,
as observed in the generation and spreading of calcium waves
in several cell types (67–70). In addition, hemichannels appear
to be involved in Ca21 permeation across the plasma mem-
brane (71,72), osteoblast viability induced by biphosphonates

(73), cell proliferation (74), cell migration (75), light processing
by the retina (76,77), mechanotransduction (78), glucose
uptake (79), and synaptic plasticity (80). Based on the above
findings, the activity of hemichannels has profound consequen-
ces on cellular function. Therefore, cells have several mecha-
nisms for hemichannel activity control, which include phos-
phorylations (81), changes in plasma membrane potential
(82–85), alterations in extracellular Ca21 concentration
(86,87), and unsaturated fatty acids (88,89). In conclusion,
under physiological conditions, Cx hemichannels may be acti-
vated by specific signals, and their opening results in the
release of paracrine–autocrine molecules and/or the modula-
tion of other important cell functions (i.e., spread of calcium
waves).

On the other hand, massive and/or prolonged hemichannel
opening has been proposed to induce or accelerate cell death
under certain pathological conditions. These include Charcot-
Marie-Tooth disease (90), metabolic alterations, such as ische-
mia (6,60,91,92), oculodentodigital dysplasia (93), hidrotic
ectodermal dysplasia (94), other skin diseases (95), inflamma-
tory processes (79,96,97), cadmium-induced oxidative cellular
stress (98), and deafness (99,100). Although the exact mecha-
nism by which hemichannels induce cell death is unknown, it
is highly probable that it may be due to a massive loss of
important metabolites such as ATP, amino acids, and reduced
glutathione (101), loss of transmembrane ion gradients, mem-
brane potential, and the massive entry of Ca21 (71,72). In sum-
mary, a considerable body of evidence supports the idea that
controlled hemichannel opening allows physiological auto-
crine/paracrine cell signaling; however, in contrast, massive
and/or uncontrolled hemichannel opening induces or acceler-
ates cell death (102). This is why it is so important to study the
molecular mechanisms that keep hemichannels closed under
normal conditions or induce their massive opening under path-
ological conditions. Future studies will allow the generation of
new tools (i.e., small molecules and iRNA) for the treatment of
those diseases in which hemichannels have an important role.

Redox Signaling Controls Hemichannel
Properties
As mentioned above, there are several molecular mechanisms
that operate to maintain hemichannel activity as low as possi-
ble. Thus, under physiological conditions (i.e., 1.2 mM extrac-
ellular Ca21, negative membrane potential, and phosphoryla-
tion), Cx hemichannels are expected to present a very low
open probability (57,103). Recently, a new hemichannel con-
trol mechanism has been found, which operates through
changes of redox potential (Fig. 2; ref. 8). One of the first
observations of hemichannels being controlled by changes in
redox potential was done in primary cultured astrocytes,
where Cx43 hemichannels opened when astrocytes were
exposed to cytotoxic hypoxia for 75 min (60). Hemichannel
opening was prevented by the addition of a free radical
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scavenger, Trolox, to the extracellular media (60). This
strongly suggests that hemichannels are somehow sensitive to
free radicals. Then, in the same model, it was shown that
hemichannels from metabolically inhibited astrocytes become
closed in response to dithiothreitol (DTT) and reduced glutathi-
one (6), which indicates that oxidation of free Cys mediates
Cx43 hemichannel opening. Additionally, it was observed that
a nitric oxide donor (GSNO) induced the opening of Cx43 hemi-
channels and that both GSNO and metabolic inhibition induced
the S-nitrosylation of Cx43 hemichannels (6). This was the first
indication that Cxs are modified post-translationally by NO,
suggesting that Cx hemichannels are directly sensitive to redox
changes. However, whether GJC can also be directly affected
by NO in this model remains unanswered. In a physiological
model, however, it was demonstrated that Cx43 is S-
nitrosylated in Cys271. This modification induces changes in
IP3 permeability between endothelial and smooth muscle cells
(9), which strongly suggests that Cx43 GJC can also be modi-
fied (at least their permeability) by NO. We want to point out
that despite the sensitivity of Cx43 hemichannels to redox
changes, the net effect will depend on cellular status (58). This
hypothesis is supported by the fact that DTT induces the open-

ing of Cx43 hemichannels when cells are healthy, but induces
hemichannel closing when the cells are metabolically inhibited
(58). Thus, perhaps there is a cross-talk between the redox
and phosphorylation status, and this relationship would lead to
the final effect.

