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For several decades, scholars have studied the role of cooperation and its outcomes in educational
contexts. Yet we lack a complete understanding of how different instructional strategies impact the
relationship between cooperation and learning. In this paper we present results from a field experiment with
82 first-year students in an introductory physics course showing how different instructional strategies led to
different social configurations in the classroom and to differences in individual academic performance.
Surprisingly, we found that students who actively sought out information from multiple peers were less
likely to perform well on well-structured problems as compared to those who did not seek help, whereas,
for ill-structured (real-world-like) problems, this effect depended on the features of the learning
environment. We observed that good performance on ill- and well-structured problems was sensitive
to different social network configurations. In a highly clustered network (which contains redundant
information), students performed better on well-structured problems than ill-structured problems. By
contrast, students with access to network structural holes (which enable access to more diverse information)
performed ill-structured problems better than well-structured problems. Finally, ill-structured problems
promoted creative thinking, provided that instructors guided the problem-solving process and motivated
students to engage in the appropriate cognitive demands these problems entailed. Our results suggest that
teaching and instructional strategies play an important role in cooperative learning; therefore, educators
implementing cooperative learning methods have to accompany them with adequate instructional strategy.
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I. INTRODUCTION

Cooperation is fruitful for learning [1,2], leading to
better academic outcomes in educational contexts [3—7].
Moreover, cooperation among peers eases collective learn-
ing leading to the emergence of good ideas, while promot-
ing processes linked with crucial competencies in today’s
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society [8]. Yet, little is known about how different
instructional strategies impact the relationship between
cooperation and learning.

In this study we investigated students’ social networks
from three different classes of an introductory physics
course and determined the social structures that facilitate
good performance on well-structured physics problems and
those that facilitate performance on ill-structured physics
problems [9]. By well-structured problems, we refer to
learning tasks that are solved through algebra, often
characterized in physics education research (PER) by
simplified and idealized situations that have little to no
connection with students’ real-world experience [10], and
frequently found in physics textbooks [11,12]. By ill-
structured problems, we refer to those problems associated
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with real-world problems [13] that lack the information that
individuals would use to find an already known and unique
solution. Ill-structured problems introduce high levels of
uncertainty associated with a spectrum of possible strate-
gies on how to proceed to develop a solution [9,14]. In our
study, the ill-structured task consisted of student groups
generating physics problems for high school students.
Through this study, we explored whether different
collaborative mechanisms—creative combinations (CC)
[15-18] or interrogation logics (IL) [19]—predict good
performance on well- and ill-structured problems. To this
aim, we used three different experimental conditions for 82
first-year students, where we varied teaching and instruc-
tional strategies. The experiment was run in an introductory
physics course over two months at a university in Northern
Chile. To explore the extent to which students’ social
structures facilitated academic performance, we collected
data on students’ performance on a physics test designed
with well-structured problems, and performance on an
ill-structured problem. In addition, we asked students to
respond to an online peer-nomination survey related to their
social interactions for seeking information to solve prob-
lems. Finally, we tested the effects of different instructional
strategies on academic performance and whether student
collaboration was sensitive to the learning environment.

A. Physics problem solving and collaboration

Well- and ill-structured problems have different charac-
teristics that might necessitate different forms of collabo-
ration. In physics education, well-structured problems (i.e.,
well-structured tasks) demand the use of a limited number
of rules and principles (e.g., algebra and physics princi-
ples), along with a set of procedures that are well organized
and constrained to certain parameters (e.g., initial and/or
the final conditions on a motion problem in kinematics).
These tasks have predictable actions that are frequently
used to solve similar problems [20,21]. Good performance
on well-structured problems has not been reported neces-
sarily as a consequence of conceptual understanding
[22,23], as students tend to solve such tasks through a
“plug and chug” strategy [12,20,23]. In addition, well-
structured problems can be defined as disjunctive tasks [24]
with low levels of positive interdependence [1], as these
tasks might be solved by the most capable or vocal students
when addressed in groups.

On the other hand, the difficulty in solving ill-structured
problems lies in deciding the appropriate constraining
conditions that would guide solvers to transition from
the open-ended scenario towards strategies to come up
with their unique response [25]. Fortus [13] studied the
importance of making assumptions when solving ill-
structured mechanics problems among experts and novices.
He found that even experts struggled with deciding
adequate assumptions about the physics variables and
principles involved, and about the absolute or relative

magnitudes of the variables for deciding on and developing
solutions. From the embedded attributes of ill-structured
problems, one might expect ill-structured problems to
introduce high levels of positive interdependence [1],
and be perceived as additive tasks [24], where performance
emerged as the sum of all members’ contributions and
relevant abilities [26]. These expectations are coherent with
the experience from Heller and colleagues [27], who
designed context-rich problems as an alternative to tradi-
tional textbook physics activities [10], and found that
groups performed better than isolated students.

