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Abstract Chronic heart failure (CHF) is a major public health problem. Tonic hyper-activation
of sympathetic neural outflow is commonly observed in patients with CHF. Importantly,
sympatho-excitation in CHF exacerbates its progression and is strongly related to poor prognosis
and high mortality risk. Increases in both peripheral and central chemoreflex drive are considered
markers of the severity of CHF. The principal peripheral chemoreceptors are the carotid bodies
(CBs) and alteration in their function has been described in CHF. Mainly, during CHF the
CB chemosensitivity is enhanced leading to increases in ventilation and sympathetic outflow.
In addition to peripheral control of breathing, central chemoreceptors (CCs) are considered a
dominant mechanism in ventilatory regulation. Potentiation of the ventilatory and sympathetic
drive in response to CC activation has been shown in patients with CHF as well as in animal models.
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His group is interested in understanding the contribution of altered peripheral and central chemoreflex function on the
progression of the pathophysiology of heart failure and other cardiovascular diseases.
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Therefore, improving understanding of the contribution of the peripheral and central chemo-
reflexes to augmented sympathetic discharge in CHF could help in developing new therapeutic
approaches intended to attenuate the progression of CHF. Accordingly, the main focus of this
review is to discuss recent evidence that peripheral and central chemoreflex function are altered
in CHF and that they contribute to autonomic imbalance and progression of CHF.
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Abstract figure legend Chronic heart failure is characterized by exacerbation of the peripheral and central chemoreflexes,
which contributes to the establishment and progression of sympathoexcitation and breathing disorders. Importantly,
chemoreflex activation is strongly associated with cardiac arrhythmogenesis, cardiac adverse remodelling, periodic
breathing and central apnoeas and hypopnoeas.

Abbreviations ANG II, angiotensin II; CB, carotid body; CC, central chemoreceptor; CHF, chronic heart failure; MSNA,
muscle sympathetic nerve activity; NTS, nucleus tractus solitarii; PVN, paraventricular nucleus; RTN, retrotrapezoid
nucleus; RVLM, rostral ventrolateral medulla; V̇E, minute ventilation.

Introduction

Chronic heart failure (CHF) is a global public health
problem. Currently, it is estimated that 26 million
people worldwide are living with this condition, affecting
approximately 20% of the world population over 75
years of age, and resulting in more than 1 million
hospitalizations annually in both the United State and
Europe (Remme et al. 2001; Ambrosy et al. 2014).
Chronic heart failure is a disease with very poor prognosis
despite advances in treatment; half of the patients with
CHF are likely to die in a 4 year time frame once
diagnosed, while more than 50% with severe cardiac
dysfunction are likely to die within 1 year (Swedberg et al.
2005). In addition, CHF patients often display frequent
episodes of decompensation, needing complex therapeutic
management, which are associated with poor prognosis
and lower survival rates (Lloyd-Jones et al. 2002).
Furthermore, while the ageing condition has improved in
the global population, it has been estimated that the pre-
valence of CHF will increase to the point where it is one
of the most prevalent diseases (Mann & Chakinala, 2012).

CHF is caused by myocardial dysfunction and often
results in left ventricular dilatation, hypertrophy or both
(Cohn et al. 2000). Autonomic imbalance and respiratory
disorders are commonly observed in patients with CHF
and are thought to contribute to CHF progression
(Ponikowski et al. 1997; Esler & Kaye, 1998; Triposkiadis
et al. 2009; Haack et al. 2014; Schultz et al. 2015a).
Enhanced sympathetic stimulation of the heart in CHF is
strongly associated with life threating cardiac arrhythmias
(Esler, 1998) and is likely to account for the relationship
between autonomic imbalance and sudden cardiac death
in CHF (Vaseghi & Shivkumar, 2008). While there are
many factors that contribute to autonomic imbalance in
CHF, disordered oscillatory breathing patterns are likely
to play a significant role. Importantly, both autonomic

