
 

A Simplified and Versatile Element Model for 1 

Elastomeric Seismic Isolation Bearings 2 

Sebastián Miranda,a), c) M.EERI, Eduardo Miranda,b) M.EERI and Juan Carlos 3 
de la Llera,a) M.EERI. 4 

A novel approach for two-dimensional modeling of elastomeric bearings using 5 

three springs in parallel is presented. This simplified element model considers: i) 6 

an elastoplastic spring with a smooth transition between branches; ii) a linear elastic 7 

spring; and iii) a non-linear elastic spring, and is fully defined by only six 8 

parameters. The main advantages of the simplified model are twofold: 1) 9 

Versatility, as a single model is capable of accurately reproduce the main 10 

characteristics of the hysteretic behavior of different types of rubber-based seismic 11 

isolators, including low damping rubber bearings (LDRBs), high damping rubber 12 

bearings (HDRBs), and lead - core rubber bearings (LRBs); and 2) Simplicity, as it 13 

requires fewer parameters and it is easier to calibrate from experimental cyclic tests 14 

results than most currently available models. Model parameters identification is 15 

illustrated using quasi-static cyclic and earthquake simulator tests of HDRBs and 16 

LRBs, demonstrating that the model shows a good agreement between the test-17 

measured and model-predicted hysteretic behavior. Different objective functions 18 

are evaluated in the optimization procedure, and their effect on the identified 19 

parameters is studied and discussed. This practitioner-oriented model is particularly 20 

amenable for implementation in general-purpose structural analysis software. Its 21 

usage is strongly recommended as an initial-stage design tool to select the optimal 22 

isolation system for a specific project. 23 

  INTRODUCTION 24 

Seismic isolation has shown to be one of the most effective and sometimes economical 25 

seismic protection technology. In particular, it is one of the few protection systems that, when 26 
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adequately implemented, can simultaneously achieve significant reductions in interstory drift 27 

demands, horizontal accelerations, and lateral forces in buildings. For the selection of the type 28 

of bearing as well as for its characteristics that will result in an adequate control of lateral force 29 

and deformation demands in the superstructure, it is necessary to explicitly model their cyclic 30 

behavior. In particular, in the context of applications in engineering practice, the words of 31 

George E. Box resonate (Box et al., 2011): “all models are wrong, but some models are useful.” 32 

In the second edition of his book, the author added that the question to ask was not if the model 33 

is exact (it never is) but just if the model is good enough to produce useful results for a 34 

particular application. 35 

Among the different types of seismic isolators, the ones manufactured from high damping 36 

rubber (HDRBs) and the ones with a lead-core in their center (LRBs) have a strongly non-37 

linear force-displacement relationship, especially at large lateral shear strains where alignment 38 

of polymeric chains and crystallization in the rubber make the material considerably stiffer. 39 

Additionally, these types of isolators have several other well-known characteristics such as: (i) 40 

Mullins effect (Mullins 1969) that produces degradation of the peak lateral force and lateral 41 

stiffness when the isolation bearing is subjected to cyclic loading; (ii) axial load dependency; 42 

(iii) strain-rate dependency; (iv) load-path dependency; and (v) internal temperature 43 

dependency.  44 

Kikuchi and Aiken (1997) provided a summary of several early models for elastomeric 45 

rubber bearings. Typically, a Ramberg-Osgood (Ramberg and Osgood 1943) or a bilinear 46 

constitutive model were used. However, to adequately model the behavior of the isolators, the 47 

bearing parameters need to be updated as a function of shear strain. Furthermore, Kikuchi and 48 

Aiken noted that the Ramberg-Osgood model was suitable for low-to-moderate shear strains, 49 

but it did not capture the stiffening effect on rubber-based isolators subjected to large shear 50 

strains. Other modeling approaches have implemented the Ozdemir (Ozdemir 1976) or the 51 

Wen (Wen 1976) constitutive relationships that use a differential equation to track the isolator's 52 

current state. Hence, in these cases, the model parameters do not need to be updated.  53 

After assessing the accuracy of several formulations available to that date, Kikuchi and 54 

Aiken (1997) proposed a new set of equations, characterizing the force in the isolator as a 55 

function of shear strain. The Kikuchi and Aiken model, which does not consider differential 56 

equations for tracking the isolator current state, showed a much better agreement with the 57 

experimental data than many other models, especially if hardening effects were present in the 58 



 

high shear strain range. The Kikuchi and Aiken model requires the calibration of seven 59 

parameters, not constants but defined as isolator shear strain functions, and considers a 60 

simplified procedure to incorporate stiffness degradation that occurs as the deformation cycles 61 

evolve. 62 

Pang and Yang (1996) proposed a model that explicitly splits the isolator force between a 63 

restoring component and a viscoelastic damping component, both non-linear functions of the 64 

isolator displacement and velocity. Hwang et al. (2002) improved the Pang and Yang (1996) 65 

model by including the degradation of the stiffness and the dissipated energy as the 66 

deformation cycles evolve. They also simplified the model mathematical formulation as the 67 

number of parameters to calibrate was reduced from eleven to ten.  68 

Tsai et al. (2003) recognized that the second generation of models, including the Kikuchi 69 

and Aiken (1997) model, effectively included the stiffening effect, but there was still the 70 

necessity of more straightforward approaches including, for example, the HDRBs strain rate-71 

dependency. The authors proposed a model based on the Bouc-Wen (Wen 1976) constitutive 72 

model, modified to include this effect.  73 

Abe et al. (2004) proposed a model capable of considering multiaxial loading, based on the 74 

Ozdemir (Ozdemir 1976) elastoplastic model, that also uses differential equations for tracking 75 

the state of the system. The Abe et al. model also includes an isotropic hardening displacement-76 

dependent term and a non-linear elastic spring. The one-dimensional version of this model 77 

requires the calibration of thirteen parameters. The differential equation approach in this type 78 

of models has proven to considerably restrict their implementation in engineering design 79 

procedures. Table 1 shows a summary of several models and their main features.  80 

All models listed in Table 1 consider, with different approaches, the significant isolator 81 

hardening effect at large shear strains. Additionally, some of them include highly complex 82 

phenomena as the strain-rate dependency or the stress softening behavior. However, the 83 

influence of these phenomena in the seismic response of isolated structures is still being 84 

investigated. In a recent work by Tubaldi et al. (2017), a new model, especially suited for the 85 

stress softening effect assessment, was developed. Its implementation on an SDOF system 86 

suggested that using a simplified fully-scragged condition in seismic isolation modeling leads 87 

to a low to moderate overestimation of the displacements under typical seismic conditions. On 88 

the other hand, under near-fault seismic conditions, simulations based on a fully scragged 89 

condition could lead to nonrealistic large displacements. 90 



 

Table 1. Summary of the most frequently used models. 91 

Model 
Calibration 
parameters 

Displacement 
dependency 

Differential 
Equation 

Main Features 

Tsopelas et al. 
(1994) 

6 No Yes 
 Biaxial behavior  
 Does not consider 

cyclic softening effect. 

Pan and Yang 
(1996) 

11 No No 
 Uniaxial behavior 
 Does not consider 

cyclic softening effect. 

Kikuchi and Aiken 
(1997) 

7 Yes No 
 Uniaxial behavior 
 Considers cyclic 

softening effect. 

Hwang et al. 
(2002) 

10 No No 
 Uniaxial behavior 
 Considers cyclic 

softening effect. 

Tsai et al. 
(2003) 

7 No Yes 
 Biaxial behavior 
 Considers rate-

dependency effects.  

Abe et al. 
 (2004) 

13 No Yes 
 Biaxial behavior 
 Considers isotropic 

hardening. 