B. Network centrality and learning

Social network theory provides two alternative collabo-
rative mechanisms that enable knowledge development and
idea generation for problem solving: (i) creative combina-
tions (CC) and (ii) an interrogation logic (IL), where both
collaborative mechanisms are oriented towards the emer-
gence of good ideas but through different social configu-
rations. The former, CC of information is a mechanism that
depends on one’s structural position within the network of
students, and the diversity of knowledge that could be
accessed through such structure. Accordingly, good ideas
would depend on how people learn new information
through different social ties, from zones of high knowledge
redundancy (i.e., high network cohesion), to zones where
actors have access to isolated partitions of the network (i.e.,
structural holes). Actors who bridge connections between
two unconnected individuals or groups, or who span
structural holes through brokerage, would enjoy the advan-
tages of social capital by accessing the resources available
in different places of the network and are therefore more
likely to produce creative ideas [15,28]. In addition,
individuals and groups located in central positions of the
social network are more likely to have creative outputs,
because they are placed in paths connecting two or more
teams, and therefore have access to the information that is
transferred through those links [15,28-30]. In contrast,
peripheral students and groups placed at the end of the
information path would depend on central groups letting
the knowledge flow in the peripheral group’s direction,
thus making them less likely to be able to take faster
advantage of the information flowing throughout the net-
work [31].

Differently, the IL [19] is a mechanism where highly
constrained networks (e.g., cohesive groups) afford oppor-
tunities for creative ideas, but through different cognitive
processes than actors who span structural holes. On tasks
that benefit from IL, subjects’ attention is focused on
specific content and the contents’ related ideas rather than
on the diversity of information flowing throughout the
network. This process enables an in-depth examination of
the local knowledge among the individuals embedded in
the cohesive group.

In education and PER literature, we found no reference
to whether the aforementioned collaborative mechanisms
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FIG. 1.

Experiment design, with three sections: traditional, mixed and treatment. The diagram shows the timeline of the events from

weeks 1 through 8. Includes the unique instructional characteristics per section (types of problems, and instructor’s role), along with

performance instruments and network surveys.

(i.e., CC and IL) are advantageous for solving different
types of problems. So far, education researchers have used
network analysis to explore the academic advantages of
central positions in students’ networks. Academic perfor-
mance is most likely enhanced by being immersed in a
cohesive social network from which students can take
advantage of the information, skills, and abilities of others
that might be shared through social ties [28,32-36].
Research evidence has found significant correlations
between centrality measures and performance [37,38].
Moreover, teaching and learning conditions play an essen-
tial role in encouraging (hindering) student social inter-
action or for students to reach central positions in a
classroom network [39,40]. Finally, recent evidence has
found that the number of social ties (e.g., centrality) is not a
straightforward predictor for academic achievement. More
outgoing social ties (i.e., from ego to alter) for cooperation
showed a negative effects on students’ performance, while
reciprocal ties led to better academic performance [7], thus
adding important conditions over the nature of the social
relationship for academic achievements.

From this body of evidence, we asked the following:
What role do instructional strategies (teaching and learning
activities) play in cooperation and learning outcomes in an
undergraduate physics course?

II. METHODS

We conducted a field experiment in three undergraduate
sections of an introductory physics course designed for

engineering majors at a university in Northern Chile. The
experiment lasted during an 8 week period in 2018. We
aimed to explore whether student collaboration had similar
or different effects on performance on well- and ill-
structured physics problems. For this purpose, in collabo-
ration with course instructors, we designed a battery of
ill-structured problems grounded in real-life situations for a
weekly administration during problem-solving sessions for
a period of 7 weeks.

Students were first- or second-year engineering majors,
pursuing careers in either Industrial Civil Engineering
or Software Civil Engineering. A total of 82 students
participated in the study.

The details of the experiment are depicted in Fig. 1. Here,
we show the instructional characteristics of the three sections
(traditional, mixed and treatment), the types of physics
problems they worked on, and the role each instructor
enacted in guiding the sessions. Of the 82 students in the
study, 33 students were in the traditional class, 23 in
the mixed class, and 26 in the treatment class. In terms of
the instructor’s role, we assigned two alternative behaviors:
(a) source of information, that is, the instructor facilitated
direct information to respond to students’ questions regard-
ing the problem; and (b) socialization and creativity, that is,
the instructor responded to students questions by directing
their attention to other classmates who may have either asked
a similar question, or responded to the question already.
Figure 1 also shows performance and network instruments
administered in weeks 7 and 8. More details of these
instruments are in the following section.
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A. Data collection

During the 7th week of the experiment (Fig. 1), we
tasked students with the activity of designing a physics
problem for high school students (see the activity instruc-
tions in Supplemental Material [41]) addressing the con-
cepts and principles of circular motion. At the end of the
session we gathered students’ generated physics problems,
and asked them to respond to an online peer-nomination
survey. We used this survey to identify the social network
of the class during the problem solving session where
participants solved the ill-structured problem.