imbalance and oscillatory breathing in CHF have been
linked to altered chemoreflex function (Kitzman et al.
2002; Zucker, 2006; Del Rio et al. 2013a; Marcus et al.
2014a). In a study performed by Giannoni and colleagues
(2008), 60% of patients with CHF displayed enhanced
ventilatory responses to hypoxia and/or hypercapnia when
compared with controls. In support of this notion, animal
studies have shown that tonic and hypoxia-evoked afferent
activity recorded from the carotid body (CB) chemo-
receptors is enhanced in experimental CHF (Del Rio et al.
2013a; Del Rio, 2015) suggesting that peripheral chemo-
receptors may play a key role in the progression of auto-
nomic imbalance in CHF. The CB-mediated chemoreflex
pathway involved afferent projections to the commissural
nuclei of the solitary tract (NTS) (Accorsi-Mendonça
et al. 2011). It has been shown that the NTS drives
the activation of the paraventricular nucleus (PVN) of
the hypothalamus during CB chemoreceptor stimulation
(Ciriello & Calaresu, 1980; Kubo et al. 1997; Chen et al.
2004). Furthermore, PVN postsynaptic neurones project
to autonomic control regions within the central nervous
system (Reddy et al. 2005), particularly to the rostral
ventrolateral medulla (RVLM), the ultimate region of
pre-sympathetic regulation. It has been shown that hyper-
activation of pre-sympathetic neurones located in the
RVLM during CHF represents a major contributor to
the development of autonomic imbalance and decreased
cardiac baroreflex sensivity (Zucker, 2006; Gao et al.
2010; Abbott et al. 2013). Remarkably, Del Rio and
collegues (2013a) found that CB denervation decreases
RVLM pre-sympathetic neuronal activation in CHF rats,
improving autonomic function. Thus, it is plausible that
CB-mediated effects on the RVLM also involved changes in
the activation pattern of NTS and PVN neurones. Further
studies will be needed to address this hypothesis.

While changes in peripheral chemoreceptor function
are likely to play an important role in autonomic
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imbalance in CHF, numerous investigators have
demonstrated important physiological changes in the
central nervous system that contribute as well (Aggarwal
et al. 2002; Lymperopoulos et al. 2013). Indeed, the
pathophysiological relevance of the peripheral and central
chemoreflex function in CHF has received considerable
attention (Kristen et al. 2002; Schultz et al. 2007; Giannoni
et al. 2008; Marcus et al. 2014b; Del Rio et al. 2015).
Accordingly, the aim of this brief review is to document
the role played by peripheral and central chemoreceptors
on sympatho-excitation and oscillatory breathing patterns
during the progression of CHF.

The carotid body in CHF: the peripheral master regulator.
The CBs are the predominant arterial chemoreceptors
in humans (Gonzalez et al. 1994; Schultz & Sun, 2000).
The CB is composed of clusters of chemoreceptor cells
(type I cells) surrounded by glial cell processes (type
II cells) (Iturriaga & Alcayaga, 2004). The type I cells
are considered polymodal receptors since they respond
to a wide variety of stimuli such as changes in arterial
levels of O2, CO2, pH, blood flow and temperature
(Gonzalez et al. 1994). Upon activation, the CBs send
afferent signals to the central nervous system, specifically
to first-order NTS neurones leading to activation of
the central pattern generator in the brainstem and
a concomitant increase in ventilation (Ponikowski &
Banasiak, 2001; Accorsi-Mendonça et al. 2011; Marcus
et al. 2014b). In addition, during hypoxaemic/hypercapnic
stimulation, the CBs also activate the sympathetic nervous
system to maintain arterial pressure and to guarantee
adequate blood flow to target organs, especially the heart
and brain (Schultz & Sun, 2000). While normal CB
function contributes to maintenance of homeostatic blood
gas parameters and tissue perfusion, mounting evidence
indicates that maladaptive changes in CB function
contribute to a variety of cardiovascular and metabolic
disease states (Haack et al. 2014; Schultz et al. 2015b).

