
Eur. Phys. J. C (2020) 80:395
https://doi.org/10.1140/epjc/s10052-020-7954-2

Regular Article - Theoretical Physics

Thermodynamic extended phase space and P − V criticality
of black holes at Pure Lovelock gravity

Milko Estrada1,2,a, Rodrigo Aros3,b

1 Departamento de Física, Facultad de ciencias básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile
2 Facultad de Ingeniería, Universidad del Desarrollo, Santiago, Chile
3 Departamento de Ciencias Fisicas, Universidad Andres Bello, Av. Republica 252, Santiago, Chile

Received: 5 November 2019 / Accepted: 21 April 2020 / Published online: 11 May 2020
© The Author(s) 2020

Abstract In this work the chemistry of asymptotically AdS
black hole, for the charged and uncharged solutions of Pure
Lovelock gravity, is discussed. The charged case behaves
as a Van der Waals fluid and whose first order phase transi-
tions, between small stable/large stable black holes, are anal-
ogous to the liquid/gas phase transitions as in AdS black hole
for Einstein Hilbert theory. However, the thermodynamics
behavior differs from the generic Lovelock theory, because
there is a unique critical point, unlike the generic case where
there may be more than one critiackcal point. Also, it is shown
that the thermodynamics behavior of the Pure Lovelock black
holes (in the extended phase space) can be represented by
variables that are analytic functions of n and d, where n cor-
responds to the highest power of the Riemann tensor in the
Lagrangian and d corresponds to the number of dimensions.
This allows to obtain several results. For instance, the critical
compressibility factor Z is a function of n and d that satisfies
Z < 1 strictly, matching the behaviour of a real gas, but the
new values computed differ from the 3/8 value of a Van der
Waals gas except for d = 4 and n = 1. New versions of the
Smarr formula and equation of state and its behavior near the
critical points are computed, which are also functions of n,
d and Z . For all the cases the critical exponent are similar to
those of the Van der Waals fluid. The first law of thermody-
namics, in the extended space, is deduced by the variation of
parameters of the Pure Lovelock solution. The entropy, vol-
ume and electric potential are consistent with the previously
known results in the literature.

a e-mail: milko.estrada@ua.cl (corresponding author)
b e-mail: raros@unab.cl

1 Introduction

Certainly the existence of black holes was one of the most
interesting predictions of General Relativity. In this regard,
the discovery that these objects, due to quantum fluctuations,
emit as black bodies with temperatures dictated by the surface
gravity [1–4], shows that they are scenarios where geometry
and thermodynamics intertwine.

The first law of the black hole thermodynamics (see for
instance Ref. [5]) is given by

dM = T dS + ΩdJ + φdQ, (1)

and represents the balance of energy through the modification
of the macroscopic parameters of the black hole. Here M cor-
responds to the mass parameter and was considered the inter-
nal energy of the system, namely the (ADM) mass. Finally,
in Eq. (1) T is the temperature computed as the (4π)−1κ

with κ is the surface gravity of the black hole horizon, S
is the entropy, Ω is the angular velocity, J is the angular
momentum, φ is the electrostatic potential and Q is the elec-
tric charge.

By comparing Eq. (1) with the first law of thermodynam-
ics one can notice the absence of the pressure/volume term,
namely −pdV , which would stand for the macroscopic work
done by the system. In a matter of speaking, this was due to
the lack of the concepts of volume and pressure for a black
hole in the original derivation, based on accretion processes.
Several works have studied this issue in the last 20 years [6–
9]. To address this problem let us consider the first law of
thermodynamics (see for example [9]):

dU = T dS − pdV + ΩdJ + φdQ, (2)

where U stands for the internal energy. To extend Eq. (1)
to match Eq. (2), one can think of assigning a volume to
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the black hole by considering the volume defined its radius,
for example V = 4

3πr3+ for d = 4 case. Unfortunately,
since entropy is a function of the horizon radius as well, then
Eq. (2) would be inconsistent due to dS and dV would not be
independent directions. To address this problem, in reference
[10], was proposed to reinterprete the mass parameter as the
Enthalpy of the black hole, instead of internal energy U .
Moreover, the cosmological constant was connected with the
thermodynamic pressure. The law obtained is called the first
law of (black hole) thermodynamics in the extended phase
space. In Ref. [11], on the other hand, the promotion of the
mass parameter to the enthalpy is based on the fact that to
form a black hole would require to cut off a region of the
space, and therefore an initial energy equal to E0 = −ρV ,
with ρ the energy density of the system, is needed. In four
dimensions the thermodynamics volume corresponds to V =
4
3πr3+. Moreover, the presence of the cosmological constant
defines ρ = −P and therefore the mass parameter can be
considered equivalent to