1. Network surveys

The survey consisted of two questions administered
through Qualtrics online survey service that aimed to
measured the following networks (see survey design in
Supplemental Material [41]):

a. Network of information seeking: From whom have
you sought information to solve the physics problem
addressed in this session?

b. Network of good students: Who is a good physics
problem solver in your class? (i.e., a student you
believe is good at understanding physics content and
solving physics problems).

To facilitate students’ responses on each of these ques-
tions, we included the roster of students enrolled per
section. Consequently, subjects responded by selecting
the individuals in their sections from whom they sought
information, as well as the ones that were perceived as good
students. Both questions led to the construction of directed
(i.e., ties are not necessarily reciprocal) and binary net-
works [i.e., links between nodes either exist (1) or do not
exist (0)]. The network of information seeking was
designed to reveal whether students engaged in social
interactions for the purpose of finding resources and ideas
for solving the ill-structured physics problem. Because
information flowing through social ties (i.e., flow ties) is
difficult to measure, social interactions such as “seeking
information” may be perceived as proxies of information
flow [30,42]. Generate a “good student” network is thought
to enable an additional dimension, revealing what type of
students engaged in information seeking, to then explore
whether this perceived prestige is a valuable contributor to
the social processes that affect academic success.

2. Dependent variables

Instructors of the course determined physics grades, the
first dependent variable, which were students’ scores on a
test designed by instructors which consisted of three
well-structured problems administered in week 8 (Fig. 1).
These grades were used in the analysis as measurement of
performance on well-structured physics problems. Physics
grades were shared by the instructors three weeks after the
day of data collection, without the possibility for us to

review the assessment instrument or the students’ specific
solutions to these problems.

Finally, the performance measure for students’ solutions
to ill-structured problems is labeled as problem elaboration
(PE). PE was constructed to assess the degree of elabora-
tion in students’ generated problems for the content of the
kinematic of circular motion. The following is an example
of a problem generated by one student group:

Donkey Kong wants to throw barrels to King K Rool.
For this, Donkey Kong throws one barrel with an
angular speed of 2z rad/s. By knowing that at 3 s its
speed is 10z rad/s, and that the barrel impacts at 5 s,
determine: (a) the angle covered by the barrel; (b) the
magnitude of the centripetal and tangential acceleration
at the moment of impact at 6 cm from its center; and
(c) frequency and period.

Because creative tasks and their respective outputs may
deviate from standard solutions, analyzing performance on
ill-structured problems was conducted through the identi-
fication of embedded features and characteristics within the
problem. We conducted the analysis on a total of 26 problems
(traditional = 10; mixed = 9; treatment = 7). In order to
conduct the analysis, we translated these problems from
Spanish to English, which were revised by a native English
speaker knowledgeable in physics. The analysis of these
solutions (i.e., physics problems) was conducted on NVivo
12 plus, a software for qualitative data analysis. This
qualitative description came from the identification of
problems’ attributes and characteristics, such as physics
concepts used as data and/or questions, type of information,
contextual details, and word count as well as other variables
shown in Table I. A first wave of problem coding was
conducted by the lead author, which yielded an initial version
of the code book, which was revisited in collaboration with a
trained graduate student in qualitative analysis and physics
content. (For more details, see Ref. [43].) After reaching
agreement about the code book, an independent wave of
coding was performed, where both the lead author and the
trained graduate student covered 40% of the data (10
problems), obtaining a Cohen’s kappa of 0.92.

3. Network measures

The network measures used for this analysis were
computed from the network of information seeking [i.e.,
constructed from response to survey question (a)]. This set
of social structure variables consisted of different metrics of
network centrality (degree, in-degree, out-degree, betwe-
enness, and eigenvector), as well as network constraint and
a brokerage metric known as gatekeeper. In what follows,
we describe each of these variables:

* Degree is a network measure of centrality that counts

the total number of edges (i.e., social ties) connecting
the focal actor.
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TABLE I. Code description of problem characteristics for problem elaboration.

Code Description

Physics concepts asked Physics concepts used as problem items (e.g., angular speed, tangential acceleration).
Type of information

Ready-to-use info
Conversion of units
Text to math

Algebra transformation
Information research
Assumptions

No. phys. concepts asked
No. equations needed
Contextual details

Word count

Cognitive demand

Data is explicitly presented in the problem and with appropriate units for its use.
Physical quantities that need conversion to respect the IS of units (i.e., m and s).
Physics information is presented in written form and needs translation into mathematical

expressions (e.g., “begin its motion from rest” or “uniform motion”).

Physics information for solving the problem needs algebraic steps for accessing and using it.
The problem requires researching appropriate magnitudes to solve the problem.
Problem forces students to assume particular characteristics of the problem,

such as constant acceleration, or the position of the ‘particle’ that describes the circular motion.