 92 

Table 1 shows that most of the existing models require a large number of parameters, which 93 

are often hard to calibrate, especially in models in which these parameters are not constants, 94 

but functions that depend on the shear strain in the isolator. Most of these models are research-95 

oriented, and therefore have not been implemented in commercially available structural 96 

analysis programs nor they are used in practice for evaluating the seismic response of isolated 97 

structures. On the other hand, most seismic regulatory codes prescribe quite simplified design 98 

methodologies based on an equivalent linearization of the isolators' force-displacement 99 

relationship or just refer to bilinear models. These approaches neglect features as high shear-100 

strain hardening and may not lead to an adequate estimate of lateral forces, displacements, and 101 

accelerations on the structure.  102 

The proposed simplified model aims to capture the main features of the behavior of 103 

elastomeric rubber bearings (ERB), especially the high shear-strain hardening, using a 104 

significantly simpler mathematical formulation that requires fewer easier-to-calibrate 105 

parameters than other models available in the literature. Although the model is aimed at ERB, 106 



 

it converges easily to the frequently-used kinematic-hardening bilinear model, so it can also be 107 

used to approximately represent the behavior of single and double curvature curved-surface 108 

sliding (CSS) isolation bearings. Based on the features described above, this model can be 109 

efficiently used to: i) select the most suitable isolator type for a specific project in the early 110 

stages of the design process (e.g., ERB or CSS), ii) assess the relevance of high shear-strain 111 

hardening in already implemented rubber-based isolation systems that were designed using 112 

equivalent linearization or bilinear modeling, through a deterministic approach, iii) evaluate, 113 

using the Performance-Based Earthquake Engineering (PBEE) framework, the performance of 114 

currently installed elastomeric isolators, particularly in applications where the seismic hazard 115 

has been updated, or special concerns over isolator safety apply, and iv) estimate with higher 116 

accuracy the lateral forces, displacements and accelerations demands in new structures 117 

protected with rubber-based devices. 118 

The main objectives of this research are: (1) to propose a simplified and versatile 119 

practitioner-oriented model, able to capture relevant features of the behavior of elastomeric 120 

seismic isolators that currently are not considered by the standard design procedures; (2) to 121 

demonstrate that the model is capable of representing with reasonable accuracy the measured 122 

behavior of different types of elastomeric seismic isolators when subjected to quasi-static 123 

cyclic loading and earthquake simulation tests; (3) to study if the parameters that define the 124 

model need to be defined as a function of the isolator shear strain or could be defined as 125 

constants; (4) to identify the model parameters using system identification techniques 126 

combined with different objective functions minimizing error in dissipated energy, force 127 

history, and stiffness history during a deformation cycle; and (5) to study the sensitivity of the 128 

model-predicted response to the objective function used to perform the parameter calibration. 129 

ANALYTICAL MODEL 130 

The simplified model is based on several aspects of the Kikuchi-Aiken model but makes 131 

several modifications that make it more versatile and easier to calibrate. Like the Kikuchi-132 

Aiken model, the proposed model is based on springs arranged in parallel. The three springs 133 

that define this simplified model are shown in Figure 1. One of them has a hysteretic behavior 134 

based on the well-known Menegotto-Pinto model (Menegotto and Pinto 1973) initially 135 

developed for modeling steel reinforcing bars in reinforced concrete. The Menegotto-Pinto 136 

model is characterized by four parameters: (i) 𝐹௬, the yield force; (ii) 𝑢௬, the yield 137 

displacement; (iii) 𝑅, a parameter that controls the shape of the transition between the elastic 138 



 

and the plastic branches; and (iv) 𝑏 the ratio of the secondary to initial stiffness. In steel 139 

modeling, the 𝑅 parameter represents the Bauschinger effect (Bauschinger, 1881), and its value 140 

is typically a function of the maximum inelastic displacement experienced by the steel 141 

specimen.  142 

The Menegotto-Pinto model can be easily interpreted as two springs acting in parallel, 143 

namely 𝐹ଵሺ𝑢ሻ and 𝐹ଶሺ𝑢ሻ, where 𝐹ଵ and 𝐹ଶ are the forces acting in each spring, and 𝑢 is the 144 

displacement. As can be seen in Figure 2, 𝐹ଵሺ𝑢ሻ is an elastoplastic spring with a smooth 145 

transition between its branches, and 𝐹ଶሺ𝑢ሻ is a linear elastic spring. 146 

To include the hardening effect that characterizes isolators’ response when subjected to 147 

moderate and high levels of lateral shear strain, a non-linear elastic spring, namely 𝐹ଷሺ𝑢ሻ, is 148 

included. This non-linear spring is defined by two parameters: (i) 𝐹௢, the force associated with 149 

the hardening displacement 𝑢௛; and (2) 𝑛, a parameter that controls the nonlinearity of the 150 

spring. By adding the contributions of the three springs in the simplified model, the complete 151 

equation giving the force as a function of the displacement is: 152 

𝐹ሺ𝑢ሻ ൌ 𝐹ଵሺ𝑢ሻ ൅ 𝐹ଶሺ𝑢ሻ ൅ 𝐹ଷሺ𝑢ሻ  (1) 
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 153 

Figure 1. Proposed analytical model. 154 
 155 

Figure 2 shows plots of force as a function of displacement for the three springs in the 156 

simplified model. A comparison between the original Menegotto-Pinto model and the proposed 157 

model incorporating F3(u) to account for hardening effects is shown in Figure 3. 158 



 

 159 

Figure 2. Force as a function of displacement for the three springs in the model.  160 
 161 

 162 
Figure 3. Force as a function of displacement for: a) 𝐹ଵሺ𝑢ሻ ൅  𝐹ଶሺ𝑢ሻ, the original Menegotto-Pinto 163 

Model, and b) 𝐹ଵሺ𝑢ሻ ൅  𝐹ଶሺ𝑢ሻ ൅ 𝐹ଷሺ𝑢ሻ, the model proposed in this work. 164 
 165 

The parameters defining the springs 𝐹ଵሺ𝑢ሻ and 𝐹ଷሺ𝑢ሻ and the overall effect of their 166 

variation on the springs force-displacement constitutive relations are displayed in Figures 4 167 

and 5, respectively. For the 𝐹ଵሺ𝑢ሻ spring case, the plots consider 𝑏 ൌ 0. 168 

uy

Fy

b 
Fy
uy



 

169 
Figure 4. Effect of variation of different parameters on force 𝐹ଵሺ𝑢ሻ as a function of displacement 170 

when 𝑏 ൌ 0. 171 
 172 

 173 
 Figure 5. Effect of variation of different parameters on force 𝐹ଷሺ𝑢ሻ as a function of displacement. 174 

 175 
It should be noted that the proposed model converges to the frequently-used kinematic-176 

hardening bilinear model when the parameter R is set to a high value (e.g., 𝑅 ൎ 40)  and 𝐹௢ is 177 

set to zero. Under these conditions, the 𝐹ଷሺ𝑢ሻ term vanishes to zero and the high shear-strain 178 

hardening effect disappears.  179 

Model parameters must be identified through optimization, minimizing the error between 180 

test-measured and model-predicted values. The optimization criterion can be selected from 181 

different features of the isolator force-displacement curve, e.g., force history, stiffness history, 182 

or dissipated energy, as extensively described and discussed in the following sections of this 183 

article. Initial values required to start the optimization process can be easily obtained as 184 

follows: 185 

Increasing uy

Increasing R

Increasing Fy



 

 For a given displacement cycle with shear strain 𝛾, like the one shown in Figure 186 

6(a), find by inspection the intersection between the curve and the force axis. This 187 

value can be used as an initial guess for parameter 𝐹௬. 188 

 Measure the curve's slope 𝑘௜௡௜௧ from the minimum (or maximum) displacement 189 

point, as displayed in Figure 6(a). Using this stiffness 𝑘௜௡௜௧ and the initial estimation 190 

of 𝐹௬, calculate the initial estimation of 𝑢௬, through the expression 𝑢௬ ൌ 𝑘௜௡௜௧/𝐹௬. 191 

