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1  | CELLUL AR ORGANIZ ATION OF THE 
SKIN

The skin is the largest organ in the human body, and it is con-
stantly exposed to environmental insults, such as bacteria, viruses, 
air/water pollution, sunrays (Rodrigues et  al.,  2019). Three layers 
compose the skin: the epidermis, the dermis, and the hypodermis 
(Debeer et al., 2013). The epidermis is the outer layer of the skin, 
and it is the first barrier that protects the organism from external 

elements. Keratinocytes, melanocytes, Langerhans cells, and Merkel 
cells, arranged in five cellular layers, compose the epidermis. The 
deepest layer of the epidermis, the stratum basale, is constantly pro-
ducing new cells that differentiate and migrate to the most exter-
nal layer, named as stratum corneum, where they lose their nucleus 
and merge. In the normal skin, the most external cells detach con-
stantly, taking around 2 weeks from birth in the Stratum basale to 
their loss in the Stratum corneum. The dermis is below the Stratum 
basale and has several functions, such as to feed the epidermis, to 
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Abstract
Melanoma is the most aggressive skin cancer, and in metastatic advanced states, 
it is completely refractory to chemotherapy. Therefore, it is relevant to understand 
the molecular bases that rule their aggressiveness. Connexins (Cxs) are proteins that 
under normal physiological conditions participate in intercellular communication, via 
the exchange of signaling molecules between the cytoplasm and extracellular milieu 
and the exchange of ions/second messengers between the cytoplasm of contacting 
cells. These proteins have shown important roles in cancer progression, chemo- and 
radiotherapy resistance, and metastasis. Accordingly, Cx26 and Cx43 seem to play 
important roles in melanoma progression and metastasis. On the other hand, Cx46 
is typically expressed in the eye lens, where it seems to be associated with oxidative 
stress protection in fiber lens cells. However, in the last decade, Cx46 expression 
has been associated with breast and brain cancers, due to its role in potentiation of 
both extracellular vesicle release and cancer stem cell-like properties. In this review, 
we analyzed a potential role of Cx46 as a new biomarker and therapeutic target in 
melanoma.
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give extra protection against physical trauma, body thermoregula-
tion, and sensory and structural functions. Finally, the hypodermis, 
which is mostly conformed by fibroblasts, adipose, and immune cells, 
is highly vascularized and it is the skin area where the fat is stored 
(Debeer et al., 2013).

Melanocytes are specialized pigmented cells derived from the 
neural crest and normally are located at the Stratum basale of the 
epidermis. The main function of melanocytes is to produce melanin, 
a pigment that protects the organism from ultraviolet (UV) ray-in-
duced damage. A single melanocyte can interact as much as 36 epi-
dermal keratinocytes through their dendrites, which are distributed 
from the base to the top of the epidermal layers forming the “epider-
mal melanin unit” (Haass & Herlyn, 2005). Melanosomes are melanin 
pigment-containing organelles that are transported along with me-
lanocyte dendrites toward keratinocytes for protecting these cells 
from UV radiation-induced damage. Under physiological conditions, 
undifferentiated keratinocytes from the Stratum basale regulate 
melanocyte homeostasis by secreting numerous factors in response 
to UV radiation, promoting proliferation, differentiation, survival, 
and melanin production in melanocytes (Kaidbey et al., 1979). Cell 
division is relatively infrequent in melanocytes but when it occurs, 
compresses a series of processes such as decoupling from keratino-
cytes, dendrite retraction, cell division and recoupling with neigh-
boring keratinocytes to form a new epidermal melanin unit (Shain & 
Bastian, 2016).

2  | THE FUNC TION OF CONNE XINS IN 
THE SKIN

Connexins (Cxs) are a family of transmembrane proteins that ex-
hibits four transmembrane domains, two extracellular loops, one 
cytoplasmic loop, and N-terminal and C-terminal portions at the 
cytoplasmic region (Retamal et al., 2015) (Figure 1a). Cxs are called 
by their predicted molecular weight (MW); for instance, Cx26 has 
a predicted MW of 26  kDa. The C-terminal portions of Cxs have 
the highest amino acidic variability and also present several sites 
for post-translational modifications (Beyer et  al.,  1990; Pogoda 
et al., 2016). Cxs oligomerize in hexamers in the endoplasmic reticu-
lum or in the transit to the Golgi apparatus to form a hemichannel 
(Sáez et al., 2003). Once at the plasma membrane, hemichannels can 
dock to other hemichannels from neighboring cells forming a gap 
junction channel (GJC). The packing of GJCs in a restricted mem-
brane zone is known as gap junction plaque or just gap junction (GJ) 
(Sáez et al., 2003). Because of their differential dispositions at the 
plasma membrane, hemichannels allow the bidirectional exchange 
of ions and small molecules between the intra and extracellular 
milieu, whereas GJCs allow the bidirectional exchange of ions and 
small molecules between the cytoplasm of adjacent cells (Retamal 
et al., 2015; Sáez et  al., 2003). In general, these two types of Cx-
formed channels present a permeability to molecules with a cutoff 
around 1.0–1.2 kDa (Sáez et al., 2010; Yeager & Nicholson, 1996); 

F I G U R E  1   Connexins, hemichannels, and gap junctions. (a) Connexins (Cxs) are integral membrane proteins with cytosolic C-terminal 
(CT) and N-terminal (NT) domains. Six Cxs oligomerize to form a connexon or hemichannel. At the plasma membrane, the Cx-hemichannel 
can dock head to head with a Cx-hemichannel in an adjacent cell to form a gap junction intercellular channel (GJC). Through the pore formed 
by Cx-channels, small molecules of different nature can pass in a bidirectional manner. (b) Cxs can form four types of GJC: (i) homomeric, the 
hemichannels of the two connected cells are composed of the same type of Cx; (ii) heterotypic/homomeric, each hemichannel is composed 
of a type of Cx, which is different from the other cell hemichannel; (iii) heterotypic/heteromeric, one hemichannel is formed by a type of Cx, 
whereas the connected hemichannel from the adjacent cell is composed by a mix of different Cxs; and (iv) heteromeric, the hemichannels of 
the two connected cells are composed by mixed Cx types
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consequently, molecules such as ATP, glutamate, glucose, micro-
RNAs, peptides, and second messengers can pass through them 
(Figure 1a) (Fiori et al., 2012; Retamal et al., 2007; Sáez et al., 1989; 
Stout et al., 2002; Ye et al., 2003). For these reasons, hemichannels, 
as well as GJCs, participate in the regulation of multiple physiological 
cell functions, for example cell growth and adhesion, differentiation, 
migration, and apoptosis (Goodenough, 1992; Retamal et al., 2015; 
Sáez et al., 2003; Vinken et al., 2008; Zhou & Jiang, 2014).