Number of physics concepts used as problem items.

Number of equations required to solve the problem.

Elements from real-life activities, and/or actors witnessing or engaging in actions.
Number of words used on the problems’ description.

Taken from a taxonomy of introductory physics problems [44].

FIG.

Out-degree: For directed networks this measure of
centrality counts the number of outgoing edges or
social ties for a given node, that is, the number of links
directed from the focal actor towards other individuals
within the network.

Gatekeeper: A brokerage measure that counts the
number of times node i bridged connections between j
and ¢, where source node j is a member of a different
group than i and ¢, which in turn are members of the
same group. A gatekeeper broker is an individual that
spans nonredundant ties with nodes outside its own
group, has connections with its own group members,
and engages in bringing information from the outside
ties, while the destination of that information is a
members within its own group. In Fig. 2, nodes C, D,
and F display such type of brokerage as they display
ties with nodes outside their own units (sources), but at
the same time engaged with teammates, and therefore,
may have access to novel information from these
outside sources and bring it to the group.

2. Network diagram of constraints and structural holes.

Node F has access to different sources of information from blue
and green communities.
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* Figenvector: network centrality measure that relates to

social influence within a system, as it depends on
whether the nodes tied to the focal actor show
evidence of social ties to other well-connected nodes.

Accounting for the connectivity of one’s friends is
key for flow processes [42] to the extent that friends
with social relationships outside one’s social domain
might boost chances of receiving and sharing valuable
information for learning, innovation, and social status.
The algebraic representation of eigenvector is as
follows: e; = /IZJ- x;je;. Here, e; is the eigenvector
centrality of node 7, and 1 is the largest eigenvalue of
e;. Moreover, x;; can take values of 1 or 0 depending
on whether nodes i connected to j or not, respectively.
That is, eigenvector centrality of node i is proportional
to the sum of its neighbors’ eigenvector centralities.
Constraint: Constraint is a network measure that
accounts for the number of redundant social ties, that
is, the degree to which a node spans ties with others
who are also connected to each other [45].

This is an inverse measure of brokerage (the node
that bridges isolated portions of the network, thus
accessing structural holes). High constraint will in-
dicate that a node is totally invested in a group of
already connected others, and will therefore have
access to zero structural holes. The definition intro-
duced by Ref. [45] for constraint: C; = ), ¢;j, i # J;
cij = (Pij + Yog PigPig)’s 4 # ij, where C; is the
constrain of node i, and c; j an index that indicates i’s
investment on its relationship with j, counting direct
(pij: proportion of tie strength between i and j,
relative to all of i’s ties) and indirect (Zq PigPjq):
proportion of tie strength through indirect paths
connecting i and j via gq.

Network constraint is negatively associated with
brokerage—the investment in social interactions that
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bridge connections between previously isolated por-
tions of the network, known as structural holes. For
instance, in Fig. 2, node F has access to a structural
hole because it shows nonredundant ties between
groups green and blue, and may access new informa-
tion and ideas from both groups, which may provide
unique opportunities for creative combinations. Con-
sequently, node F would have lower network con-
straint than nodes G and H as these have redundant
ties, and therefore are incapable of brokering beyond
their close network.

4. Control variables

Finally, we accessed data on students’ scores on a
nationwide standardized test [University Selection Test
or (UST)] to access educational information, type of high
school from which students graduated, city where they
lived before entering university, and engineering major and
gender to utilize as control variables in our analysis. These
control variables aim to account for the homophily mech-
anisms that drive social network configuration in higher
education [3,6,46].

B. Data analysis

After removing missing cases, the number of students
remaining for analysis was N = 67. We used ordinary
least-squares multiple regressions (OLS) on the continuous
dependent variables (i.e., physics grades and problem
elaboration) to explore the effect of network structures,
as well as differences in performance by sections.

First we tested the effect of network measures over
problem elaboration and physics grades by regressing
physics grades on network predictors. The models for
grades and problem elaboration included interaction terms

Traditional Section

Mixed Secgion

between class sections and the particular investigated
network measure, which enable a comparison and inter-
pretation of whether the network variable has a similar
effect on the whole sample or was dependent on the
learning environment defined by the type of problems
and teaching strategy. In order to ease interpretation of
regression coefficients, all predictors were standardized.
For interpreting the regression coefficients of categorical
variables such as academic sections (as), school type (st)
and engineer major (em), readers must consider that the
coefficient emerges as the difference between the variable
in the model and the baseline categories (here as: tradi-
tional, st: industrial civil engineer, and em: public schools).

Later, we explored whether engaging in problem elab-
oration enabled good performance through the moderation
of social engagement on information seeking. In other
words, we investigated the degree to which ill-structured
problems foster students’ ability to answer well-structured
problems in interaction with students’ network structure.
For this purpose, we fit OLS multiple regression models
with an interaction term between problem elaboration and
network measures.