It should be noted that strictly speaking, the stiffness 𝑘௜௡௜௧ is actually including the 192 

high shear-strain hardening contribution to stiffness; however, this deviation could 193 

be neglected when obtaining initial values for the parameters. 194 

 Visually estimate parameter 𝑏 to match the secondary stiffness without considering 195 

high shear-strain hardening, as shown in Figure 6(a). In most cases, values for 𝑏 196 

range between 0.02 and 0.07. 197 

 Given the initial estimations for 𝐹௬, 𝑢௬, and 𝑏, and using any value of 𝑅, plot a 198 

bilinear Menegotto-Pinto curve, using equation (2) for 𝐹ଵሺ𝑢ሻ and 𝐹ଶሺ𝑢ሻ, as shown 199 

in the dashed blue curve in Figure 6(b.) 200 

 Identify the hardening displacement 𝑢௛ where the measured force noticeably 201 

departs from the force of the bilinear Menegotto-Pinto curve generated in the step 202 

above, as shown in Figure 6 (b). It should be noted that 𝑢௛ is not a parameter to be 203 

identified but a fixed value. 204 

 Select an initial value for 𝐹௢ as the difference from the measured-force and the 205 

force-predicted by the Menegotto-Pinto model, both evaluated at 𝑢௛. 206 

 Select an initial value for 𝑛 to adjust the high shear-strain hardening ascending 207 

branch. 208 

 Choose an initial value for 𝑅 to match the transition between the initial and the 209 

secondary stiffness.   210 

Once the parameters' initial values have been estimated independently for the different 211 

deformation cycles, a non-linear optimization procedure should be implemented to find 212 

optimal values, considering the displacement-dependent or the displacement-independent 213 

approach extensively described in the next sections of this article. 214 



 

 215 

Figure 6. Parameters’ initial-values estimation, using a cyclic deformation test. 216 

 217 

As this model is intended for seismic isolator modeling under earthquake loads which 218 

involves reverse cyclic loading with varying amplitudes, a set of rules for unloading and 219 

reloading for inner cycles needs to be defined. In the original Menegotto-Pinto formulation, 220 

when the oscillator reverses its velocity at any displacement level smaller than the maximum 221 

displacement already reached during the response, the reloading curve could produce forces 222 

higher than the ones associated with the previous loading curve, violating the constraint 223 

imposed by the primary skeleton curve. In order to overcome this flaw in the original model, 224 

the storage of a previously undefined number of internal loops generated by the subsequential 225 

velocity reversals was required. These internal loops could be sequentially forgotten as the 226 

oscillator displacement exceeds the displacement where the loop was originated.  227 

Ciampi et al. (1982) proposed a simplified procedure to correct this problem in the original 228 

Menegotto-Pinto model. This procedure only memorizes four curves, namely: i) the skeleton 229 

curve; ii) the ascending curve, starting at the reversal point with the minimum displacement 230 

value; iii) the descending curve, starting at the reversal point with the maximum displacement 231 

value; and iv) the current curve starting at the last reversal point.  Despite its simplicity, this 232 

methodology has proven to give reasonably accurate results for modelling reinforcing steel 233 

bars subjected to reverse cyclic loading and is then implemented in this simplified model for 234 

elastomeric isolation bearings.  235 



 

Figure 7 shows the original Menegotto-Pinto model erroneously following the blue line 236 

after a velocity reversal point, in this case, a small unloading followed by reloading. The model 237 

proposed in this work returns to the ascending curve defined by the reversal point with the 238 

minimum displacement. The transition curve after the last reversal point was analytically 239 

defined with the methodology proposed by Bosco et al. (2016). 240 

241 
Figure 7. Proposed rules for seismic unloading and reloading: (a) force as a function of displacement, 242 

general view, and (b) reversal point, detailed view. 243 

MODEL VALIDATION 244 

Two types of verification were implemented to assess the simplified model's ability to 245 

represent the seismic isolator behavior under different load conditions. Firstly, the model was 246 

calibrated to fit four cyclic tests of different elastomeric isolators, including HDRBs and LRBs. 247 

Secondly, the proposed model was calibrated to fit two earthquake simulator tests of an HDRB 248 

isolator and an LRB isolator. The annular specimens used to calibrate the model are described 249 

in Tables 2 and 3 for cyclic tests and earthquake simulator tests, respectively. In these tables, 250 

𝜙 is the external diameter of the isolator, 𝜙௜ is the internal diameter of the isolator, 𝜙௟௘௔ௗ is the 251 

lead-core diameter, and ℎ௥ is the total rubber height. 252 

 253 

 254 



 

Table 2. Seismic isolator specimens calibrated through cyclic tests. 255 

Specimen Type Geometry Shear Strains 

1 
HDRB, Natural rubber 

compound. 

𝜙 ൌ 750 𝑚𝑚 
𝜙௜ ൌ 100 𝑚𝑚 
ℎ௥ ൌ 128 𝑚𝑚 

𝛾 ൌ 0.50, 1.00, 1.50, 2.00 

2 
LRB, Unfilled natural 

rubber compound 

𝜙 ൌ 180 𝑚𝑚 
𝜙௟௘௔ௗ ൌ 25 𝑚𝑚 

ℎ௥ ൌ 36 𝑚𝑚 
𝛾 ൌ 0.85, 1.28, 1.70, 2.60 

3 
LRB, Filled Natural 
rubber compound 

𝜙 ൌ 750 𝑚𝑚 
𝜙௟௘௔ௗ ൌ 150 𝑚𝑚 

ℎ௥ ൌ 204 𝑚𝑚 
𝛾 ൌ 0.25, 0.50, 1.0, 1.25 

4 
HDRB, Natural rubber 

compound. 

𝜙 ൌ 600 𝑚𝑚 
𝜙௜ ൌ 100 𝑚𝑚 
ℎ௥ ൌ 133 𝑚𝑚 

𝛾 ൌ 0.25, 0.50, 1.0, 1.50 

 256 

Table 3. Seismic isolator specimens calibrated through earthquake simulator tests. 257 

Specimen Type Geometry Calibration Ground Motion 

5 
HDRB, Natural rubber 

compound 

𝜙 ൌ 650 𝑚𝑚 
𝜙௜ ൌ 100 𝑚𝑚 
ℎ௥ ൌ 204 𝑚𝑚 

ICA – 2007 Pisco (Peru) 
PGA = 0.50 g 

6 
LRB, Unfilled natural 

rubber compound 

𝜙 ൌ 180 𝑚𝑚 
𝜙௟௘௔ௗ ൌ 25 𝑚𝑚 

ℎ௥ ൌ 36 𝑚𝑚 

El Centro – 1940 Imperial Valley  
PGV = 50 cm/s 

 258 

CYCLIC TEST CALIBRATION 259 

The parameter calibration was performed using a least-squares approach to minimize the 260 

difference between test-measured and model-predicted values, based on initial values 261 

estimated using the procedure described in the section above. Different objective functions 262 

were used to define different sets of optimal model parameters. Frequently, a minimization of 263 

the deviation between the dissipated energy during a deformation cycle and its corresponding 264 

model-predicted value is selected as the optimality criterion (e.g., Ibarra et al. 2005). Another 265 

approach commonly used when calibrating model parameters considers minimizing the 266 

difference between the test-measured and the model-predicted forces during a given 267 

deformation cycle. However, as an oscillator's dynamic response depends on its tangent 268 

stiffness in the integration step under consideration, an objective function that minimizes the 269 

deviation in tangent stiffness is especially desirable.  270 



 