M = U − ρV = U + pV, (3)

Here M is to be recognized as the enthalpy H of the system.
With this in mind, the first law, in this extended phase space,
yields

dM = dH = T dS + V d p + φdQ + ΩdJ. (4)

This extended first law (4) also was derived in reference [12]
by using Hamiltonian formalism. It is worth to mention that
the definition of the extended phase space have allowed to
construct a heat engine in terms of a black hole, see some
examples in references [11,13–17], adding a new layer to our
understanding of the black hole thermodynamics. Another
interesting applications is the Joule Thompson expansion for
black holes studied in [18–21].

1.1 Phase transitions

The study of phase transitions in black hole physics has called
a renewed attention in the last years due to the AdS/CFT
conjecture. For instance, it is well known that the Hawking-
Page phase transition [22], in the context of the AdS/CFT
correspondence, has been re-interpreted as the plasma gluon
confinement/deconfinement phase transition in the would-
be dual (conformal) field theory. Similarly, the AdS Reissner
Nordström’s transitions in the (φ − q) diagram have been
interpreted as liquid/gas phase transitions of Van der Waals
fluids [23,24].

Recently the analysis of the p−V critical behaviors (in the
extended phase space) have been under studied extensively
[25–41]. For instance, in [42] was studied in the context of
the charged 4D AdS black holes how the phase transitions

between small/large black hole are analogous to liquid/gas
transitions in a Van der Waals fluid. Moreover, it was also
shown that the critical exponents, near the critical points,
recovers those of Van der Waals fluid with the same com-
pressibility factor Z = 3/8. In reference [12] was introduced
a new interpretation of the Hawking Page phase transition
[22] mentioned above, but in the context of p − V critical
behavior.

1.2 Higher dimensions, lovelock and thermodynamics

During the last years 50 years several branches of theoreti-
cal physics have noticed that considering higher dimensions
is plausible. Now, considering higher dimension in gravity
opens up a range of new possibilities that retain the core of
the Einstein gravity in four dimensions. Lovelock is a one
of these possibilities as, although includes higher powers of
curvature corrections, its equations of motion are of second
order and thus causality is still insured. Generic Lovelock
theory is the sum of the Euler densities Ln in lower dimen-
sions (2n ≤ d) multiplied by coupling constants αn

1. The
action is

S =
∫

dd x
√−gL , (5)

where d corresponds to the number of dimensions. The
Lagrangian is

L =
[d/2]∑
n=0

αn Ln, (6)

where Ln = 1
2n δ

μ1...μ2n
ν1...ν2n Rν1ν2

μ1μ2 · · · Rν2n−1ν2n
μ2n−1μ2n . One can notice

that n corresponds to the power of the Riemann tensor in
the Euler density. In this way, the L0 = 1 term is related by
the cosmological constant, L1 = R is related by the Ricci
scalar, L2 = Rαβ

μν Rμν
αβ−4Rα

β Rβ
α+R2 is the Gauss Bon-

net density. The higher powers in this series are increasing
cumbersome to express in terms of the Riemann and Ricci
tensors, and Ricci scalar. For instance

L3 = R3 − 12R Rμν Rμν + 16Rμν Rμ
ρ Rνρ + 3R Rμνρσ Rμνρσ

+ 24Rμν Rρσ Rμρνσ − 24Rμν Rμ
ρσκ Rνρσκ

+ 4Rμνρσ Rμνηξ Rρσ
ηξ

− 8Rμρνσ Rμ
η
ν
ξ Rρησξ

is the third-order term in the Lovelock series, see for instance
[43].

1 In even dimensions the maximum order, n = d/2, is in turn the
corresponding Euler density of the dimension and therefore does not
contribute to the equations of motion,
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The EOM are:

[d/2]∑
n=0

αnG(n)
μν = Tμν, (7)

where T μ
ν corresponds to the energy momentum tensor and

(G(n))μν = − 1

2n+1 δμν1...ν2n
νμ1...μ2n

Rμ1μ2
ν1ν2

· · · Rμ2n−1μ2n
ν2n−1ν2n , (8)

is the (n order) generalization of the Einstein tensor. This
satisfies the identity ∇μ(G(n))μν ≡ 0.