Finally, to deal with the small sample size and test the
robustness of our results, we used bootstrap random
sampling [38] at 0.1 level, where we observed no important
changes in our regression coefficients.

III. RESULTS

A. The effect of social structures on physics grades

Figure 3 depicts classroom networks for information
seeking. The node size represents out-degree centrality—
the number of times that the student seeks for information
to a peer—whereas color shades indicate the grade obtained
in the physics test (well-structured problem). By visually

Treatment Section

Co
@)
® [
O 'e)
O
-~ O
Node Size Node Color

Outdegree Centrality

FIG. 3.

Physics Grades| N
1 7

Classroom networks for the three analyzed sections: traditional, mixed, and treatment. Node color represents physics grades

(dark red being the highest), and the node size represents the out-degree centrality, i.e., the number of times that a student seeks

information in the classroom.
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inspecting the figure, we observe students who received
high grades—nodes with darker colors—tend to be smaller
(i.e., lower out-degree) and located at the periphery of the
network. In contrast, low grades students tend to have
higher out-degree.

Figure 4 summarizes the multiple regression models
fitted using log(out-degree) (a), gatekeeper (b), network
constraint (c), log(degree) (d), eigenvector (e), and the
baseline of good student centrality (f). These models
allowed us to explore the effect of network structures on
physics grades, and whether such effects are invariant to the
teaching conditions enacted on each section. For all
models, we controlled for different confounding variables
such as good student nomination; higher education appli-
cation score (UST); a dummy variable that takes value 1 if
students reside in the same city as their family; a dummy
variable for gender; and a dummy variable for private or
nonprivate high school.

The regression coefficient for the treatment section is
positive and significant, with a large effect on physics
grades in models (a)—(e), even after controlling for all the
confounding variables. Physics grades for students under

the treatment condition increased almost a point more than
students in the traditional section would score under similar
conditions. This result suggests important effects of the
learning environment generated in the treatment section,
based on ill-structured problems, along with guidance over
socialization of information.

Surprisingly, and contrary to evidence found in the
literature, centrality metrics showed a negative effect on
grades. These effects are observed for log(out-degree) (a),
gatekeeper (b), log(degree) (d), and eigenvector (e).
Because out-degree refers to the number of outgoing ties,
the activity of seeking out information was not found to be
related to receiving good grades. In general, having a high
number of social ties, either incoming or outgoing, was
negatively related to physics grades, as seen in model 4(d)
for log(degree). Consistent with our previous results,
connecting others outside one’s group for information
seeking [Fig. 4(b)] does not afford academic success in
well-structured problems.

Deviating from other models, the regression coefficient
for network constraint in Fig. 4(c) is positive, yet not
statistically significant. The direction of the coefficient is

Physics Grades

(a) , (b) (c) ,
0.89 1.18* . 123"
Mixed- —— Mixed Mixed —_—
. . 1.09 *
0.97 1.16 S
Treatment- _— Treatment NI LI Treatment -
-0.33 -0.39 Constraint ——
Log(Outdegree) —— Gatekeeper — —— 084
0.03 0.06 Constraint*Mixed{ ———
P.Elab 0t P.Elab kb3 Constraint*Treatment 005
Good Student- —— Good Student — P.Elab 0p3
UsTl 066" usT 0.60 "1 Good Student o
0.65 **
0.26 0.15 065 T
Same City- Same City . J A UST obe
. -0.43 . -0.26 Same City ]
Eng. Major- Eng. Major . ~0.19
-0.50 -0.46 Eng. Major —of o
Female- Female Female -0,
. 0.26 ) 0.27 012
Private School- —T Private School —T Private School
-2 -1 0 1 2 3 -2 -1 0 1 2 3 -2 - 0 1 2 3
Estimates Estimates Estimates
(d) (e) (f) Physics Grades
| 054 [ 06 o
Mixed — % Mixed ! Mixed 03
.93 * 1.02*
Treatment 033 Treatment e Treatment | 08
Log(Degree) 03 Eigenvector 23 P Elab ~001
-0.08 -0.05
—— —e 0.44
P.Elab _0.36 P.Elab —0.33 Good Student ——
Log(Degree)*P.Elab - Eigenvector*P.Elab. — -0.39"
0.54 * 0.51 Good Students*P.Elab. ——
Good Student Good Student — 0.60 **
0.61 ** 0.55 * UsT ——
UST UST —— oh1
-9, 1 i 1
Same City 006 Same City o Same City ots
-0, -0.12 i —
Eng. Major Al Eng. Major o) Eng. Major
-0.59 -0.50 Female 059
Female Female —_—
4 ) 0.09
Private School — 0 Private School o Private School —_—
-2 -1 0 1 2 -2 - 0 1 2 3 -2 - 0 1 2 3
Estimates Estimates Estimates