To study how the objective function used during the optimization (minimization in this 271 

case) influences the model parameters, the cyclic test calibration was performed using five 272 

different objective functions, detailed in Table 4. For the objective functions minimizing the 273 

deviation of forces or stiffnesses throughout the loading history, two different approaches were 274 

implemented by computing an absolute difference and a relative difference between the 275 

experimental and the model-predicted values.  276 

In the absolute difference case, the sum of the differences (in absolute value) between the 277 

measured and the model-predicted values during a deformation cycle is minimized, then the 278 

optimization process will tend to generate a better fit in the displacement range where the forces 279 

or the stiffnesses are high, as their contribution to the sum for the complete deformation cycle 280 

will be more relevant. On the other hand, in the relative difference case, the differences (also 281 

in absolute value) between the measured and the model-predicted values are normalized by the 282 

average between them. The normalized differences are afterward added for the complete 283 

deformation cycle. The optimal parameters obtained through the latter procedure should assure 284 

a more consistent agreement between the measured and the model-predicted values for the 285 

complete force-displacement curve.  286 

The lateral stiffness was calculated through two different methods: (i) an “instantaneous” 287 

tangent stiffness, calculated as the force-displacement curve slope between two consecutive 288 

sampled values; and (ii) a secant stiffness, calculated as the slope of the force-displacement 289 

curve given a fixed displacement increment of 0.25 cm. In most cases, both approaches result 290 

in similar optimal parameters, but the extremely high stiffnesses observed for large shear 291 

displacements could generate numerical issues when using the “instantaneous” tangent 292 

stiffness approach, then the use of the secant stiffness was implemented.  293 

For each different objective function, optimization was done in MATLAB’s optimization 294 

toolbox using the fmincon function with the “interior-point” algorithm (MATLAB, 2020a). 295 

This function uses a Quasi-Newton method, which is based on Newton's method to minimize 296 

the objective function, but unlike the Newton method, the Hessian matrix does not need to be 297 

computed. 298 

The complete set of objective functions was used to calibrate the cyclic test results for 299 

Specimen 1, vulcanized from natural rubber and annular-shaped with an external diameter 𝜙 300 

of 750 mm, an internal diameter 𝜙௜ of 100 mm, sixteen 8-mm thick rubber layers, and fifteen 301 

3-mm thick steel shims. The cyclic test was performed in the “Laboratory for dynamic testing 302 



 

and vibration control” at Pontificia Universidad Catolica de Chile on July 30th, 2014, under an 303 

expected axial load of 447 tonf. This specimen was subjected to a maximum shear strain of 304 

𝛾 ൌ 2.0, and the measured effective properties were 𝑘௘௙௙ ൌ 1.62 𝑡𝑜𝑛𝑓 𝑐𝑚⁄  (effective 305 

stiffness) and 𝛽௘௙௙ ൌ 12.4% (effective damping). For further details on the testing setup, the 306 

reader is referred to De la Llera et al. (2004) 307 

The influence of the selected objective function in the robustness of the different optimal 308 

parameter sets was assessed through the following steps: 309 

 Different optimal parameter sets (a, b, c, d, and e) were calculated using each 310 

objective function described in Table 4. 311 

 For each optimal parameter set, five different calibration errors were calculated 312 

using the five error indexes in Table 4. 313 

 The five errors calculated with a specific error index were normalized by the 314 

minimum error associated with that index, i.e., the error of the optimal parameter 315 

set determined by the minimization of that specific error index. 316 

 The last step was repeated for all the different error indexes defined in Table 4.  317 

Table 4. Objective functions used to perform parameter calibration 318 

Method Objective function 
Optimal 

parameter set 
Error index used 

to fit model  

1 
min ሺ𝐸ௗ

௧ െ 𝐸ௗ
௙ሻ 

a 
Dissipated energy during a complete 
deformation cycle, deviation between 
test-measured and model-fitted values. 

2 min ෍ሺ𝐹௜
௧ െ 𝐹௜

௙ሻଶ

௜

 b 
Force for each sampled displacement, 
squared absolute deviation between test-
measured and model-fitted values. 

3 min ෍ ቆ
ሺ𝐹௜

௧ െ 𝐹௜
௙ሻ

ห𝐹௜
௧ห ൅ ห𝐹௜

௙ห
ቇ

ଶ

௜

 c 
Force for each sampled displacement, 
squared relative deviation between test-
measured and model-fitted values. 

4 min ෍ሺ𝐾௜
௧ െ 𝐾௜

௙ሻଶ

௜

 d 

Secant stiffness for each sampled 
displacement, squared absolute deviation 
between test-measured and model-fitted 
values. 



 

5 min ෍ ቆ
ሺ𝐾௜

௧ െ 𝐾௜
௙ሻ

ห𝐾௜
௧ห ൅ ห𝐾௜

௙ห
ቇ

ଶ

௜
e 

Secant stiffness for each sampled 
displacement, squared relative deviation 
between test-measured and model-fitted 
values. 

where: 

𝐸ௗ
௧ ൌ 1 2⁄ ∑ ሺ𝐹௜ାଵ

௧ ൅ 𝐹௜
௧ሻሺ𝑢௜ାଵ െ 𝑢௜ሻ

௠ିଵ
௜ୀଵ , total test-measured dissipated energy for a given displacement cycle. 

𝐸ௗ
௙ ൌ 1 2⁄ ∑ ሺ𝐹௜ାଵ

௙ ൅ 𝐹௜
௙ሻሺ𝑢௜ାଵ െ 𝑢௜ሻ

௠ିଵ
௜ୀଵ , total model-fitted dissipated energy for a given displacement cycle. 

𝑢௜ = sampled displacement i, during a cyclic test. 
𝑚 = total number of sampled displacements during a cyclic test. 

𝐹௜
௧ = test-measured force at step i, during a cyclic test. 

𝐹௜
௙ = model-fitted force at step i, during a cyclic test. 

𝐾௜
௧ = test-measured secant stiffness at step i, during a cyclic test. 

𝐾௜
௙ = model-fitted secant stiffness at step i, during a cyclic test. 

 

For each optimal set of parameters, those that minimize the five different objective 319 

functions, the other four objective functions' relative errors are shown in Figure 8. The optimal 320 

set of parameters b, determined through minimization of absolute force deviation, shows the 321 

smallest variability between relative errors, meaning that the deviation between the test and the 322 

model-predicted values is closest, regardless of the error index used to measure this deviation. 323 

On the other extreme, for the optimal parameter set e, determined by minimization of the 324 

relative secant stiffness deviation, the level of agreement between the test and the model-325 

predicted values depends strongly on which measure of error was implemented. Consequently, 326 

for Specimen 1 modeling, optimal parameter set b is better than optimal parameter set e, as it 327 

produces errors using all five measures of deviation that are closer to the minimum values. 328 



 

 329 
 330 

Figure 8. A comparison of errors calculated using the five objective functions in Table 4 for a given 331 
optimal parameter set, normalized to the minimum error for each optimization criterion.  332 

 333 
Figure 9 shows schematically for Specimen 1, at a given shear strain of  𝛾 ൌ 2.0, how the 334 

objective function's selection influences the optimal parameter set and their associated model-335 

predicted values. When dissipated energy is selected as the calibration criterion, the 336 

optimization process tends to equalize the areas enclosed by the force-displacement curves, 337 

and then some significant differences in lateral stiffness can be observed mainly in the low to 338 

moderate displacement cycles. Since the solution of the differential equation of motion depends 339 

on adequately capturing changes in the lateral tangent stiffness at each integration step, this 340 

approach could lead to significant errors in the oscillator seismic response calculation.  341 

Based on the previous comment, an objective function based on minimizing the difference 342 

in stiffness between the measured and the model-predicted values, would appear to be the most 343 

logical choice. However, the specimen under consideration is strongly characterized by its 344 

noticeable hardening in the high displacement range, then a substantial stiffness increase is 345 

expected at large displacements. For specimens that exhibit strong hardening, the stiffness can 346 

become very large, and therefore the use of this objective function, even though the general 347 

agreement between the experimental and the model-predicted values is acceptable, will 348 