Evidence of a role for the CB in the pathophysiology
of CHF comes from studies showing that patients
with CHF that exhibit high ventilatory responses to
hypoxia (high CB chemoreflex drive) have significantly
greater mortality rates compared to CHF patients that
have normal chemoreflex drive (Ponikowski & Banasiak,
2001; Giannoni et al. 2008). In support of the notion
that CBs contribute to CHF progression, Del Rio and
colleagues recently showed that selective bilateral CB
denervation in experimental CHF significantly improved
cardiac function and decreased mortality rate (Del
Rio et al. 2013a). The proposed mechanism under-
lying these improvements is a reduction in activation
of the sympathetic nervous system. Accordingly, studies
performed in animal models of CHF indicate that the CB
chemoreceptors became tonically hyperactive, resulting
in the activation of the pre-sympathetic neurones in the

brainstem and increases in efferent sympathetic outflow to
the kidneys and heart (Sun et al. 1999; May et al. 2013; Del
Rio et al. 2013b; Marcus et al. 2014b). In addition to these
promising findings in pre-clinical models, the therapeutic
value of modulating the CB-mediated chemoreflex drive
has also been addressed in human CHF. Niewinski and
colleagues (2013) showed that 6 months after unilateral CB
resection, autonomic balance, sleep disordered breathing,
exercise tolerance and quality of life were markedly
improved in one patient with systolic CHF (Niewinski
et al. 2013). This evidence strongly supports a pivotal role
of the CB chemoreceptor in the progression of CHF.

The mechanisms associated to the increased CB activity
during CHF are not fully described. However, it has been
proposed that both angiotensin II (ANG II) peptides and
oxidative stress play a principal role in enhancing the
CB-mediated chemoreflex drive in CHF (Schultz, 2015).
It has been shown that elevation of ANG II levels and
upregulation of the ANG II type 1 receptor contribute
to the increased CB chemoreceptor activity through a
mechanism related to the inactivation of voltage-sensitive
K+ channels (Li et al. 2006). Additionally, oxidative stress
is increased in CB chemoreceptor cells and this appears
to be related to increases in NADPH oxidase protein
expression (Li et al. 2007) as well as a marked decrease
in the expression of anti-oxidant enzymes (i.e. CuZn and
Mn superoxide dismutase) (Ding et al. 2009, 2010; Lindley
et al. 2004). Importantly, reduction in blood flow to the
CB region due to impaired cardiac function has been
hypothesized to be the key determinant in the altered
CB function. Indeed, it has been elegantly shown by
Ding and collagues that chronic reductions in CB blood
flow in a healthy rabbits recapitulates the potentiation of
CB-mediated chemoreflex drive up to levels seen in CHF
rabbits (Ding et al. 2011).