FIG. 4. Graphic depiction of OLS multiple regression models for physics grades regressed on network predictors, controlling for
confounding variables (see Table 2 on the Supplemental Material [41] results section). Red indicates a negative effect and blue indicates
a positive effect. One star (*) indicates significance at a level of p value < 0.05 and two stars (**) indicate significance at a level

of p value < 0.01.
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8
6
- Section
.;.!; E Traditional
5 Mixed
4 /
O ’:‘ Treatment

-2 -1 0 1 2
Constraints (z—score)

FIG. 5. Interaction between network constraint and sections for
predicting physics grades.

consistent with the collaborative process of interrogation
logic [19], a process that benefits from highly constrained
networks. To disentangle this relationship, Fig. 5 shows the
interaction between network constraint and classroom
sections in predicting physics grades. According to the
plot, both traditional (red) and treatment sections (green)
show positive slopes that are not statistically (significantly)
different, whereas the effect of network constraint is
negative for the mixed section (blue). This result suggests
that high access to structural holes (i.e., low constraint)
leads to higher grades just for the mixed section.

B. The effect of social structures
over problem elaboration

Figure 6 summarizes the multiple regression models
on problem elaboration (See Supplemental Material [41],

Table 1), with the main predictors of academic sec-
tion, network constraint [Fig. 6(a)], gatekeeper brokerage
[Fig. 6(b)], and eigenvector centrality [Fig. 6(c)]. We also
included the interaction between the network metric and the
academic section variable to explore whether there were
differences in problem elaboration due to differences in
instruction.

Figure 6(a) reveals that network constraint value—being
a member of a cohesive network with redundant ties—has a
positive but nonsignificant effect on problem elaboration.
Figure 6(b) reveals a negative and statistically significant
difference in problem elaboration between the mixed and
traditional section, while such difference is also negative
but not significant between treatment and traditional.
Moreover, students seeking out information from peers
from other groups and sharing it with their team members
(i.e., gatekeeper brokerage) is a positive predictor of
problem elaboration above and beyond instructional
differences. The interaction term is negative for the mixed
compared to the traditional section and statistically sig-
nificant at 0.001 level and less negative for treatment
relative to traditional sections but at 0.1 level of signifi-
cance. To understand this result, Fig. 7 depicts the relation-
ship between problem elaboration and gatekeeper by
section. Accordingly, the mixed section exhibits a negative
slope, while being a gatekeeper in traditional and treatment
sections yields to higher problem elaboration.

Figure 6(c) shows eigenvector centrality to be negatively
related to problem elaboration. In other words, students
who are linked to well-connected others in the network of
information seeking performed worse in problem elabora-
tion than students who are not well connected. However,
the effect size gets closer to zero when including the
interaction between eigenvector and classroom sections,

Problem Elaboration

(a) —0.41 (b) 112 (C) -0.38
Mixed Mixed Mixed
Treatment 0y Treatment 03 Treatment — 4
[ Constraint*Treatment 039 @ -0.52 @ -0.53
Good Student o Good Student 0 Good Student LI
usT 02 usT & usT 2L
Same City = Same City 052 Same City e
Eng. Major 092 Eng. Major 008 Eng. Major 026
Female 924 Female =0 Female 087
Private School 037 Private School L Private School 028
2 4 0 1 4 3 2 4 0 1 2-15-1-05 0 05 1
Estimates Estimates Estimates

FIG. 6. Graphical depiction of OLS multiple regression models for problem elaboration regressed on network predictors, controlling
for confounding variables (see Table 1 in the Supplemental Material [41], results section). Red indicates a negative effect and blue
indicates a positive effect. One star (*) indicates significance at a level of p value < 0.05 and two stars (**) indicate significance at a

level of p value < 0.01.
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FIG. 7. Linear regression for interaction between gatekeeper
and sections for predicting physics grades.

which means that just mixed and treatment sections mainly
drive the previously described effect.

C. The moderation effect of network structures

Here we explore whether network variables drive the
relationship between problem elaboration and physics
scores. Because having designed an elaborated physics
problem had no direct effect in predicting physics grades
(Fig. 4), we considered the possibility that this relation-
ship is moderated by students’ structural position within
information seeking network. Here we present multiple
regression models with moderators in log(degree) and
eigenvector centrality [Figs. 4(d) and 4(e), respectively].
We also tested the moderating effect of perceived good
students on the relationship between problem elaboration
and physics grades [Fig. 4(f)]. We follow the rationale that
different levels of problem elaboration may have enabled

(a)
6
5
3 Log degree
g 4 El Low
G} B High

-8 -2 -1 0 1 2
Problem Elaboration (z—score)

FIG. 8.

differences in conceptual understanding and abilities for
solving well-structured problems (i.e., physics grades), at
different levels of perceived status (i.e., good students).
Both models, Figs. 4(d) and 4(e), had negative coefficients
for the interactions between network centralities and
problem elaboration in predicting grades. We found the
same result for the moderated effect of good student
nomination, with a negative coefficient.