 

minimize deviations between measured and computed stiffness in this region but may produce 349 

larger errors in portions of the hysteretic cycle in which the stiffness is small, which are of 350 

interest as those would be producing larger displacement increments.  351 

As can be seen in the central plot (b) in Figure 9, when a force deviation minimization 352 

criterion is used to define the optimal parameters, the model fits with reasonable accuracy the 353 

experimental test data in the complete displacement range under analysis, then the stiffnesses 354 

and the non-linear forces predicted by the model are quite similar to the ones in the 355 

experimental test. Based on this fact, an absolute force-based error index (Method b in Table 356 

4) was selected as the optimization criterion for the rest of this study.  357 

358 
Figure 9. Comparison of the experimental test data (Specimen 1, 𝛾 ൌ 2.0) and the model-fitted data 359 

using different objective functions to identify the optimal set of parameters: (a) dissipated energy 360 
deviation minimization; (b) force deviation minimization; and (c) stiffness deviation minimization. 361 

 362 
As it has been widely established in the literature (Kikuchi and Aiken 1997), the 363 

constitutive models that do not use differential equations on their formulation generally need 364 

to update their parameters as a function of the specimen shear strain (hereafter referred to as 365 

displacement-dependent parameters). A sequential approach was implemented to study how 366 

the quality of the fit is affected by this displacement dependency. In the first stage of the 367 

optimization process, the model parameters were calibrated independently for each shear strain 368 

in the cyclic test, getting the best possible fit and implying that all parameters were 369 

displacement-dependent. This allows the identification of the parameters that are more 370 

sensitive to the level of deformation. Afterward, in the second stage of the optimization 371 

procedure, the displacement-dependent parameters were gradually constrained to check their 372 
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displacement-independency. The sequence of the parameters to be constrained was selected by 373 

minimizing the growth of the fitting error. 374 

Figure 10 shows the experimental and the model-predicted force-displacement curves for 375 

the first stage of the calibration procedure when most parameters are assumed displacement-376 

dependent, i.e., their values change as a function of the shear strain. An excellent agreement 377 

between the experimental and the model-predicted data is observed for all specimens under 378 

analysis. Optimal parameters are listed in Table 5. 379 

Table 5. Model-calibrated parameters for all specimens, when the best possible fit is obtained by setting 380 
many displacement-dependent parameters. (Displacement-dependent parameters are shown in bold 381 
characters). 382 

Specimen 𝜸 
𝒖 

(cm) 
𝑭𝒚 

(tonf) 

𝒖𝒚 

(cm) 

𝒃 
 

𝑹 𝑭𝒐 
(tonf) 

𝒏 

1 

0.50 6.40 7.79 0.17 0.04 0.65 3.31 4.85 

1.00 12.80 8.78 0.19 0.02 0.69 3.31 4.85 

1.50 19.20 7.90 0.22 0.02 0.93 1.42 4.85 

2.00 25.60 9.12 0.37 0.03 1.94 0.55 4.85 

2 

0.85 3.06 0.51 0.15 0.07 3.61 0.36 1.00 

1.28 4.61 0.50 0.10 0.04 1.84 0.36 1.00 

1.70 6.12 0.56 0.05 0.01 0.66 0.36 1.00 

2.60 9.36 0.51 0.09 0.02 0.95 0.36 1.00 

3 

0.25 5.10 80.36 0.83 0.002 0.56 1.55 3.50 

0.50 10.20 64.94 0.50 0.002 0.53 1.55 3.50 

1.00 20.40 28.98 0.37 0.009 0.82 1.55 3.50 

1.25 25.50 21.58 0.26 0.007 0.70 1.55 3.50 

4 

0.25 3.33 6.88 0.27 0.038 0.39 0.34 6.00 

0.50 6.65 5.77 0.16 0.023 0.39 0.34 6.00 

1.00 13.30 3.32 0.31 0.072 1.56 0.34 6.00 

1.50 19.95 4.03 0.39 0.068 1.95 0.34 6.00 

 383 



 

 384 

Figure 10. Experimental test data and best model-fitted data for specimens: (a) 1, (b) 2, (c) 3, and (d) 385 
4, as described in Table 2. The model parameters used in each Specimen are listed in Table 5. 386 

 387 
Figure 11 shows the calibration relative error in Specimen 1 as a function of the number of 388 

displacement-dependent parameters. This sensitivity analysis was performed for the five 389 

objective functions defined in Table 4. The best fit was considered to be the one obtained when 390 

five out of six parameters were set to be displacement-dependent. This case did not show any 391 

noticeable decrease in the fit quality compared with the case where all parameters were 392 

(a) (b)

(c) (d)



 

considered displacement-dependent. These parameters were sequentially constrained to be 393 

displacement-independent (i.e., assuming constant values) to assess how the fit's quality 394 

decreases as the number of displacement-dependent parameters decreases.  395 

For Specimen 1, it can be seen that when setting only two displacement-dependent 396 

parameters (𝑏 and 𝐹௢), the quality of the fit is quite similar to the case with five displacement-397 

dependent parameters, regardless of the objective function used for the optimization, excepting 398 

the case where the dissipated-energy objective function was used (Method 1). 399 

 400 

Figure 11. Model-fitted relative error as a function of the number of displacement-dependent 401 
parameters, Specimen 1. 402 

 403 
A similar trend between the quality of the fit and the number of displacement-dependent 404 

parameters was observed for the other specimens used in this study. Therefore, with the 405 

proposed model, generally speaking, there is no need to consider a large number of 406 

displacement-dependent parameters to get an accurate analytical prediction. Figure 12 shows 407 

the comparison between the experimental and the model-predicted force-displacement curves 408 

when only two displacement-dependent parameters are considered for Specimens 1, 2, and 3, 409 

and when only one displacement-dependent parameter is considered for Specimen 4. These 410 

updated parameter sets are listed in Table 6. 411 



 

Even though the updated parameters in Table 6 are considerably simpler, as the number of 412 

displacement-dependent parameters was reduced relative to those listed in Table 5, the 413 

agreement between the test results and the model-predicted values is still entirely satisfactory. 414 

Table 6. Model-calibrated updated parameters for all specimens. Displacement-dependent parameters 415 
are shown in bold characters. 416 

Specimen 𝜸 
𝒖 

(cm) 
𝑭𝒚 

(tonf) 

𝒖𝒚 

(cm) 

𝒃 
 

𝑹 𝑭𝒐 
(tonf) 

𝒏 

1 

0.50 6.40 8.40 0.30 0.05 1.05 3.31 4.85 

1.00 12.80 8.40 0.30 0.04 1.05 3.31 4.85 

1.50 19.20 8.40 0.30 0.03 1.05 1.42 4.85 

2.00 25.60 8.40 0.30 0.03 1.05 0.55 4.85 

2 

0.85 3.06 0.54 0.06 0.02 1.00 0.36 1.00 

1.28 4.61 0.54 0.06 0.02 0.99 0.36 1.00 

1.70 6.12 0.54 0.06 0.02 0.77 0.36 1.00 

2.60 9.36 0.54 0.06 0.01 0.75 0.36 1.00 

3 

0.25 5.10 55.87 0.49 0.009 0.61 1.55 3.50 

0.50 10.20 53.27 0.49 0.004 0.61 1.55 3.50 

1.00 20.40 39.86 0.49 0.005 0.61 1.55 3.50 

1.25 25.50 27.96 0.49 0.007 0.61 1.55 3.50 

4 

0.25 3.33 4.13 0.43 0.076 0.75 0.34 6.00 

0.50 6.65 4.13 0.43 0.076 0.73 0.34 6.00 

1.00 13.30 4.13 0.43 0.076 0.81 0.34 6.00 

1.50 19.95 4.13 0.43 0.076 2.31 0.34 6.00 

 417 



 

 418 

Figure 12. Experimental test and simplified model-fitted data for: (a) Specimen 1 with 𝑏 and 𝐹௢ 419 
displacement-dependent; (b) Specimen 2 with 𝑏 and 𝑅 displacement-dependent; (c) Specimen 3 with 420 