Interestingly, Cxs can form hemichannels and GJCs made only 
by one type of Cx or by a mix of them with unique properties in 
terms of permeability and gating regulation (Cottrell & Burt, 2005; 
Koval et al., 2014) (Figure 1b). Formation of mixed hemichannels and 
GJCs is not a random mechanism, and on the contrary, it depends on 
a specific sequence in the intracellular loop—transmembrane loop 
3 segment—and on the extracellular loop 2 (for more details, see 
Koval et al., 2014). In healthy human skin, several types of Cxs are 
expressed in keratinocytes (Cx26, Cx30, Cx30.3, Cx31, and Cx43), 
fibroblasts (Cx43), and melanocytes (Cx23, Cx26, Cx32, and Cx43) 
(Liovic et  al.,  2009; Wong et  al.,  2016). Therefore, there is a high 
possibility to find mixed hemichannels and/or GJCs in the skin. For 
instance, Cx26 and Cx30, which are expressed in the mice`s inner 
ear, co-localize and form heteromeric GJCs (Forge et al., 2003). So, 
there is no reason to suspect that Cx26 and Cx30 in the skin do not 
form heteromeric GJCs. Interestingly, Cx26 and Cx43 normally do 
not form heteromeric channels (Gemel et al., 2004); however, Cx26 
H73R mutation causes palmoplantar keratoderma (PPK) and deaf-
ness, can form heterotypic hemichannels with an enhanced activity 
(Shuja et  al., 2016). Similar results have been observed with Cx26 
G12R, N14Y, and S17F mutations (García et al., 2015). We think that 
future experiments directed to clarify heteromeric/heterotypic he-
michannels and GJCs properties and regulation in the skin are much 
needed.

Consistent with the expression of numerous Cxs, Lucifer yellow 
(GJ-permeable fluorescent molecule of ~457  g/mol) injected in a 
single keratinocyte can be transferred to 25–50 neighboring kerati-
nocytes, confirming the presence of functional GJCs between these 
cells (Salomon et al., 1988). The role of Cxs in melanocyte biology is 
far to be understood. In co-cultures of keratinocytes with fibroblasts 
or melanocytes, only functional Cx43 GJCs between keratinocytes 
and melanocytes but not between keratinocytes and fibroblasts were 
observed (Hsu et al., 2000; Padma et al., 2015). The close contact 
between keratinocytes and melanocytes by E-cadherin and Cxs is 
associated with keratinocyte control over growth, morphology, mel-
anin synthesis, and gene expression of melanocytes (Bogenrieder & 
Herlyn, 2002; Padma et al., 2015). On the other hand, the Cx mutant 
41.8 (the Cx 40 zebrafish orthologous) impairs the communication 
between pigment cells, affecting cell shape, spatial organization, and 
cell-to-cell metabolic exchange, all inducing changes in zebrafish skin 
pigment pattern (Watanabe et al., 2006; Watanabe & Kondo, 2012). 
A similar role of GJs in skin pigment pattern has been shown in 
trout and avian, where GJs are required by pigment cells for shape 
transitions or regulation of the size and periodic pigment pattern, 
respectively (Djurdjevič et  al.,  2019; Inaba et  al.,  2019; Mahalwar 

et al., 2016). Taking into count the scarce knowledge about Cxs in 
melanocyte biology, we encourage the research community to study 
intensely this field to find new strategies to understand melanocyte 
malignant transformation.

The role of Cxs in the skin has been shown through the study 
of naturally occurred Cx mutations that affect skin function. Thus, 
for example, mutations in Cx26 (D50A, A88V, and G45E) are re-
sponsible for keratitis–ichthyosis–deafness (KID) syndrome, through 
an increase in hemichannel activity (leaky hemichannels) (Gerido 
et al., 2007; Mhaske et al., 2013; Retamal et al., 2015). Similarly, Cx43 
mutations associated with leaky hemichannel formation also have 
been associated with skin diseases, such as Erythrokeratodermia 
Variabilis et Progressiva (EKVP) and Palmoplantar Keratoderma 
Congenital Alopecia-1 (PPKCA1) (Cocozzelli & White, 2019; Srinivas 
et  al.,  2019). The concept that leaky hemichannels are associated 
with skin disorders is also true for Cx30 (Essenfelder et al., 2004) 
and Cx31 (Chi et  al.,  2012). Leaky hemichannels can induce cell 
death by the loss of important metabolites (i.e., ATP) and the mas-
sive uptake of ions (i.e., Ca2+ and Na+) (Retamal et al., 2015). On the 
other hand, under physiological conditions, Cxs are important in 
skin wound healing processes; thus, for example, downregulation of 
Cx43 promotes angiogenesis, epithelial-to-mesenchymal transition 
(EMT) processes, and cell proliferation (Mori et al., 2006). Contrary 
to Cx43, an increase in Cx26 expression has been associated with 
the upregulation of cell proliferation and EMT-associated mecha-
nisms (Goliger & Paul, 1995). The association between Cx expression 
with cell proliferation, wound healing and EMT is very important also 
because the deregulation of these processes is one of the features 
of cancer. Indeed, since the initial observation that the absence of 
GJ-mediated intercellular communication (GJIC) is associated with 
increasing cell division in liver cancer cell lines (Loewenstein, 1979), 
Cxs were considered as tumor suppressors. Nowadays, the current 
concept is that Cxs could suppress or promote tumors, depending 
on the Cx isoform, cancer type, or cancer stage (Aasen et al., 2019; 
Wu & Wang, 2019).