Cx43 is not the only Cx sensitive to redox changes. Cx46
hemichannels expressed in Xenopus laevis oocytes are also
sensitive to nitric oxide (7). In this case, NO induces changes in
the kinetics of hemichannel opening and closing, the appear-
ance of a current inactivation at voltages above 140 mV and
changes in permeability to large molecules (i.e., ethidium
(Etd), MW 5 394.3). Contrary to Cx43 hemichannels, Cx46
hemichannel oxidation is not correlated with any obvious
changes in hemichannel open probability. Moreover, NO
induced slight modifications in hemichannels formed by a
Cx46 (Cx46C3A) without intracellular Cys (7). The data above
suggest that Cx46 intracellular Cys are responsible for sense
changes in NO production. Recently, Cx32, Cx37, and Cx40
have also been proposed to be sensitive to NO, and more inter-
estingly, hemichannels formed by these Cxs are permeable to
this gaseous transmitter, hence facilitating crossing through
the plasma membrane (104).

Carbon Monoxide and Gaseous
Transmitters
There are at least four gaseous transmitters, such as nitric
oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S; ref.
105), and sulfur dioxide (SO2; ref. 106). Traditionally, CO was
cataloged as a toxic molecule because it binds with high affin-
ity to hemoglobin (forming carboxyhemoglobin), decreasing
the amount of O2 that this protein can carry and delivering it
to the tissues (107,108). In addition, it also has the ability to
bind both to cytochrome oxidase and cytochrome P450, inhibi-
ting cellular respiration (109,110). However, nowadays, there
is a growing body of evidence indicating that CO is a physiolog-
ical molecule involved in a plethora of cellular processes (110).
Under physiological conditions, CO is produced by heme oxy-
genase (HO) enzymes, which catalyze the decomposition of
heme groups (111). The physiological importance of CO is sup-
ported by the knowledge that HO-I knockout mice die after
birth and cell cultures from these animals present high con-
centration of free radicals (111). Under physiological condi-
tions, CO can act through two possible cellular pathways. First,
it can be through the activation of guanylate cyclase, which
increases the cGMP levels and the activation of PKG, and sec-
ond by direct carbonylation of amino acids, such as proline,
threonine, lysine, and arginine (112). For many years, protein
carbonylation was synonymous to proteins degradation (113).
However, recent evidence suggests that there is a natural
occurring process of decarbonylation (114). This mechanism
involved an unknown thiol-dependent enzymatic process, in
which the enzymes thioredoxin (Trx) and glutaredoxin (Grx1)
seem to be involved (114) Therefore, the effect of CO on

Cx hemichannels are sensitive to redox signaling.

Under normal conditions, Cx hemichannels are

mostly closed. When a pathological condition

appears (i.e., ischemia, cell damage, inflammation,

and cancer), the levels of nitric oxide (NO) are usu-

ally elevated. This NO increase could modify the

activity of Cx43 and Cx46 hemichannels, inducing

the opening of them. It has been suggested that

Cx43 and Cx46 have intracellular cysteines that can

be modified by NO inducing their S-nitrosylation (red

stars). The massive and/or prolonged hemichannel

opening have been associated with cell death. If the

concentration of carbon monoxide (CO) is increased

[i.e., due to CO inhalation or administration of CO-

releasing molecules (CORMs)], hemichannel activity

can be decreased, preventing cell death. It has been

suggested that the CO sensor, at least in Cx46, could

be located in the extracellular space of the protein

and that the CO could induce the carbonylation of

Cx46 (blue stars).

FIG 2
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protein activity can be reversed and controlled by the redox
status of a cell. Nevertheless, the exact molecular mechanism
of decarbonylation is still unknown.

Carbon Monoxide Modulates Ion
Channels
In 1992, it was reported that continuous exposure to high lev-
els of CO induces degeneration of hippocampal CA1 pyramidal
cells in a NMDA-dependent process (115). This suggests that
CO may partially induce neuronal cell death through a modu-
lation of ion channels activity. Since then, several reports
strongly supported the notion that CO acts as an ion channel
modulator under physiological as well as in pathological condi-
tions. Thus, it has been reported that CO directly increases the
open probability of calcium-activated K (KCa) channels in vas-
cular smooth muscle cells (116) and human umbilical vein
endothelial cells (117). The molecular mechanism of this phe-
nomenon is not well understood, but there are several proposi-
tions, including enhancement of Ca21 sensitivity (116); depend-
ency on the expression of the KCa-a but not on b-subunits
(118); modulation by NO (119), which in the case of KCNMA1
channel would depend on the S9-S10 C-terminal segments
(120); and apparently of an aspartic acid 367 as well as two
histidine 365 and 394 residues located in the cytoplasmic
RCK1 domain (121). Finally, C911 has also been proposed to
be located in the vicinity of the “calcium bowl” of the KCa-a
subunit and is important for CO activation. It was also sug-
gested that these Cys groups coordinate CO in a manner simi-
lar to the transition metal-dependent coordination (122,123).
Other potassium channels have also been demonstrated to be
affected by CO. CO activates a 70-pS K1 channel in the thick
ascending limb (124) and inhibits Kv2.1 expressed in HEK293
based on a mechanism dependent on mitochondrial ROS pro-
duction and PKG activation (125), whereas it has a biphasic
effect on TREK-1 channels when expressed in HEK293 (126).