𝐹௬ and 𝑏 displacement-dependent; and (d) Specimen 4 with 𝑅 displacement-dependent. The model 421 
parameters for each case are listed in Table 6.     422 

 423 
 424 
 425 
 426 
 427 
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(c) (d)



 

A quantitative comparison between the performances of the proposed model and the 428 

Kikuchi and Aiken model is presented, based on the cyclic test results of Specimen 1. 429 

Models are compared using the coefficient of determination 𝑹𝟐 of three different metrics 430 

of the force-displacement curve, namely: (i) the dissipated energy, (ii) the force history, 431 

and (iii) the stiffness history, all of them measured for all the displacement cycles. 432 

Coefficients of determination 𝑹𝟐 were calculated using the equation: 433 

𝑹𝟐 ൌ 𝟏 െ
∑ ሺ𝒚𝒊 െ 𝒚ෝ𝒊ሻ𝟐𝒏

𝒊ୀ𝟏

∑ ሺ𝒚𝒊 െ 𝒚ഥሻ𝟐𝒏
𝒊ୀ𝟏

  (3) 

where 𝒚𝒊 is the test-measured metric at displacement step 𝒊, 𝒚ෝ𝒊 is the model-predicted 434 

metric at displacement step 𝒊, and 𝒚ഥ ൌ ∑ 𝒚𝒊
𝒎
𝒊ୀ𝟏 𝒎⁄  is the mean of the test-measured metric, 435 

where 𝒎 is the total number of sampled displacements during a cyclic test. For the 436 

proposed model, the 𝑹𝟐 results for the best-fit scenario (five displacement-dependent 437 

parameters) and the simpler but accurate scenario (two displacement-dependent 438 

parameters) are reported. 439 

Table 7. Coefficient of determination 𝑅ଶ for the proposed model and the Kikuchi and Aiken Model. 440 
Predicted  

metric 
Proposed model 
Simpler scenario  

(two displacement 
dependent parameters) 

Proposed model 
Best-fit scenario 

(five displacement 
dependent parameters) 

Kikuchi and Aiken Model 
𝑢 ൌ  െ0.084 𝛾 ൅ 0.340 

ℎ௘௤ ൌ  െ0.037 𝛾 ൅ 0.194 
𝑛 ൌ  1.569 𝛾 ൅ 0.017 

𝑎 from Eq., but if 𝛾 ൐ 1.0 𝑎 ൌ 36 
𝑏 from Eq., but if 𝛾 ൐ 1.5 𝑏 ൌ 16 

𝑐 ൌ 6.0 

Dissipated 
energy 0.957 0.997 0.995 

Force  
history 0.931 0.933 0.937 

Stiffness 
history 0.572 0.594 0.537 

 441 

As shown in Table 7, the 𝑹𝟐 coefficients of the proposed model and the Kikuchi and 442 

Aiken model are very similar when most parameters are displacement-dependent, with 443 

slightly larger (better) 𝑹𝟐 coefficients for the proposed model when predicting either 444 

dissipated energy or stiffness history. The proposed-model simpler set of parameters, in 445 

which we only used two displacement-dependent parameters, delivers 𝑹𝟐 coefficients that 446 

are just slightly lower than the Kikuchi and Aiken ones for dissipated energy and force 447 

history but actually larger (better) for stiffness history, still predicting all metrics with 448 

enough accuracy. 449 



 

The presented simplified model constitutes a suitable alternative for isolation 450 

bearings modeling, given the quality of its predictions. Additionally, it is relevant to 451 

highlight that all its parameters are related to force-displacement curves' observable 452 

characteristics, constituting a noticeable advantage when compared to other available 453 

models. For example, the Kikuchi and Aiken model uses parameters (a and b) proposed 454 

to be computed with equations related to other parameters directly determined from the 455 

force-displacement curve. Still, the authors noted that those equations only apply to a 456 

particular range of displacements, and the parameters directly determined from the 457 

curve need to be constrained for the equations to work properly. To overcome these flaws, 458 

the authors proposed using the equation in a given displacement range and using an 459 

arbitrary constant for other cases, making the calibration procedure noticeably more 460 

difficult.  461 

EARTHQUAKE TEST CALIBRATION 462 

The capability of the proposed simplified model to adequately represent the force-463 

displacement relationship of different types of seismic isolators under earthquake loads was 464 

assessed by comparing its analytically predicted values with the results of two different 465 

earthquake simulator tests. In this case, the model parameters were identified as follows: 466 

 As the isolators' cyclic test results were available for both cases, an initial and 467 

displacement-independent estimation of the six model parameters was performed.  468 

 An analysis of the sequence that best improves the fit quality by incrementally 469 

redefining some parameters as displacement-dependent was carried out.  470 

 Given parameter 𝑝௜ to be updated as displacement-dependent, its identification was 471 

performed through a force-error minimization procedure (i.e., Method 2 in Table 4) 472 

for the complete earthquake displacement history. In this case, the output of the 473 

optimization process is not a single value for the parameter 𝑝௜, but several (𝛾, 𝑝௜) 474 

ordered pairs. The selected 𝛾 values were arbitrarily defined based on the 475 

displacement history of the earthquake ground motion under analysis. 476 

 The last step was repeated for the following parameter 𝑝௝ selected to be updated as 477 

displacement-dependent. 478 



 

It should be noted that in the case of an earthquake test calibration, a functional form 479 

relating the parameter being calibrated with the isolator shear strain needs to be selected, then 480 

several functional forms were studied. However, results suggest that the selected functional 481 

form does not have a significant effect on the ability of the model to predict the isolator 482 

behavior under a given displacement history. Consequently, only two functional forms to 483 

describe the variation of the parameters with changes in the level of strain, were selected based 484 

on their simplicity. These functional forms will be hereafter referred to as FF1 and FF2 and are 485 

displayed in Figure 13. 486 

 487 

Figure 13. Displacement-dependent parameter 𝑝௜ as a function of the isolator shear strain, when 488 
calibrating with earthquake test results: (a) Functional Form 1, FF1; and (b) Functional Form 2, FF2. 489 

 490 

The following paragraphs describe the main characteristics and features of the earthquake 491 

simulation tests used to calibrate the simplified model. 492 

Earthquake simulation test calibration - Case 1 493 

The Building Nonstructural Components and Systems (BNCS) (Chen et al. 2013) project 494 

considered the construction and earthquake simulation testing of a one to one scale specimen 495 

of a five-story reinforced concrete building, equipped with several nonstructural components. 496 

The project considered tests on a fixed-base configuration and on an isolated-base 497 

(a)

(b)



 

configuration that took place between April 2012 and May 2012 at the George E. Brown, Jr., 498 

Network for Earthquake Engineering Simulation (NEES) unidirectional Large High-499 

Performance Outdoor Shake Table at the University of California, San Diego (UCSD). In the 500 

base-isolated configuration, the building was subjected to seven ground motions records, 501 

representative of the seismicity in California, a central area of Alaska, and a subduction zone 502 

in South America. For the simplified model calibration, a record from the 2007 Mw 8.0 Pisco-503 

Peru earthquake (ICA ground motion record) was selected. In the BNCS project, the original 504 

ICA ground motion record was scaled by a factor of 1.4; then, the test specimen was subjected 505 

to a maximum ground acceleration of 0.50 g, a peak input velocity of 62.59 cm/s, and a peak 506 

input displacement of 12.92 cm. This ground motion record was the most demanding one used 507 

in the isolated-base configuration of the building, so it was selected to test the ability of the 508 

simplified model to capture the hardening effect adequately. The building was supported on 509 

four high damping rubber isolators (HDRB), whose geometric and material characteristics are 510 

listed in Table 4, as Specimen 5. 511 

The force-displacement curve in any of the isolators was required to perform the model 512 

calibration. As this information was not directly reported, the induced inertial forces in the 513 

building and the resultant shear force demand over the isolation level were estimated by using 514 

the accelerometer readings on each floor and their corresponding floor masses lumped at the 515 

center of mass of each floor. The isolators' relative displacements were calculated through 516 

double integration of the accelerometer readings below and above the isolators. 517 