Chemosensitive retrotrapezoid nucleus neurons: a novel
player in sympathoexcitation in CHF. Central chemo-
receptors (CCs) are mainly located on the ventral surface
of the medulla and to a lesser extent in other locations
within the brainstem, cerebellum, hypothalamus and mid-
brain (Nattie & Li, 2012). In cardiorespiratory research,
the term central chemoreception usually refers to the
process by which CO2 activates cells that express the
‘CO2 sensors’ (the receptors have not been definitively
identified) modulating respiratory and cardiovascular
control centres of the brainstem (Guyenet, 2014). Inter-
estingly, Huckstepp and colleagues (2010) showed that
ATP release in the ventral surface of the medulla oblongata,
an event linked to the adaptive changes in ventilation
in response to hypercapnia, was mediated by connexin
26 suggesting an important mechanism contributing
to central respiratory chemosensitivity. Specifically, in
conditions involving subtle changes in cerebrospinal fluid
CO2/H+ content, central chemoreceptor neurones send
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direct excitatory inputs to respiratory control centres
to regulate the tidal volume and respiratory frequency
(Guyenet et al. 2005). Stimulation of CCs also elicits an
increase in sympathetic outflow. Central chemoreceptor
neurones project to RVLM pre-sympathetic neurones
(Moreira et al. 2006; Rosin et al. 2006), and it has been
shown that activation of CCs can trigger respiratory
synchronous modulation of sympathetic nerve activity,
leading to respiratory-sympathetic coupling (Guyenet
et al. 2010a,b). The nature of the CCs and of the circuits
that mediate the ventilatory response to CO2 is still
controversial. Specific areas on the ventral surface of the
medulla oblongata have been shown to play a major
role in cardiorespiratory regulation (Mulkey et al. 2004;
Guyenet & Mulkey, 2010). One of the plausible nuclei
involved in breathing and haemodynamic control circuitry
is the retrotrapezoid nucleus (RTN). The RTN is mainly
composed of a group of neurones that are activated by
changes in cerebrospinal fluid CO2 and/or pH that projects
to the respiratory central pattern generator (Lazarenko
et al. 2009; Guyenet & Mulkey, 2010; Guyenet, 2012;
Wang et al. 2013). Furthermore, the RTN is considered an
extension of the ventrolateral medulla containing neuro-
nes that innervate the nucleus of the NTS and contribute to
central respiratory chemoreception (Guyenet et al. 2013).
In addition, the inhibition of RTN neurones attenuates
the ventilatory chemoreflex drive in resting conscious
rats without changing basal respiration suggesting that
the RTN plays a pivotal role in central chemoreception
(Basting et al. 2015; Takakura et al. 2014). The RTN
chemosensitive neurones have a phenotype characterized
by the presence of vesicular glutamate transporter 2
mRNA, the expression of the transcription factors Phox2b
and Atoh1 and the absence of immunoreactivity for
both tyrosine hydroxylase and choline acetyltransferase
(Stornetta et al. 2006; Marina et al. 2010). In addition,
these neurones have been shown to be activated by low pH
in vivo and in vitro in slice preparations (Lazarenko et al.
2009; Wang et al. 2013). Also, RTN Phox2b/Atoh1-positive
neurones are expressed early in embryonic development in
regions associated with chemoreflex circuits (Ruffault et al.
2015). Importantly, this set of RTN neurons are essential
for the development of ventilatory reflex responses to
hypercapnic stimulation at birth and remain a major
contributor to the adult hypercanic ventilatory response
(Dubreuil et al. 2009).

In a pathological context, Narkiewicz and colleagues
(1999) studied autonomic, haemodynamic, and
respiratory responses to chemoreflex activation during
CHF. They found that CHF patients showed a marked
increase in the ventilatory and sympathetic responses
elicited by brief exposure to a hypercapnic gas mixture
(Narkiewicz et al. 1999). Hypercapnic stimulation
induced significant increases in heart rate in CHF patients
but not in control subjects suggesting an augmented

central chemoreflex drive in response to CO2 in the
pathological condition (Narkiewicz et al. 1999). Also,
both groups showed increases in minute ventilation
(V̇E), blood pressure, and muscle sympathetic nerve
activity (MSNA) in response to hypercapnia, but the
increases in V̇E and MSNA were significantly greater in the
CHF patients, suggesting that the hypercapnic stimulus
represents a potent mechanism for initiating sympathetic
activation in CHF (Narkiewicz et al. 1999). Importantly,
in the resting condition the arterial CO2 levels remain
unchanged in CHF patients compared to control subjects.
In addition, in experimental CHF models, generated by
aortocaval shunt or aortic banding, there was an increase
in the hypercapnic central chemoreflex drive in CHF.
This was shown by a large increase in the gain of the
renal sympathetic nerve activity response to hypercapnic
stimulation in both groups of CHF rats compared to the
controls (Kristen et al. 2002). Interestingly, the increases in
central chemoreflex gain in CHF seem to be independent
of the aetiology of CHF since the aortocaval shunt model
represents a diastolic form of cardiac failure (Abassi et al.
2011) and aortic banding represents a model of systolic
heart failure (Patten & Hall-Porter, 2009). Accordingly, it
has been shown that CHF patients displayed enhanced
hypercapnic responses, which are positively correlated
with the severity and progression of the disease (Giannoni
et al. 2008).

The clinical implications of an enhanced sympathetic
response to CO2 relate first to the high prevalence of
sleep apnoeas and Cheyne–Stokes/periodic breathing in
CHF (Kasai et al. 2010). Then, the episodic stimulation
of CC during each apnoea and hypoventilation episode
leads to an exaggerated sympathetic response which adds
further stress to the heart (Fig. 1). Furthermore, it has been
proposed that repetitive stimulation of the sympathetic
outflow could entrain the respiratory cycle regulation
centrally to perpetuate breathing disorders (Bradley &
Floras, 1996; Lorenzi-Filho et al. 1999).