Although there is much more data about the molecular
mechanism underlying the action of CO action on K1 channels
when compared with other ion channels, the effects of CO are
not limited to K1 channels. The list of other ion channels
affected by CO include the following: 1) the amiloride-sensitive
channel (127); 2) Nav1.5 channels in which the inhibition
observed presents a DTT- and NO-dependent pathway (128);
3) Cav3.2 T-type Ca21 channels, inhibited by an extracellular
Trx-dependent mechanism (129); and 4) L-type Ca21 channel
inhibition mediated by free radicals produced by the mitochon-
dria (130) and enhancement of ATP-dependent currents in
HEK293 cells expressing P2X2 receptors (131).

Carbon Monoxide Modulates Cx
Hemichannels
Recently, CO has been presented as a new hemichannel modu-
lator (Fig. 2; ref. 24). Le�on-Paravic et al. showed that a CO

donor (CORM-2) induced a dose-response inhibition in Cx46
hemichannels expressed in Xenopus laevis oocytes. This inhi-
bition displayed an IC50 around 3.4 mM, making Cx46 hemi-
channels an excellent CO sensor under physiological (>1 mM)
and pathological (>10 mM) conditions (132). The CORM-2 effect
was fully prevented by the addition of hemoglobin (a CO scav-
enger) to the bath solution, indicating that the effect of CORM-
2 was mediated by the release of CO. As expected, CORM-2
induced the carbonylation of purified Cx46, and this post-
translational modification, in turn, induces important rear-
rangements in protein structure in vitro. Interestingly, the I/V
analyses indicate that the inhibitory effect of CO on Cx46 hemi-
channels did not involve important changes in the number of
gating charges of channel activation and the voltage at which
the half of maximal current is reached, suggesting that CO
does not modify neither of these hemichannel biophysical
parameters. Here, it was also possible to observe that CO does
not modify the kinetics of hemichannel closing and opening.
These data indicate that CO decreases the number of hemi-
channels able to open. One possibility is that CO induces hemi-
channel internalization, which could induce a decrease in
hemichannel current. Data suggest that this is not the case as
the inhibitory effect of CO was rapidly (less than 1 min) and
fully recovered by reducing agents (DTT, b-mercaptoethanol,
and reduced glutathione). In addition, no changes were
observed in Cx46-GFP distribution in HeLa cells (unpublished
data). The fact that reduced glutathione (which cannot perme-
ate the plasma membrane) was able to recover Cx46 hemi-
channel currents indicates that some extracellular Cys are
involved in these processes. This hypothesis was comple-
mented with the fact that hemichannels formed by a Cx46
without intracellular Cys (Cx46C3A) were inhibited in the same
proportion as hemichannels formed by the Cx46 wild type.
However, hemichannels formed by a Cx46 without extracellu-
lar Cys were much less sensitive to CORM-2 when compared
with Cx46 wild-type hemichannels. The recovery of hemichan-
nel current by reducing agents supports the hypothesis that
there is a redox-sensitive mechanism of decarbonylation (114).
However, in the case of Cx46, the Trx component was not
important. The study of the molecular mechanism of Cx46
decarbonylation in Xenopus laevis oocytes is still pending, as
well as studies to find out whether this mechanism is also
present in mammalian cells. Hemichannels formed by Cx43 or
Cx46 expressed in HeLa cells were inhibited by CORM-2; how-
ever, the recovery by reducing agents was not studied. Inter-
estingly, hemichannel activity progressively increased in HeLa
cells at concentrations above 10 mM of CORM-2, indicating that
the effect of CO on hemichannels formed by Cxs in mammalian
cells may be biphasic and could have an inhibitory effect
under physiological conditions (concentration close to 1 mM)
and induce an activation at higher levels (concentrations
higher than 10 mM); however, this hypothesis must be tested.
Preliminary results in our laboratory show that CO modifies
Ca21 sensitivity of Cx46 hemichannels similarly to what has
been observed in KCa channels (116). This evidence is
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interesting because extracellular Ca21 modulates the voltage
dependence of loop gating (39,40). Therefore, CO could be some-
how modulating this so-called slow gating or loop gating (41)
through modifications in the mobility of some segments of the
extracellular Cxs loops. In summary, CO inhibits Cx hemichan-
nels in Xenopus laevis oocytes in a wide range of concentrations
(1–100 mM); however, the effect in mammalian cells is more
complex, because it presents a dual response depending on CO
concentration. The CO effect can be reverted by a reducing
agent–dependent process; however, the molecular mechanism is
still unknown. The CO effect seems to influence the loop gating
of hemichannels; however, much more evidence is needed to test
this hypothesis. Finally, experiments to verify if the inhibitory
effect observed in HeLa cells is reverted and if CO affects GJC
expressed in Xenopus oocytes and HeLa cells are needed.