Figure 14 shows the experimentally measured and the model-predicted force-displacement 518 

curves for Specimen 5. The fitted curve on the left was computed using five displacement-519 

dependent parameters (all but 𝑛), while the fitted curve on the right was computed with all six 520 

parameters as constants (i.e., displacement-independent parameters). The model parameters for 521 

both cases are detailed in Table 8. In the case where displacement-dependent parameters were 522 

considered, the functional form FF1 was used to relate the parameter with the isolator shear 523 

strain. It can be seen that while the fit obtained using five displacement-dependent parameters 524 

is better, the one computed with the much simpler displacement-independent (i.e., constant) 525 

parameters still provides a very good match of measured hysteretic behavior, being this latter 526 

approach good enough for practical engineering applications. 527 



 

 528 

Figure 14. Force-displacement curves for the experimental test and the model-fitted data under the 529 
ICA ground motion record: (a) Five displacement-dependent parameters; and (b) No displacement-530 

dependent parameters, as detailed in Table 8.   531 
 532 
Table 8. Model-calibrated parameters for Specimen 5 under the ICA ground motion record. 533 
Displacement-dependent parameters are shown in bold characters. 534 

Case 𝜸 
𝒖 

(cm) 
𝑭𝒚 

(tonf) 

𝒖𝒚 

(cm) 

𝒃 
 

𝑹 𝑭𝒐 
(tonf) 

𝒏 

(a) 0.5 10.2 7.29 2.98 0.20 1.16 0.55 4.65 

 1.0 20.4 6.63 2.90 0.18 1.30 1.08 4.65 

 1.5 30.6 7.29 3.10 0.20 1.16 0.77 4.65 

(b) any any 6.83 2.93 0.19 1.24 1.21 3.97 

 535 

Figure 15 shows the force-history response as a function of time for the experimental and 536 

the model-predicted data, using the model parameters detailed in Table 8. 537 

(b)(a)



 

 538 

Figure 15. Force as a function of time for the experimental test and the model-fitted data, under the 539 
ICA ground motion record: (a) Five displacement-dependent parameters and; (b) No displacement-540 

dependent parameters, as detailed in Table 8.   541 
 542 

Earthquake simulation test calibration - Case 2 543 

The second earthquake simulation test was taken from the seminal work of Kikuchi and 544 

Aiken (1997). The specimen under analysis is a Lead-Rubber Bearing (LRB) described as 545 

Specimen 6 in Table 3. For any further detail on the test features and specifications, the reader 546 

is referred to Kikuchi and Aiken (1997), where this specimen is identified as lead-rubber 547 

bearing. The earthquake simulation test was performed with the well-known NS component 548 

of El Centro ground motion record from the 1940 Imperial Valley earthquake. 549 

Figure 16 shows the experimentally measured and the model-predicted force-displacement 550 

curves for Specimen 6. Again the fitted curve on the left was computed setting five out of the 551 

(a)

(b)



 

six parameters to be displacement-dependent (all but 𝑢௛), while the fitted curve on the right 552 

was computed setting all six parameters as constant (i.e., displacement-independent). The 553 

model parameters for both cases are detailed in Table 9. In the case where displacement-554 

dependent parameters were considered, the functional form FF1 was used to relate the 555 

parameter with the shear strain. Similar to the results shown in Figure 14 and Figure 15, it can 556 

be seen that the model-predicted values using constant parameters provide good results that are 557 

enough for engineering design practice.  558 

 559 

Figure 16. Force-displacement curves for the experimental test and the model-fitted data, under El 560 
Centro ground motion record: (a) Five parameters displacement-dependent; and (b) No displacement-561 

dependent parameters, as detailed in Table 9.   562 
 563 

Table 9. Model-calibrated parameters for Specimen 6, under the El Centro ground motion record. 564 
Displacement-dependent parameters are shown in bold characters. 565 

Case 𝜸 
𝒖 

(cm) 
𝑭𝒚 

(tonf) 

𝒖𝒚 

(cm) 

𝒃 
 

𝑹 𝑭𝒐 
(tonf) 

𝒏 

(a) 0.16 1.5 3.06 0.12 0.04 0.68 2.93 1.42 

 0.48 2.5 3.37 0.13 0.03 1.27 3.16 1.52 

(b) any any 2.69 0.14 0.04 1.00 3.80 1.30 

 566 

Figure 17 shows the force-history response as a function of time, for the experimental and 567 

the model-predicted data, using the model parameters detailed in Table 9. 568 
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 569 

Figure 17. Force as a function of time for the experimental test and the model-fitted data, under the 570 
El Centro ground motion record: (a) Five displacement-dependent parameters; and (b) No 571 

displacement-dependent parameters, as detailed in Table 9.   572 
 573 

In Figure 18, an analysis of the tradeoff between considering an increasing number of 574 

displacement-dependent parameters in exchange for minimizing the error is presented. As it 575 

should be expected, the error decreases as the number of displacement-dependent parameters 576 

increases; however, a distinct difference is observed for Specimen 5 (HDRB) relative to 577 

Specimen 6 (LRB), as the former is less sensitive to the number of displacement-dependent 578 

parameters. This condition can be confirmed by comparing the force-displacement curves in 579 

Figure 14, which look quite similar despite their difference in the definition of parameters. The 580 

total error of the model-fitted force-history increases only 20% when comparing the simplest 581 

model with no displacement-dependent parameters, with the most complex model, with five 582 

displacement-dependent parameters.  583 

(a)

(b)



 

On the other hand, Specimen 6 is more sensitive to model parameters definition, with a 584 

fitting error that is 75% higher in the simplest case (no displacement-dependent parameters) 585 

relative to the most complex case (five displacement-dependent parameters). However, a 586 

noticeable improvement in the fit quality occurs when considering only one parameter as 587 

displacement-dependent (𝑅 in this case). In this new scenario, the relative error reduces from 588 

75% to being only 15% higher than the best fit case. As shown in Figure 18, as more parameters 589 

become displacement-dependent, the additional fitting improvement is rather small. As 590 

previously stated in this article, the choice of the functional form used to evaluate the 591 

displacement-dependent parameters does not significantly influence the quality of the fit for 592 

both cases under study.  593 

 594 

Figure 18. Relative error as a function of the number of displacement-dependent parameters for both 595 
specimens being calibrated with earthquake simulator tests. 596 

 597 

SUMMARY AND CONCLUSIONS 598 

A new simplified and versatile practitioner-oriented element model for seismic isolation 599 

elastomeric bearings has been presented. Its ability to accurately represent the behavior of 600 

different types of elastomeric isolators was demonstrated through the calibration of six 601 



 

different specimens, four with cyclic test results and two with earthquake simulation test 602 

results. The agreement between the experimental test data and the model-predicted values is 603 

entirely satisfactory for practical design purposes, even if most of the model parameters are 604 

displacement-independent, i.e., parameters that are not defined as a function of the isolator 605 

shear strain. 606 

The calibration with cyclic tests was performed by minimizing different measures of error 607 

between test-measured and model-predicted values. The difference between dissipated energy, 608 

force history, and stiffness history for a deformation cycle were considered. Results showed 609 

that for isolators that exhibit significant hardening, the minimization of the force deviation 610 

delivers more robust optimal parameters than the minimization of the lateral stiffness error. 611 

This is the case because in minimizing the difference in lateral stiffness, the optimization 612 

procedure has a bias to the hardening region, allowing larger errors in the region of smaller 613 

stiffnesses, which are actually more likely to produce larger displacement increments.  614 