3  | MEL ANOMA

Melanoma is the most aggressive and deadly skin cancer, which 
has shown a continuous increase in its incidence rate, more than 
any other type of solid cancer (Bray et al., 2018). It is responsible 
for about 75% of skin cancers deaths and predominantly affects 
fair-skinned populations living in countries exposed to high levels 
of UV radiation (Cosgarea et  al.,  2017; Ferlay et  al.,  2002). New 
Zealand and Australia have the highest incidence and mortality 
rates followed by North America and Northern Europe (Cosgarea 
et  al.,  2017). The survival rate for patients varies significantly 
depending on whether melanoma is detected in the early or late 
stages (Sandru et  al.,  2014). At early stages, the surgical resec-
tion represents an effective treatment, increasing the survival rate 
about 98%; however, if melanoma cells spread to lymph nodes, this 
falls to 64%, and in late stages, where melanoma colonizes distant 
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organs, the survival rate decreases dramatically to 23% (Global 
Cancer Observatory; https://gco.iarc.fr/). Melanoma tumorigene-
sis is associated with accumulative oncogenic DNA mutations and 
cellular damages induced by progressive exposure to the UV rays 
in melanocytes, which finally lead to the deregulation of growth 
regulatory genes, augmented secretion of autocrine growth fac-
tors, evasion of apoptotic signals, and immune response escape 
(Gray-Schofer et al., 2007; Shain & Bastian, 2016). Moreover, UV 
radiation impacts melanoma progression affecting the tumor mi-
croenvironment, causing a neutrophilic inflammatory response 
that promotes melanoma metastasis (Bald et  al.,  2014). On the 
other hand, the malignancy of melanocytes of the eye uvea (the 
iris, ciliary body, and choroid) leads to uveal melanoma, which de-
spite sharing the same cell origin is biologically different from cu-
taneous melanoma (van der Kooij et al., 2019).

It is well known that metastatic melanoma is highly refractory 
to conventional therapies such as chemotherapy and radiotherapy 
due to its resistance to cytotoxic agents (Soengas & Lowe, 2003). 
Several studies using next-generation sequencing (NGS) have shown 
that melanoma possesses the highest burden of genetic and epi-
genetic modifications as compared to other cancer types (Lawrence 
et al., 2013). These molecular changes lead to the generation of dif-
ferent cancer cell clones, increasing intra- and intertumoral heteroge-
neity, and thus limiting the efficacy of target therapeutic approaches 
(Andor et al., 2016; Grzywa et al., 2017; Rizos et al., 2014). On the 
other hand, this high tumor mutational rate leads to neoantigen bur-
den and presentation, which are associated with better responses 
to immunotherapy, particularly to immune-checkpoint blockade 
(ICB) (Cristescu et al., 2018; Van Allen et al., 2015). However, while 
ICB has resulted in durable clinical response in melanoma patients 
(Wolchok et al., 2017), these approaches are still limited to a subset 
of patients, because those can cause non-negligible side effects, in-
cluding immunotoxicity, and a significant percentage of patients de-
velops resistance to these therapies (Restifo et al., 2016. Therefore, 
the study of new therapeutic targets can increase the possibilities to 
find strategies with few side effects and/or that enhance the effect 
of the current treatments.

Melanoma cells can form GJCs with themselves and with fibro-
blasts, but do not with keratinocytes (Hsu et al., 2000), supporting 
the idea that Cx deregulation has a huge impact on the homeostatic 
control that keratinocytes exert over melanocytes. Moreover, mel-
anoma cells establish GJIC with immune cells, such as natural killer 
(NK) cells, T cells, and dendritic cells (DCs), indicating that the im-
mune system also controls melanoma progression by Cx-mediated 
mechanisms (Saccheri et  al.,  2010; Tittarelli et  al.,  2014; Tittarelli 
et  al.,  2015; Gleisner et al., 2017; Hofmann et  al.,  2019; Tittarelli 
et al., 2020; Navarrete et al., 2020). Several proteins that allow cell-
to-cell communication have been described as key factors in tumor 
cell transformation. Thus, for example, cadherins are proteins that 
maintain cell anchorage, and, through this mechanism, help to con-
trol cell differentiation and EMT (Corso et  al.,  2020; Sommariva 
& Gagliano, 2020). In melanoma, the loss or gain of E-cadherin or 
N-cadherin has a great impact on GJIC (Li et al., 2002). In the next 

sections, we will discuss what is currently known about the role of 
the most relevant Cxs in melanoma pathology.