In addition to central modulation, CHF patients display
enhanced peripheral chemosensitivity that is strongly
related to the incidence of breathing disorders (Corra
et al. 2006; Marcus et al. 2014a). Interestingly, Del Rio
and collagues showed in CHF rats that acute inhibition
of the CB afferent activity by inhibition of the synthesis
of H2S stabilized breathing (Del Rio et al. 2013b)
suggesting that CB chemoreceptors may modulate the
central pattern generator (Fig. 1). In the same context,
Blain and collegues (2010) showed that the sensitivity of
the CCs is critically dependent on CB afferent activity
evidenced by a hyper-additive ventilatory responses to
central hypercapnia when CBs are stimulated (Blain
et al. 2010). Together, this evidence strongly suggests
an interrelationship between central and peripheral
chemoreceptors and their possible contribution to altered
sympathetic and respiratory control in pathophysiology.
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Respiratory–sympathetic coupling in CHF: an integrative
pathophysiological mechanism. Sympathetic discharge
is actively modulated by respiration (Guyenet, 2014;
Molkov et al. 2014). Recent studies suggest that enhanced
coupling between sympathetic and respiratory neural
drive contribute to augmented sympatho-excitation in
CHF (Costa-Silva et al. 2012; Marcus et al. 2014b,
2015). In addition, respiratory–sympathetic coupling
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Cardiac arrhythmias Periodic breathing
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Figure 1. Schematic diagram showing the contribution of
peripheral and central chemoreceptors in development of
sympathoexcitation and breathing disorders
Carotid body and RTN neurons respond to changes in different
signals from the bloodstream and cerebrospinal fluid, respectively.
Upon activation, the chemoreflex drive increases and induces a reflex
cardiorespiratory response. Integration of the chemosensory inputs
takes place in brainstem areas including the NTS, RVLM and central
pattern generator, which finally leads to an increase in sympathetic
discharges and activation of phrenic motoneurones. In the
pathophysiology of CHF, the enhanced activity from peripheral and
central chemoreceptors induces an increase in the central
symapatho-respiratory outflow triggering cardiac arrhythmias and
breathing disorders. CB, carotid body; CPG, central pattern
generator; NTS, nucleus tractus solitarii; RTN, retrotrapezoid nucleus;
RVLM, rostral ventrolateral medulla.

has been pointed out as a key pathophysiological
mechanism in other disease conditions such as hyper-
tension and sleep apnoea. Simms et al. (2009) showed
that spontaneously hypertensive rats display an enhanced
respiratory modulation of the renal sympathetic nerve
discharges compared to normotensive animals. In
rats exposed to intemittent hypoxia mimicking sleep
apnoea, Zoccal et al. (2008) showed in an elegant
study that respiratory–sympathetic coupling contributes
to the development of CIH-dependent hypertension.
Alterations in the coupling between the central control
of respiration and sympathetic neural drive may underlie
the pathophysiology of oscillatory breathing and related
sympathetic activation in CHF. Central apnoeas and
Cheyne–Stokes respiration, a form of episodic breathing
during sleep, are commonly observed in patients with
CHF and are thought to negatively impact autonomic
and metabolic homeostasis (Brack et al. 2012). It has
been proposed that oscillatory breathing patterns are
associated with exaggerated carbon dioxide sensitivity
(Javaheri, 1999). Indeed, it has been shown that a rise
in CO2 levels in the central nervous system increases
sympathetic nerve discharge and blood pressure in
anaesthetized and awake animals (Oikawa et al. 2005).
Then, surges in sympathetic discharge could take place
during acute stimulation of CCs. Therefore, in CHF the
hypoxic/hypercapnic stimulation of central and peripheral
chemoreceptors during the episodes of hypoventilation
and apnoeas at rest (i.e. periodic breathing) may trigger
an exaggerated sympathetic response to key end-organs.
On the other hand, altered breathing patterns could also
lead to sympathoexcitation due to the stimulation of the
sympatho-inhibitory reflex elicited by lung stretch (Goso
et al. 2001). Further studies should focus on the role
of pulmonary receptors in the development of altered
breathing patterns and autonomic imbalance in CHF.