Possible Interplay Between CO and NO
in Cx Hemichannel Activity
CO and NO are two gaseous transmitters that activate similar
intracellular pathways. Thus, it is well known that both CO
and NO stimulate soluble guanylyl cyclase to produce cGMP,
which in turn activates PKG (133). Therefore, it is possible to
suggest that these two gases can at some point interact and
modulate their cellular effect. Accordingly, it has been shown
that both CO and NO act as a safety mechanism in renal
afferent arteriolar vasoconstriction regulation. Thus, in the
presence of NO, CO does not induce evident changes in arte-
rial diameter, but when NO production is inhibited, CO is able
to induce vasodilatation (133). In this case, CO and NO are
performing similar effects in renal arteries. However, this is
not always the case. For example, when iNOS is activated, an
increase of NO occurs, which in turn increases cell expression
of HO-1 with the consequent production of CO (134). An
increase of CO will have a negative effect on iNOS activity,
thus decreasing the levels of NO (134). In general terms, an
increase of CO concentration has been associated to protec-
tive cellular effects (135,136), whereas increases in NO con-
centration have been associated to deleterious effects (137).
According to this, the addition of NO donors to astrocytes in
culture induces a massive Cx43 hemichannel opening (6);
however, when a CO donor is added to HeLa cells, Cx43 hem-
ichannel became closed (24). However, it is unknown whether
astrocytes exposed to CO donors also close their Cx43 hemi-
channels, and whether the effect of NO and CO over Cx43
hemichannels is synergic or antagonic is also unknown. The
final effect of these two gases in vivo could also be affected
by the intracellular distribution of enzymes that produce NO
and CO, thus it is known that HO-1 isoform is located mainly
in the endoplasmic reticulum (138) and nucleus (139),
whereas HO-2 is mainly located in the endosomes (140). On
the other hand, the endothelial nitric oxide synthase (eNOS)
is mainly located at the plasma membrane and Golgi appara-
tus (141), the neuronal type (nNOS) is mainly in the cytoplasm

(142), and the inducible form is located mainly in the cyto-
plasm (143). The differences in localization of enzymes that
produce NO and CO will certainly have a differential impact
in Cx regulation.

Another type of interaction between NO and CO could
occur at the molecular level. NO interacts with Cys groups
inducing protein S-nitrosylation (144), whereas CO can induce
secondary carbonylation in Cys as well (145). Thus, both can
compete for Cys groups and exert their modulation in a com-
petitive way. Obviously, this competition for Cys groups will be
affected by the concentration and localization of HO and NOS
enzymes. Coimmunoprecipitation and high-resolution confocal
studies are needed to understand the interactions of these
enzymes and Cx hemichannels and thus understand the over-
all effect of these two gaseous transmitters in the intercellular
communication based on Cxs.

Future Directions
It is known that CO is neuroprotective in cerebral ischemia
(146,147); however, the molecular mechanisms are not well
understood. Hemichannels are massively open in ischemia/
metabolic inhibition conditions as observed in astrocytes (6,60)
and neurons (148), and this in turn affects neuronal viability
(149). We propose that CO could induce Cx36 and/or Cx43
hemichannel closing and, thus, prevent cell death. Addition-
ally, pannexin channels (Panx), which also form channels at
the plasma membrane with similar characteristic as Cx hemi-
channels (150), are involved in neuronal death in ischemia epi-
sodes (151,152). It would be interesting to study if Panx are
also affected by CO. Another example of the use of CO as treat-
ment for a pathological condition would be for cancer
(153,154). Recently, it has been proposed that Cx hemichan-
nels have a role in cancer progression (155), where these
channels could increase the P2X/Y signaling that in turn would
affect the intracellular Ca21 concentration (155), which is a
powerful signaling in cancer cells (156). Therefore, it is plausi-
ble to speculate that CO may affect hemichannels in cancer
cells and thus modulate intracellular calcium levels.

There are many other human pathologies where CO is
used for their treatment (157), and in which hemichannels
could be involved. Thus, the study on the effect of CO on Cx-
based hemichannels, GJCs, and Panx will help to understand
the underlying molecular mechanism of action involving CO in
pathological as well as in physiological conditions.
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