3.1 | Role of Cx26 in melanoma

Numerous reports indicate an important role for Cx26 in promot-
ing melanoma metastasis. A study using murine melanoma B16-BL6 
and B16-F10 cell lines described that these two cell types constitu-
tively express Cx26, with BL6 having a higher expression (~5-fold) 
as compared to F10 cells (Ito et al., 2000). This result could suggest 
that these cells may form hemichannels and GJCs; however, BL6 and 
F10 show GJC-mediated dye transfer, neither with themselves nor 
in co-culture with fibroblasts or endothelial cells. These results were 
congruent with the lack of GJ structures observed by immunofluo-
rescence (Ito et al., 2000). Interestingly, when BL6 cells were co-cul-
tured with a vein tissue segment, they showed positive dye transfer, 
suggesting that they can establish GJIC under certain conditions. On 
the contrary, F10 cells were unable to form functional GJCs in the 
same conditions (Ito et al., 2000). Interestingly, whereas both mela-
noma cell lines showed the same metastatic capacity when injected 
through a mouse tail vein, only BL6 cells showed spontaneous me-
tastasis to lung tissue in a metastasis footpath model (Ito et al., 2000 
and Ito et  al.,  2004). Moreover, F10 melanoma cells transfected 
with Cx26 developed functional GJs in vitro and displayed a spon-
taneous metastatic phenotype similar to BL6 cells (Ito et al., 2000). 
Accordingly with these results, when BL6 cells were transfected 
with a Cx26-negative dominant form, their dye transfer capability in 
vitro was noticeably lower and their capacity to develop metastasis 
in vivo was abrogated, suggesting that Cx26 and its GJC formation 
play key roles in spontaneous metastasis capacity, and positions this 
Cx as an attractive target for melanoma therapy (Ito et al., 2000). 
To confirm this idea, GJC´s inhibitors as oleamide derivatives and 
Camellia oil fractions abrogate the in vivo spontaneous metasta-
sis of BL6 cells by suppressing Cx26 GJ functional structures (Ito 
et al., 2004; Miura et al., 2007; Ohba et al., 2007). Moreover, another 
study revealed that Cx26 is necessary to induce B16 melanoma cell 
colony formation in vitro and melanoma brain colonization in chicken 
embryo models (Stoletov et al., 2013). In addition, the use of the GJ 
pharmacological blocker carbenoxolone (CBX) inhibited the capacity 
of B16 cells to colonize the brain by interfering with GJIC between 
the tumor and vessel cells (Stoletov et al., 2013).

A comparative study between melanotic and amelanotic canine 
oral melanomas showed that Cx26 mRNA expression levels were 
similar in these two melanoma types; however, the amelanotic cells 
possess lower Cx26 protein levels, correlating with a more aggres-
sive phenotype compared with its melanotic counterpart (Teixeira 
et al., 2014). The authors of this work suggested an anti-tumorigenic 
role of Cx26. Interestingly, they also described that Cx26 immunos-
taining was observed not only at the plasma membrane but also in 
granular cytoplasmic marks, which was defined as an aberrant lo-
calization (Teixeira et al., 2014). Accordingly with this study, in a tri-
ple-negative breast cancer cell line, Cx26 localized in the cell nucleus 

https://gco.iarc.fr/
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interacting with Nanog, a transcription factor associated with cancer 
stem cells (CSC) (Thiagarajan et al., 2018). Therefore, the final effect 
of Cx26 on cancer cell phenotype not only depends on its levels of 
mRNA or protein but also on its localization and its protein–protein 
interaction pattern.

In human melanoma, Cx26 expression levels are still contro-
versial. Thus, some studies have found an upregulation of Cx26 in 
melanoma surrounding tissue (endothelial and keratinocyte cells) 
and undetected expression in melanoma cells, suggesting that Cx26 
may not have an active role in melanocyte malignant transformation 
(Haass et al., 2006; Saito-Katsuragi et al., 2007; Sargen et al., 2013). 
However, association analysis revealed that Cx26 expression is re-
lated to melanoma advanced stages and the ulcerative phenotype, 
leading to poor patient prognosis (Haass et  al.,  2010). In addition, 
Cx26 could facilitate the intra- and extravasation of melanoma cells 
by GJIC with endothelial cells, favoring the establishment of new 
niches into distant organs, such as lung or brain tissues (Nojima 
et  al.,  2008). Following the same line of evidence, the Oncomine 
database analysis revealed a positive correlation between Cx26 in 
primary tumors with poor patient prognosis (Stoletov et al., 2013), 
supporting the idea that Cx26 could favor intra- and extravasa-
tion in endothelial cells (Haass et al., 2006; Ito et al., 2000; Nojima 
et  al.,  2008; Saito-Katsuragi et  al.,  2007). In conclusion, Cx26 ex-
pression in melanoma tissue (melanoma, endothelial, and fibroblast 
cells) promotes a metastatic cell phenotype and enhances the es-
tablishment of new tumor niches through cell-to-cell communication 
with the surrounding tissue.

3.2 | Role of Cx43 in melanoma

Cx43 is the most studied Cx type in human research, probably be-
cause it is the most ubiquitously expressed. There is a large num-
ber of studies showing that Cx43 has both pro- and anti-tumor 
roles (Crespin et al., 2010; Grek et al., 2016; Deen et al., 2019; Uzu 
et al., 2018), the current consensus is that the final effect of Cx43 
in a given cancer will depend on different variables, such as can-
cer type, disease stages and the tumor microenvironment (Crespin 
et al., 2010; Gleisner et al., 2017; Uzu et al., 2018; Varela-Vázquez 
et al., 2020).

The role of Cx43 channels in melanoma progression is quite 
controversial and still is under deep investigation. Thus, on the one 
hand, recent in silico analysis revealed downregulation of Cx43 
during melanoma progression (Kiszner et  al.,  2019). Accordingly, 
in primary cultures of human and mouse melanocytes, Cx43 was 
absent or its levels were lower enough not to be detected (Alaga 
et al., 2017). Interestingly, gene expression comparison between two 
human melanoma cell lines, UACC903 and modified induced Chr 6 
UACC903 (+6), showed that the decrease in Cx43 enhanced the an-
chorage-independent growth of the malignant cells (Su et al., 2000). 
On the other hand, an immunohistochemical tissue microarray anal-
ysis over 272 pigmented lesions, including common nevus, atyp-
ical nevus, and melanoma, found an elevated expression of Cx43 

in melanoma tissue along with all tumor stages (Rezze et al., 2011). 
Similarly, Cx43 was detected in melanoma cells that invaded lymph 
nodes and in metastatic niches in distant organs with a marked intra-
cellular pattern; thus, Cx43 could have a pro-tumoral role in a GJIC-
independent manner (Alaga et al., 2017). In addition, this apparent 
discrepancy could be due to differences between the antibodies 
used to detect Cx43, post-translational modifications, activated/in-
activated intracellular pathways, or others. Therefore, the need to 
unify criteria to generate comparable results and thus determine the 
true role of Cx43 in melanoma becomes evident.