Conclusions

CHF is characterized by a sustained elevation in
sympathetic nerve traffic, which is recognized as an
important component in the pathophysiology and
progression of the disease independent of the aetiology
of cardiac failure (Kristen et al. 2002; Del Rio, 2015; Floras
& Ponikowski, 2015; Schultz et al. 2015b). The CBs have
been suggested to be key mediators in the establishment
and progression of autonomic dysfunction and breathing
abnormalities in CHF (Ponikowski & Banasiak, 2001;
Zucker, 2006; Schultz et al. 2007; Niewinski et al. 2013; Del
Rio et al. 2013a; Marcus et al. 2014b). It is worth noting that
the contribution of CB-mediated peripheral chemoreflex
drive to autonomic imbalance and disordered breathing
patterns has only been studied in systolic heart failure.
Future studies should address the potential contribution
of the CB chemoreceptors in other types of CHF.
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Contrary to what is known about the contribution of
the peripheral chemoreceptors in CHF progression, the
role played by CCs in the development of autonomic and
breathing disturbances in CHF is not well understood.
The RTN in the ventral surface of the medulla has been
pointed out as a key region involved in breathing control
and CO2 sensing (Onimaru et al. 2009; Guyenet & Mulkey,
2010). Exaggerated ventilatory and sympathetic responses
to hypercapnia have been observed in both CHF patients
and animal models of the disease, suggesting that central
chemoreflex drive is enhanced during CHF (Narkiewicz
et al. 1999; Kristen et al. 2002; Giannoni et al. 2008).
More importantly, central chemoreflex drive seems to be
augmented in both systolic and diastolic cardiac failure.
Therefore, CCs are likely to play an important role in
sympathoexcitation during CHF.

It has been shown that RTN neurones receive poly-
synaptic excitatory inputs from second-order NTS neuro-
nes, which in turn are modulated, at the NTS level, by
CB afferent projections. Therefore, excitation of the CB
may lead to sensitization of the RTN neurones. Indeed, it
has been shown that activation of the CB afferent pathway
results in the depolarization of RTN neurones (Takakura
et al. 2006). It is also hypothesized that CB activity may
regulate RTN neurone membrane potential and firing
threshold (Guyenet, 2014). Therefore, it seems likely that
interaction between peripheral and central chemoreflexes
at the level of the RTN may be a key component in the
respiratory regulation during hypoxic and hypercapnic
challenges (Guyenet, 2014).

In addition, non-neuronal cells (i.e. astrocytes) have
recently been recognized as taking part in several physio-
logical functions, including pH detection in central
chemosensitivity areas (Angelova et al. 2015). Recent
evidence suggests that ATP-mediated purinergic signalling
at the level of the RVLM contributes to cardiovascular
and respiratory responses triggered by hypoxia and hyper-
capnia by activating pre-sympathetic catecholaminergic
C1 neurones and CO2/H+-sensitive RTN neurones,
respectively (Gourine et al. 2010; Moreira et al. 2015).
Interestingly, Marina and collegues (2013) showed that
ATP release from astrocytes activates pre-sympathetic
brainstem neurones in the RVLM, thereby contributing
to symphatoexcitacion, progression of ventricular
remodelling and development of heart failure secondary
to myocardial infarction (Marina et al. 2013). Together,
this evidence strongly suggests that non-neuronal cells
(i.e. astrocytes) actively participate in cardiorespiratory
regulation in the central nervous system and may represent
novel targets to control sympathoexcitation in CHF. In
summary, numerous studies suggest that peripheral and
central chemoreflex function is enhanced in CHF and
contributes to increases in sympathetic nerve activity
and the incidence of disordered breathing patterns.
Future studies should focus on identifying autonomic

mechanisms regulating cardiorespiratory patterns and
how these mechanisms contribute to deterioration of
cardiac function and increases in mortality in CHF. Under-
standing these mechanisms can aid in further development
of therapeutic strategies to improve quality of life, morbity
and mortality in the CHF population.
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