Figure 8 depicts the relationship between problem
elaboration and physics grades at different levels of log
(degree) and good students nomination. First, students who
had low degree centrality [red, Fig. 8(a)] benefited from
developing problems with high elaboration, as this process
afforded them good grades. However, for students with
high degree centrality (blue), creating highly elaborated
problems had a detrimental effect on grades. Put more
simply, scoring high in problem elaboration was associated
with good grades only for those who engaged in less social
interactions for information seeking [i.e., low log(degree)],
which is consistent with our previous results. Finally,
Fig. 8(b) depicts the relationship between problem elabora-
tion and physics grades for differing levels of good student
nominations. The interaction plot shows that participants
who were not perceived as good students in physics (red)
benefited from creating well-elaborated problems, which in
turn translated into good grades, while good students (blue)
might have gotten better grades after creating problems with
low levels of elaboration.

IV. DISCUSSION

Based on the types of problems worked in the mixed
section, it is a surprise that the mixed section had lower
elaboration than the traditional section [see Fig. 6(b)]. The
learning conditions, problems, and instructional guidance
on how to solve problems in each section may have
influenced students’ motivation for creating problems with
various levels of elaboration and complexity. For instance,

(b)
6
5
2 Good Student
g 4 EI Low
G =

-3 -2 -1 0 1 2
Problem Elaboration (z-score)

Interaction between problem elaboration and (a) The logarithm of node degree, and (b) Good student nominations, both from a

linear model predicting physics grades. The shaded areas represent a level of confidence interval of 0.9 and low (high) intervals contain

the values below (above) the mean of each variable.
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the learning goal of the task (i.e., design a physics problem
for secondary students) may have motivated students in the
traditional section to utilize characteristics from textbook
problems that were in their repository of activities to design
problems in an effective way. The mixed section worked
on ill-structured problems, but the instructor did not
emphasize the importance of assumptions in the face of
ill-structured activities. Consequently, we believe that
highlighting the role of assumption making when address-
ing creative tasks had positive effects on students’ expect-
ations and motivation for generating problems, as
suggested by the high level of problem elaboration found
in problems from the treatment section, whose instructor
engaged in such a positive narrative for creativity.
Interestingly, being a central actor within the network of
information seeking was not related to good grades. This
evidence was observed via the relationship between the
independent variables such as outdegree, degree, and eigen-
vector centrality and the dependent variable, and consistent
with the evidence found in Candia et al. [7]. The direc-
tionality of this relationship contradicts the evidence found
in other studies in education and PER [37,38,47]. To
understand this contradictory result we argue that the social
networks mapped on this and other studies differed in
nature, and therefore represent different social processes.
For instance, studies in PER had asked students to write
down the names of their peers with whom respondents had
meaningful interactions inside the classroom [38,48,49].
Under such survey question, students are likely to remem-
ber interactions with friends [50], or useful interactions
related to the learning goals of the session [38]. Differently,
the survey question used in this study aimed to determine
students’ social engagement in the process of seeking out
information in the classroom, where students were also
likely to report useful as well as friendship-based inter-
actions for information seeking. However, both types of
relationships may not necessarily overlap as the nature of
the network does not account for the effectiveness of the
social tie (i.e., whether the information accessed was useful
or not). That is, students may have interacted and reported
ties with friends and others not consider friends for
information for solving the problem, regardless of the
meaningfulness of the interactions. Consequently, and
according to the negative relationship found between
centrality and physics grades, students were either not
capable of requesting appropriate information for solving
physics problems due to ineffective communication, or, it
may be that engaging in such processes for information
seeking is irrelevant in the learning context described here.
If the former were true, this would be evidence for the need
to engage students in the social processes linked to effective
communication and collaboration. Yet, if the learning
context were blind to social interactions and information
sharing, then this would call for reflecting on the teaching
and learning practices involved in university education.