Regardless of whether the expression of Cx43 increases or de-
creases in human melanoma, it is clear that when Cx43 is present in 
melanoma cells, there is a decrease in some parameters associated 
with the metastatic process. Thus, for example, murine B16 mela-
noma cells exposed to hyper-adhesive substrates develop increased 
levels of Cx43-GJIC, which is associated with inhibition of cancer cell 
motility, suggesting that Cx43 could modulate the migration capac-
ity involved in melanoma carcinogenesis (Daniel-Wójcik et al., 2008). 
Similarly, BL6 cells transfected with Cx43 showed a reduction in tu-
morigenic properties as anchorage-independent growth, prolifera-
tion, and primary tumor development, in heterocellular co-cultures 
with keratinocytes and independently of GJIC (Ableser et al., 2014). 
Additional reports, using melanoma cells derived from patients, 
confirm that Cx43 expression downregulates cell growth and meta-
static potential in vitro and in vivo (Tittarelli, Guerrero, et al., 2015). 
Moreover, melanoma cells overexpressing Cx43 display higher basal 
and TNF-α-induced apoptosis. Indeed, lung metastasis of melanoma 
cells expressing Cx43 developed more GJ plaques and showed 
more active caspase 3 staining than its Cx43-low cell counterpart 
(Tittarelli, Guerrero, et  al.,  2015). Further, the effects of Cx43 as 
tumor suppressor protein in melanoma cells can be reverted by spe-
cific Cx43 downregulation by miR-106a in melanoma cells (Wang 
et al., 2019). Yet, as mentioned before, the role of Cx43 in melanoma 
is not so simple; thus, when premalignant and malignant cells derived 
from the same melanoma patient were transfected with wild type 
or a mutant Cx43 (which cannot form functional GJ structures), an 
increase in both growth rate and invasiveness was observed in ma-
lignant but not in premalignant cells (Zucker et al., 2013). Therefore, 
both channel-dependent and channel-independent roles of Cx43 
could depend on the melanoma tumor progression state.

Accordingly to the idea that Cx43 could have relevant roles in 
more advanced melanoma states, immunohistochemistry analysis 
from human choroidal melanoma and benign nevi has shown that 
Cx43 was strongly expressed in choroidal melanoma with marked 
expression in cells surrounding the blood vessels, suggesting 
Cx43-mediated endothelial–melanoma cell communication (Mou 
et  al.,  2011). Therefore, Cx43 expression may improve tumor cell 
interaction with its surrounding cells, increasing vascular attach-
ment and favoring the formation of metastatic niches (Braeuer 
et al., 2011). Correspondingly with this idea, astrocytes have been 
proposed as facilitators of the settle down of metastatic cancer cells 
by mechanisms involving Cx43-GJIC. In human brain metastasis, 
astrocytes are surrounded by melanoma tumor tissue (Schackert 
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et al., 1990). Importantly, co-cultures of astrocytes and melanoma 
cells show cell-to-cell interactions by direct contact of multiple podia 
and functional GJIC structures (Lin et al., 2010). When these co-cul-
tures were confronted with chemotherapy treatment, astrocytes act 
as protectors of the melanoma cells through a mechanism involv-
ing cytoplasmic Ca2+ exchange by Cx43-mediated GJIC, decreasing 
the melanoma cytotoxicity induced by chemotherapeutic drugs (Lin 
et al., 2010).

Melanoma cells can also communicate with other immune cells (in 
addition to astrocytes) by Cx43 channels. Indeed, it has been shown 
that Cx43 is the major Cx type expressed by immune system cells 
such as monocytes, DCs, NK cells, B cells, and T cells (Gleisner et al., 
2017). Thus, Cx43 GJs have been implicated in melanoma antigen 
cross-presentation (Mendoza-Naranjo et al., 2007), DC maturation, 
and melanoma-associated antigen (MAA)-specific T-cell activation 
by DCs (Matsue et al., 2016; Mendoza-Naranjo et al., 2011). Human 
melanoma cells are capable to form Cx43 GJs with autologous endo-
thelial cells when co-cultured in vitro, allowing the transfer of MAA 
from melanoma to endothelial cells and its cross-recognition and 
elimination by autologous MAA-specific cytotoxic T lymphocytes 
(CTL) (Benlalam et  al.,  2009). Interestingly, Cx43-GJs can be de-
tected among melanoma and endothelial cells in metastatic biopsies 
from melanoma patients (Benlalam et al., 2013), suggesting that CTL-
mediated elimination of endothelial cells may contribute to control 
melanoma progression. Moreover, overexpression of Cx43 in human 
melanoma cell lines under normoxic conditions increases its suscep-
tibility to NK cell-mediated melanoma cell killing via stabilization of 
the immunological synapses (Tittarelli, Janji, et al., 2015). However, 
under hypoxic conditions, these cells were less susceptible to NK 
cell-mediated lysis due to selective degradation of Cx43-GJ by au-
tophagy, and the subsequent destabilization of the immune synapse 
(Tittarelli, Janji, et al., 2015). Furthermore, the upregulation of Cx43 
on murine and human melanoma cells by Salmonella infection has 
been associated with enhancing anti-melanoma immune responses 
and tumor control. Specifically, melanoma cells share processed 
tumor antigens with DCs through GIJC, which finally results in an ef-
ficient DC-mediated melanoma-specific T-cell activation and T-cell-
mediated tumor cell elimination (Saccheri et al., 2010).