For the earthquake simulation test calibration, two different functional forms were analyzed 615 

to constrain the variation of some of the parameters with the level of shear strain imposed in 616 

the isolator. Results showed that for the specimens that were considered, both functional forms 617 

led to similar error levels. Consequently, the use of a simple linear functional form (FF2) is 618 

recommended. 619 

The proposed model can capture the hardening effect on elastomeric isolators 620 

accurately. Also, the type of isolator being modeled can be easily changed by modifying 621 

the six parameters of the model. Then, this novel model presents a highly desirable 622 

balance between accuracy and simplicity on its calibration. It can be readily implemented 623 

in academic or commercial software packages as the constitutive equations and the rules 624 

for unloading and reloading are presented in detail in this manuscript.  625 

We recommend that manufacturers of commercial seismic isolators try to relate the 626 

bearings’ geometric and material characteristics with the presented model's parameters. 627 

As seismic design codes require cyclic testing of isolator prototypes for each project, the 628 

model parameters can always be identified using real data. However, Tables 5, 6, 8, and 629 

9 can serve as useful references for choosing optimal parameter values in an initial phase 630 

of the seismic isolation design.  631 



 

In the last three decades, manufacturers have performed thousands of qualification, 632 

prototype, and production tests; consequently, they have gathered a vast quantity of 633 

proprietary test results. Manufacturers could use the model presented in this article and 634 

provide their customers the parameters required to reproduce the hysteretic behavior of 635 

their products. The availability of such data could facilitate the incorporation and 636 

evaluation of their products in the analyses conducted by structural engineers designing 637 

the isolation systems in specific projects. 638 

ACKNOWLEDGMENTS 639 

This research was funded by CONICYT Doctorado Nacional 21161027, the National 640 

Research Center for Integrated Natural Disaster Management CONICYT 641 

/FONDAP/15110017, and FONDECYT grant 1170836 (SIBER-RISK). The authors also 642 

would like to thank the John A. Blume Earthquake Engineering Center at Stanford University 643 

for hosting the first author during his one-year stay at Stanford as visiting student researcher 644 

and to Professor Masaru Kikuchi and Dr. Ian Aiken, who generously provided results of cyclic 645 

and earthquake simulation tests, used to calibrate the model presented in this article. 646 

REFERENCES 647 

Abe, M., Yoshida, J., and Fujino, Y., 2004. Multiaxial behaviors of laminated rubber bearings and their 648 

modeling. II: Modeling. Journal of Structural Engineering, 130(8), 1133-1144. 649 

Bauschinger, J., 1881. Ueber die Veränderung der Elasticitätsgrenze und des Elasticitätsmoduls 650 

verschiedener Metalle. Civiling NF, 27 (19), pp. 289-348. 651 

Bosco, M., Ferrara, E., Ghersi, A., Marino, E. M., and Rossi, P. P., 2016. Improvement of the model 652 

proposed by Menegotto and Pinto for steel. Engineering Structures, 124, 442-456. 653 

Bouc, R., 1971. A mathematical model for hysteresis. Acta Acustica united with Acustica, 24(1), 16-654 

25. 655 

Box, G. E., Luceño, A., and Del Carmen Paniagua-Quinones, M. (2011). Statistical control by 656 

monitoring and adjustment, Second edition, John Wiley & Sons. 657 

Ciampi, V., Eligehausen, R., Bertero, V. V., and Popov, E. P., 1982. Analytical model for concrete 658 

anchorages of reinforcing bars under generalized excitations. Berkeley, CA, USA: College of 659 

Engineering, University of California. 660 

Chen, M. C., Pantoli, E., Wang, X., Astroza, R., Ebrahimian, H., Mintz, S., Hutchinson, T., Conte, J., 661 

Restrepo, J., Meacham, B., Kim, J., and Park, H., 2013a. BNCS Report #1: Full-Scale Structural 662 



 

and Nonstructural Building System Performance during Earthquakes and PostEarthquake Fire - 663 

Specimen Design, Construction and Test Protocol, Structural Systems Research Project Report 664 

Series, SSRP 13/9, University of California San Diego, La Jolla, CA. 665 

Chen, M. C., Pantoli, E., Wang, X., Mintz, S., Hutchinson, T., and Restrepo, J., 2013b. BNCS Report 666 

#4: Full-Scale Structural and Nonstructural Building System Performance during Earthquakes and 667 

Post-Earthquake Fire – Construction Details and Technical Specifications of Specific Subsystems, 668 

Structural Systems Research Project Report Series, SSRP 13/12, University of California San 669 

Diego, La Jolla, CA. 670 

Dall’Asta, A., and Ragni, L., 2006. Experimental tests and analytical model of high damping rubber 671 

dissipating devices. Engineering Structures, 28(13), 1874-1884. 672 

De la Llera, J.C., Luders, C., Leigh, P. and Sady, H., 2004. Analysis, testing, and implementation of 673 

seismic isolation of buildings in Chile. Earthquake Engineering and Structural Dynamics, 33(5), 674 

543–574.  675 

Hwang, J. S., Wu, J. D., Pan, T. C., and Yang, G., 2002. A mathematical hysteretic model for 676 

elastomeric isolation bearings. Earthquake Engineering & Structural Dynamics, 31(4), 771-789. 677 

Ibarra, L. F., Medina, R. A., and Krawinkler, H., 2005. Hysteretic models that incorporate strength and 678 

stiffness deterioration. Earthquake engineering & structural dynamics, 34(12), 1489-1511. 679 

Lion, A., 1997. On the large displacement behaviour of reinforced rubber at different 680 

temperatures. Journal of the Mechanics and Physics of Solids, 45(11-12), 1805-1834 681 

Kikuchi, M., and Aiken, I. D., 1997. An analytical hysteresis model for elastomeric seismic isolation 682 

bearings. Earthquake engineering & structural dynamics, 26(2), 215-231. 683 

MATLAB 2020a, The MathWorks Inc. Optimization Toolbox. Natick, Massachusetts, United States; 2020. 684 

Menegotto M, and Pinto PE., 1973. Method of analysis for cyclically loaded reinforced concrete plane 685 

frames including changes in geometry and non-elastic behaviour of elements under combined 686 

normal force and bending. IABSE symposium of resistance and ultimate deformability of structures 687 

acted on by well-defined repeated loads, vol. 13. Lisbon, Portugal: International Association of 688 

Bridge and Structural Engineering; 1973. p. 15–22. 689 

Mullins, L., 1969. Softening of rubber by displacement. Rubber chemistry and technology, 42(1), 339-690 

362. 691 

Ramberg W, and Osgood WR., 1943  Description of stress-strain curves by three parameters Technical 692 

note No. 902. Washington DC: National Advisory Committee for Aeronautics; 1943. 693 



 

Ozdemir, Non-linear transient dynamic analysis of yielding structures, Ph.D. Dissertation, Division of 694 

Structural Engineering and Structural Mechanics, Department of Civil Engineering, University of 695 

California, Berkeley, 1976. 696 

Pan, T. C., and Yang, G. (1996, June). Non-linear analysis of base-isolated MDOF structures. 697 

In Proceedings of the 11th World Conference on Earthquake Engineering, Mexico. 698 

Tsai, C. S., Chiang, T. C., Chen, B. J., and Lin, S. B., 2003. An advanced analytical model for high 699 

damping rubber bearings. Earthquake engineering & structural dynamics, 32(9), 1373-1387 700 

Tsopelas, P., Constantinou, M. C., and Reinhorn, A. M. (1994). 3D-BASIS-ME: Computer program 701 

for non-linear dynamic analysis of seismically isolated single and multiple structures and liquid 702 

storage tanks. 703 

Tubaldi, E., Ragni, L., Dall'Asta, A., Ahmadi, H., and Muhr, A. (2017). Stress softening behaviour of 704 

HDNR bearings: modelling and influence on the seismic response of isolated 705 

structures. Earthquake Engineering & Structural Dynamics, 46(12), 2033-2054. 706 

Wen, Y. X., 1976. Method for random vibration of hysteretic systems. Journal of the engineering 707 

mechanics division, 102(2), 249-263. 708 