Alternatively, it may be the case that students approximated
effective social interactions, yet the actors reached lacked
meaningful information to share, or provided misconcep-
tions regarding the content and/or the goals of the task.
Consequently, having nodes with reduced knowledge of the
content is not an ideal scenario for students to engage in
socialization of information for collective growth. This
calls for remedial strategies that prepare subjects for proper
learning before putting them in positions to collaborate.
It is worth paying attention to the significant interaction
between network constraint and sections for predicting
physics grades (see Fig. 5). Here, both traditional and
treatment were positively related to grades, whereas for the
mixed section this relationship is negative. This evidence
suggest that the social systems created under traditional and
treatment conditions take advantage of highly constrained
networks, where subjects presumably engaged in deep
analysis and reflection for interrogation of logic [19].
Consequently, within such a cohesive network it is easier
to learn complex information as well as to develop good
ideas [28]. This process is evidence that the mechanism of
creative combinations does not help in solving well-
structured problems, but rather engaging in such efforts
brings negative effects. Access to unique portions of the
network (i.e., structural holes) is related to inflow of novel
ideas, which does not afford better outcomes for solving
well-structured problems, likely because the well-bounded
nature of the physics information for solving well-
structured problems does not need novelty, but rather
conventional knowledge. Further, the negative effect of
constraint on the mixed section suggests the opposite,
where students benefit from connecting structural holes.
Surprisingly, students in the mixed section displayed higher
network constraint relative to students from the traditional
section (Fig. 7). Consequently, not taking advantage of the
mixed section curriculum for scoring higher grades may be
due to ineffective communication for collaboration.
Moreover, and even though the models did not yield
significant coefficients, constraint had no effect on problem
elaboration, whereas it had a negative relationship to
physics grades. Differently, while gatekeeper brokerage
showed to be a positive predictor for problem elaboration, it
was a negative predictor for physics grades. These results
add interesting evidence to the contrasting nature of both
types of performance, as well as the nature of learning
objectives and the measurement instruments designed for
such purpose. Generating problems may be similar to
benefiting from creative combinations [15] whereas solving
well-structured physics problems is not, provided students
engaged in effective mechanisms for information seeking in
a context that rewards creativity like the treatment section.
The moderated effect of network centrality and good
student nomination for predicting physics grades are
consistent with the single effect of network structures on
physics grades. These results constitute additional evidence
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of the detrimental effect of socialization and seeking out
information, presumably through ineffective mechanisms.
Surprisingly, students who are not perceived as good students
would get better grades by designing problems high in
problem elaboration. Alternatively, the complexity of gen-
erating physics problems had negative effects for students
who enjoyed the social recognition of being proficient in
physics. The physics education tradition grounded in well-
structured physics problems [11,12,22,23], and its concord-
ant belief that a good physics performance corresponds to
solving well-structured problems has clearly encouraged
students to recognize proficient others based on their ability
to solve such tasks. However, the set of skills to solve well-
structured problems may not necessarily enable better out-
comes in more creatively oriented tasks. This evidence
challenges the nature and features of proficiency in this
particular context, and pushes us to expand our own
perspectives.

V. LIMITATIONS AND FUTURE
RECOMMENDATIONS

We recognize the limitations of this study associated
with the reduced sample size and the lack of alternative
variables that would have strengthened the analysis of
students’ responses in describing their social experience.
Further control and observation over instructional strategies
would also facilitate a deeper understanding of the nature of
the social system generated in each academic section. In
addition, short term activities for a single session might
discourage interdependency and continued collaboration
among students. Consequently, future pedagogical inno-
vations should include higher level structure, with explicit
learning goals at individual and group levels. An important
dimension for improvement consists of understanding the
different ways in which students collaborate and gain
access to information from their peers. Such effort might
support the interpretation that students engaged in ineffec-
tive forms of communication when solving different types
of activities, which would lead to recommendations related
to the importance of using appropriate strategies for gaining
social capital, depending on the nature of the task.
Additional evidence on students’ strategies for social
connection may provide justification for the introduction
of pedagogical innovations that lead to creativity and
collaboration in university education. Based on these results,
educators must be cautious in implementing teaching strat-
egies grounded on principles of collaboration and inter-
dependency. Using such principles would demand intense
attention to students’ interactions, and appropriate guidance
of effective strategies for collaboration and communication
of information. In addition, while introducing ill-structured

problems in education brings positive learning outcomes and
interesting opportunities for creative thinking, novel thinking
also occurred when instructors guided the solving process
and motivated students to engage in the appropriate cognitive
demands these problems entail. In addition, having students
develop appropriate content knowledge before attempting to
introduce activities that require intense knowledge transfer
may induce richer dialogues.

VI. CONCLUSIONS

Encouraging students to solve open-ended activities such
as ill-structured problems in a learning environment that
highlights the importance of creativity and socialization of
information (i.e., treatment condition) would likely boost
students’ opportunities for better grades compared to tradi-
tional classrooms. Yet, the process of interacting with others
for the purpose of accessing new information for solving ill-
structured problems might be detrimental for obtaining good
physics grades, particularly if the latter performance meas-
urement comes from well-structured problems. The nature of
the well-structured problems and the features of the learning
context tend to reward individualized performance, or
collective efforts that emerged from highly cohesive clusters
of students. Moreover, well- and ill-structured problems
responded positively to different social structures, and there-
fore, social positions garnered from good grades may have
unwanted effects if the tasks are ill structured. Finally, to
optimize the learning effects of socialization of information,
the learning environment must enable appropriate distribu-
tion of knowledge, encourage and value social interactions
and the emergence of unconventional ideas, while prioritiz-
ing effective communication.

The anonymized data necessary to reproduce this work
can be delivered under a reasonable request to the authors.
The entire analysis and data processing were done using the
standard R libraries [51].
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