As mentioned before, some intra- and extracellular signaling can 
modify the role of Cx43 in melanoma, and therefore explicate the 
variable results obtained until now. Among them, endothelins (ETs) 
are a family of proteins that induce melanocyte migration and dif-
ferentiation under physiological and malignant conditions (Cichorek 
et al., 2013). In melanoma cells, ETs decrease Cx43-mediated GJIC 
through its phosphorylation in a time-dependent manner (Bagnato 
et al., 2004; Rosanò et al., 2004). Contrarily, Cx43 can be induced 
by proteinase-activated receptor 1 (PAR-1), a molecule highly as-
sociated with the progression of several cancers including breast, 
colon, prostate, and melanoma (Villares et al., 2011). When in the 
highly metastatic human melanoma cells A375M and C8161, the 
expression of PAR-1 was silenced by specific shRNA, downregula-
tion of Cx43 was also observed (Villares et al., 2009). Interestingly, 
PAR-1-silenced melanoma cells shown a decrease in both surface 

attachment capacity and GJ-mediated dye transfer; accordingly, 
the silencing of PAR-1 induced significantly lower melanoma tumor 
growth and reduced experimental lung metastasis in nude mice 
(Villares et al., 2008 and Villares et al., 2009). In addition, p54nrb is 
an RNA-binding nuclear protein that has Cx43 as one of its targets 
(Dong et al., 1993), inhibiting its translation in embryonic stages and 
melanoma. Interestingly, the levels of p54 are higher in advanced 
stages of melanoma (Schiffner et al., 2011). The silencing of p54 on 
melanoma cell lines upregulates Cx43 expression, which in turn is as-
sociated with lower cell proliferation, migration, apoptotic rate, and 
higher cell attachment to the matrix (Schiffner et al., 2011).

Altogether, these evidences suggest that Cx43 is a targeted 
candidate for melanoma treatment. Indeed, it has been shown that 
resveratrol, an anti-inflammatory molecule isolated from grapes, is 
capable of increasing Cx43 expression in human K1735 and mu-
rine B16F10 melanoma cells. The combination of resveratrol with 
cisplatin causes a potentiated apoptotic effect in vitro, and reduced 
tumor cell growth to a higher extent than cisplatin therapy alone in 
vivo (Cheng et al., 2015). Similar results were obtained using regu-
lar 5-FU anticancer therapy in combination with eicosapentaenoic 
acids (EPA) that upregulate Cx43, enhancing the drug cytotoxicity 
through the activation of mitogen-activated protein kinase (MAPK) 
signaling pathways (Yang et al., 2019). In addition, the bystander ef-
fect is the basis of gene suicide therapy success, where dying cells 
share toxic substrates via GJCs to neighbor cells, promoting mas-
sive cell death (Nardin et  al.,  2019). Accordingly, the treatment of 
B16 melanoma cells with tanshinone (Tan IIA) or dioscin (chemical 
substances extracted from roots), induces the upregulation of Cx43 
and the consequent formation of functional Cx43-GJ-like structures 
that allow the bystander effect of gene suicide therapy and ionizing 
radiation therapies (Ohshima et al., 2012; Xiao et al., 2013 and Xiao 
et al., 2017). Moreover, Cx43 upregulation by dioscin treatments in-
hibits melanoma progression not only by suppressing melanoma cell 
malignancy but also by inducing the polarization of macrophages to 
M1 phenotype (Kou et al., 2017).

3.3 | Potential role of Cx46 in melanoma

Cx46 is transcribed from the GJA3 gene, which is located at chro-
mosome 13 (13q12.11). This protein has a predicted MW of about 
46  kDa; however, it can be modified by phosphorylations (Jiang 
et  al.,  1993). Thus, for example in mouse seminiferous tubule-en-
riched samples, Cx46 immunoreactive bands of 51 and 68 kDa were 
observed, and both bands were diminished after the addition of al-
kali phosphatase to the samples (Pelletier et al., 2015). However, it 
seems that other post-translational modifications such as carbonyla-
tion and S-nitrosylation do not change its MW (Retamal et al., 2009 
and Retamal et al., 2020). In humans, the expression of Cx46 only 
has been reported in the eye lens (Berthoud & Ngezahayo, 2017). 
The lens is an avascular organ, and Cx46 GJCs help to mobilize ions 
and metabolites from the lens periphery to the fiber cells at the lens 
center (Beyer & Berthoud, 2014; Mathias et al., 2010). On the other 
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hand, Cx46 hemichannels help to the glutathione transport from 
lens fiber cells, which in turn help to protect them against oxidative 
stress (Shi et al., 2018). The malfunctioning of Cx46 is very well cor-
related with cataract formation in both animal models and humans 
(Gong et al., 1997; Minogue et al., 2005; Pal et al., 2000). Thus, sev-
eral reports are showing that GJA3 gene mutations are very well 
correlated with cataract formation (Berthoud & Ngezahayo, 2017). 
Accordingly, mice lacking Cx46 developed nuclear cataracts associ-
ated with increasing intracellular Ca+2 concentration of about 1 µM 
in fiber cells (Gao et al., 2004) and crystalline aggregation and pro-
teolysis due to activation of calcium-dependent proteases m-calpain 
and Lp82 (Gong et al., 1997).

In 2010, for the first time, Cx46 was correlated with the pro-
gression of human cancer (Banerjee et al., 2010). In this work, it was 
demonstrated that Cx46 protein levels are elevated in breast-in-
filtrating ductal carcinoma. Interestingly, when a human-derived 
breast cancer cell line (MCF-7) is exposed to shRNAs against Cx46, 
it becomes highly susceptible to hypoxia, suggested that Cx46 is a 
“protective factor” against low oxygen levels (Banerjee et al., 2010). 

Accordingly to a pro-tumorigenic role of Cx46, MCF-7 cells formed 
larger tumors in a xenograft mice model compared with MCF-7 cells 
treated with an anti-Cx46 shRNA (Banerjee et al., 2010). A similar 
effect was observed in a xenograft model using the Y79 retino-
blastoma cell line (Burr et al., 2011). Supporting a malignant role of 
Cx46 in cancer cells, Acuña and co-workers  (2020) demonstrated 
that Cx46-expressing MCF-7 cells released more extracellular ves-
icles (EV, likely exosomes) than its Cx46-negative MCF-7 coun-
terpart, and these EV presented Cx46 in their membranes (Acuña 
et al., 2020). Interestingly, the presence of Cx46 in the EV enhanced 
the exchange of “information” between EV and target cells (Acuña 
et al., 2020). Despite all these evidences, it has not been found yet a 
correlation between the patient`s prognosis and Cx46 mRNA levels 
in breast cancer (Teleki et al., 2014). On the other hand, in human-de-
rived glioblastoma cell lines, Cx46 controls CSC self-renewal by a 
GJIC-dependent mechanism (Hitomi et al., 2015; Mulkearns-Hubert 
et al., 2019). Interestingly, Cx43 and Cx46 seem to have opposite ef-
fects on CSC properties in glioblastoma (Hitomi et al., 2015). In sum-
mary, Cx46 seems to increase cancer aggressiveness through the 

F I G U R E  2   GJA3 expression in normal, cancer tissue, and cancer cell lines. (a) GJA3 differential expression levels between tumor and 
adjacent normal tissues (RNA-Seq analysis from the TCGA database using TIMER2.0). (b) GJA3 gene expression in a dataset of cancer 
lineages from cell lines. The number next to the lineage name indicates how many cell lines are in the lineage. The highest average 
distribution is on the left and is colored red. The dashed line within a box is the mean. Courtesy of The Cancer Cell Line Encyclopedia 
(Ghandi et al., 2019). Image available at the following URL: https://porta​ls.broad​insti​tute.org/ccle/page?gene=GJA3

https://portals.broadinstitute.org/ccle/page?gene=GJA3
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promotion of CSC-like properties and/or a protective role against 
hypoxia. Undoubtedly, future works correlating cancer patient prog-
nosis should take into account both Cx46 protein and mRNA levels.

Under normal conditions, Cx46 is not expressed in any human 
skin cell type, and as far as we know, few reports are showing its 
expression in melanoma cells (Kiszner et  al.,  2019). Accordingly, 
using gene expression data of the Cancer Genome Atlas Program 
(TCGA) available in web analysis platform TIMER2.0 (http://timer.
cistr​ome.org/; Li et al., 2020), we found that Cx46 mRNA levels are 
significantly upregulated in several tumors, including melanoma 
(Figure 2a), strongly suggest a potential role of Cx46 in melanoma 
biology. Then, we analyzed whether human melanoma cell lines ex-
press Cx46. To do that, we used the Cancer Cell Line Encyclopedia 
(ECCL) that possesses a database of mRNA expression from numer-
ous cancer cell lines. We found that melanoma cell lines were the 
ones with the highest expression of Cx46 mRNA (Figure 2b), sug-
gesting that melanoma cell lines can be used for the study of the role 
of Cx46 on melanoma biology. An analysis of TCGA data showed 
that, although GJA3 expression does not correlate with skin cuta-
neous melanoma patient's survival (Figure 3a), patients with uveal 
melanoma with higher GJA3 tumor expression have a significantly 
worse prognosis than those with lower GJA3 tumor expression 
(hazard ratio = 2.063, p =  .000055; Figure 3b). The same analysis 
was performed on breast cancer and glioblastoma, where mRNA 
levels and patient survival did not correlate, although the experi-
mental data strongly suggest that Cx46 protein expression is well 
correlated with an enhancement of cancer aggressiveness and CSC 
phenotype, respectively (Acuña et al., 2020; Banerjee et al., 2010; 
Hitomi et  al.,  2015; Mulkearns-Hubert et  al.,  2019). It is well ac-
cepted that not always mRNA levels correlate with their protein lev-
els (Liu et al., 2016) and this discrepancy seems to be higher in cancer 
than in normal cells (Kosti et al., 2016). Another interesting question 
is whether Cx46 is important in all the stages of melanoma. Using 
TCGA data, we found that the Cx46 mRNA levels are high at stages I, 
II, and III and become low at stage IV (Figure 4), suggesting that Cx46 
could have an important role in melanoma growth and early stages 
of metastasis. Therefore, we encourage the community to analyze 

the expression of Cx46 (as protein) in melanoma tumors and then 
correlate these results with patient survival.

3.3.1 | How Cx46 could modulate melanoma cell 
aggressiveness?

Channel-independent actions
In the last years, it has been noted that not only Cx expression 
levels but also the Cx channel-dependent and channel-independ-
ent functions must be considered in order to decipher their role 
in cancer. Thus, Cxs exert their channel-independent way of ac-
tion mainly through the interaction with other proteins, and the 
vast majority of these protein interactions are mediated by the Cx 
C-terminal (hereafter named as free CT) (Giepmans et  al.,  2001; 
Hervé et  al.,  2004; Jiang & Gu,  2005; Kanemitsu et  al.,  1997; 
Moorby & Patel,  2001; Sorgen et  al.,  2018; Van Campenhout 
et al., 2020; Zhou & Jiang, 2014). Thus for example, in triple-neg-
ative breast cancer cells, Cx26 interaction with Nanog promotes 
CSC renewal (Thiagarajan et al., 2018). Similarly, Cx32 accumula-
tion in the cytoplasm enhances CSC renewal of HuH7 hepatoma 
cells (Kawasaki et  al.,  2011), probably by a mechanism involving 
protein–protein interaction. Recently, it has been demonstrated 
that Cx-CT can be transcribed separately from the rest of the Cx 
(Salat-Canela et al., 2014; Ul-Hussain et al., 2012) through an mRNA 
IRES-entry site (Salat-Canela et al., 2014). This peptide has its own 
protein–protein interactions (Joshi-Mukherjee et al., 2007; Leithe 
et al., 2018). In this context, the Cx43-free CT increases glioma cell 
migratory capacity via its interaction with the actin cytoskeleton 
(Crespin et al., 2010). On the other hand, Cx43-free CT expression 
in U2OS osteosarcoma cells and HeLa cells decreased their cell di-
vision rate (Dang et al., 2003; Zhang et al., 2003). Similarly, a pep-
tide derived from the CT of Cx43 (TAT-Cx43266-283) reduces CSC 
properties via inhibition of c-Src in a patient-derived glioma model 
(Gangoso et al., 2014; Jaraíz-Rodríguez et al., 2017). In the case of 
Cx46, it has been observed that in the folliculostellate cell's nu-
cleus, Cx46 interacts with Nopp-140, which is a transcription 

F I G U R E  3   Correlation between GJA3 expression and melanoma patient survival. Kaplan–Meier survival plot of skin cutaneous 
melanoma (SKCM) and uveal melanoma (UVM) patients generated using TIMER2.0 resource. The Cancer Genome Atlas (TCGA) data of 471 
SKCM and 80 UVM melanoma patients were assigned into low or high groups according to the expression level of GJA3 reported as RNA-
Seq values.

http://timer.cistrome.org/
http://timer.cistrome.org/
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factor involved in rRNA processing (Vitale et  al.,  2017). Thus, 
these data suggest that a channel-independent role of Cx46 in 
cancer cells cannot be ruled out.

Channel-dependent actions
In general, as mentioned before, it is well accepted that cancer cells 
do not form functional GJCs (Leithe et  al.,  2006). Actually when 
GJC communication is re-established by re-expression of Cxs, a re-
duction in cell division and decrease in cancer cell characteristics 
are observed (Eghbali et al., 1991; Tittarelli, Guerrero, et al., 2015; 
Yamasaki,  1990). Thus, for example, Cx43 re-expression and GJC 
formation inhibit CSC properties in lung cancer cells (Ruch, 2019). 
However, the case of Cx46 seems to be different, because as men-
tioned before, its expression is strongly associated with the es-
tablishment of CSC (Hitomi et  al.,  2015). Thus, Cx46 expression 
increases CSC´s proliferation, self-renewal, and tumor propagation 
in human glioblastoma (Hitomi et al., 2015). Importantly, these ef-
fects were inhibited by a Cx46-GJC blocker (Clofazimine), suggest-
ing that Cx46-GJCs could be also involved in CSC. The CSC are 
important melanoma initiators and are responsible for chemother-
apy resistance (Zhang et al., 2020). Therefore, it could be interesting 
to investigate whether in melanoma Cx46 could co-localize with CSC 
markers, such as aldehyde dehydrogenase (Zhang et al., 2020).

As mentioned, Cxs can also form functional hemichannels. On 
the contrary to the role of GJCs in cancer, the role of hemichannels 
has been poorly studied. Hemichannels are permeable to ions and 
signaling molecules. Thus, Cx26 and Cx43 hemichannels are perme-
able to Ca2+ (Sánchez et al., 2010; Schalper et al., 2010), which in 
the case of Cx26 can activate PI3k (Fig ueroa et al., 2013), a very 
important player in cancer progression, including in melanoma 
(Chamcheu et al., 2019). Another possibility is allowing the release 
of ATP to the extracellular milieu (Stout et al., 2002), which can acti-
vate P2X and P2Y receptors, both being able to increase the [Ca2+]I 
(Burnstock,  1990). According to this model, it has been observed 
that Cx43 hemichannels—via ATP release—regulate H9c2 cell prolif-
eration by an increase in [Ca2+]I (Song et al., 2010). Additionally, it has 

been proposed that through the release of ATP, hemichannels can 
activate Akt (Chi et al., 2014) and PI3k (Fig ueroa et al., 2013) in NRK-
E52 and HeLa cells, respectively. In melanoma, high expression of 
P2X7 has been reported, and its activation by extracellular ATP con-
tributes to cancer cell survival (Gilbert et al., 2019). In addition, it is 
worth to mention that pannexins (Panxs), which are a family of three 
transmembrane proteins (Panx1, Panx2, and Panx3), share similar 
topology to Cxs, but only can form non-junctional hemichannels 
(Penuela et al., 2013). Panx1 is highly expressed in human melanoma 
tumors, and recently, it has been shown that blocking Panx1 chan-
nels by using probenecid reduced both ATP release and tumorigenic 
properties in melanoma cells (Freeman et  al.,  2019). Collectively, 
these evidences strongly suggest a pro-tumor role of ATP release by 
hemichannels (Cx- and Panx-formed) in melanoma aggressiveness. 
Although there is no information about the role of Cx46 as hemi-
channels in cancer, at least in HeLa cells, Cx46 can form functional 
hemichannels (Retamal et al., 2020). In summary, if expressed in mel-
anoma cancer cells in vivo, Cx46 could be associated with a higher 
EV release and generation of CSC, through both channel-dependent 
and channel-independent ways.

Probably Cx26 and Cx43 are the most studied Cx types, and their 
biophysical and biochemical characteristics and control mechanism 
are well established. However, Cx46 has been much less studied; for 
instance, little is known about the effect of phosphorylations and 
other post-translational modifications on hemichannels and GJCs 
formed by this Cx type. Because of the growing amount of evidence 
that points to Cx46 as a key element in cancer aggressiveness, we 
encourage the scientific community to study more in detail this Cx 
type.

4  | CONCLUSIONS AND FUTURES 
DIREC TIONS

Melanoma is one of the deadliest cancer types, so the study of the 
molecular mechanisms that govern its aggressiveness is essential 
for the design of efficient treatments that improve patient sur-
vival. Cxs are proteins involved in cellular communication, which 
are crucial for the correct skin function. Among them, the de-
regulation of Cx26 and Cx43 has been associated with melanoma 
growth and metastasis, although its molecular mechanisms of ac-
tion are still not well understood. Recently, Cx46 has been associ-
ated with breast and brain cancer malignancy through enhancing 
tumor growth, CSC-maintenance, and releasing of EVs. Nowadays, 
the role of Cx46 in melanoma has not been studied; however, 
we proposed that it could be relevant, based on the analysis of 
data available in public repositories, such as ECCL and the TCGA. 
Therefore, this work was designed to provoke the scientific com-
munity to explore the possibility that Cx46 could be a fundamental 
protein in the progression of melanoma, and thus to generate new 
therapeutic and diagnosis Cx46-related molecules, that in the fu-
ture could increase the life expectancy of patients who suffer this 
type of cancer.

F I G U R E  4   Differential gene expression of Cx46 mRNA over 
stages of melanoma. RNA-Seq analysis was performed using 
DESeq2 and cutoff p ≤ .05 over FPKM data of melanoma stages 
and normal tissue samples obtained from The Cancer Genome Atlas 
(TCGA) repository.
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