One potential drawback of a generic Lovelock gravity is
the existence of more than single ground state, namely more
than a single constant curvature spaces solution, or equiv-
alently more than a single potential effective cosmological
constants [44]. In fact, for general {αn}’s the potential effec-
tive cosmological constants can be complex numbers. How-
ever, there are two families of Lovelock gravities that have
indeed a single ground state. The first family has been orig-
inally studied in [45] and has a unique k-fold degenerated
ground state.

The second case with a single effective cosmological
constant is called Pure Lovelock gravity. In this case the
Lagrangian is a just the n-single term of Lagrangian plus
a cosmological constant, i.e., L = αn Ln + α0 L0. Now, the
interest in Pure Lovelock is due to the fact that of the all fam-
ilies of solutions of Lovelock gravity, Pure Lovelock is the
only case that has a single AdS ground state, and thus solu-
tions with a single asymptotically AdS region, by dynami-
cal reasons instead of purely kinematic. This is discussed in
more details in [46] where it is displayed that there is a sin-
gle real negative effective cosmological constant, being the
rest strictly complex numbers with non vanishing imaginary
part. Indeed, we would like to stress that the analysis of the
generic Lovelock gravity must be done carefully in the sense
that the limit of several physical quantities cannot be taken
smoothly on the real numbers. In practice, it is far simpler to
do the computations directly on Pure Lovelock theory than to
considering the general case applied to Pure Lovelock grav-
ity. Finally, the study of solutions in Pure Lovelock theory
has called the attention in recent years. For instance, studies
on vacuum black hole solutions can be found in references
[47–52], on regular black holes in references [46,53] and on
stellar distributions in references [54–56]. See other appli-
cations in references [57–60]. The action for Pure Lovelock
theory is:

∫
dd x

√−g
(
αn Ln + α0 L0

)
. (9)

The action has been written following definition of cos-
mological constant Λ in reference [52], but by a numeri-

cal factor. For pure Lovelock the gravitational term, mean-
ing Ln , has different units than the Ricci scalar (except for
n = 1 obviously) and therefore the corresponding gravita-
tional constant, roughly speaking 1/αn , must have different
units to accommodate the units of Ln .

Given that the action principle must be dimensionless, the
units of the different elements are constrained. First one can
noticed that [dd x

√−g] = �d
p and [Ln] = �−2n

p , where �p

corresponds to a unit of length such as the Planck length. This
implies that the coupling constants must satisfy [αn] = �2n−d

p
[61]. In this case the cosmological constant is defined by the
usual relation between the cosmological constant and the
gravitational constant,

α0 = −2αnΛ. (10)

In this way the cosmological constant must have units
[Λ] = �−2n

p as in reference [52]. The reason for this defini-
tion is to avoid introducing an unnecessary addition constant
parameter in the action principle. From this it is direct that
[Λ] = �−2n

p . Moreover, the cosmological constant can be
expressed as

Λ = − (d − 1)(d − 2)

2l2n
, (11)

where l2 the square of the radius of the ground state (geom-
etry) solution [60]. The equation of motion are:

(G(n))νμ + δμ
ν Λ = T μ

ν . (12)

For Pure Lovelock there is not constraints on the value of
the coupling constants αn , because these do not determine the
form of the solution (unlike, for example in n fold degener-
ated theory [45]). Thus, the value of αn can be arbitrary and,
for simplicity, we have set the coupling constants to unity as
in references [54,57]

In generic Lovelock theory the p−V criticality have been
widely studied in literature for different particular cases. See
for instance [62–66]. For instance, in [62] were computed
the equations of state for the Einstein Gauss Bonnet and the
3rd-order Lovelock case. In both cases, there may be more
than one critical point.

Due to the differences mentioned between Pure Lovelock
and generic Lovelock theories is of physical interest to study
the p − V critical behavior of the Pure Lovelock solutions.
Below will be tested if thermodynamic behavior of the solu-
tions is analogue to a (generalized) Van der Waals fluid.

In this work the thermodynamic of the Pure Lovelock solu-
tions will be carried out in the extended phase space. For this,
the cosmological constant will be promoted to the extensive
thermal pressure of the system. It will be computed new ver-
sions of the equations of state for the charged and uncharged
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cases and will be analysed the phase transitions. Finally, the
critical coefficient near the critical points will be computed.
On the other hand, by means of the variation of parameters of
the Pure Lovelock solution in the extended phase space, will
be tested if the values computed of the entropy, volume and
electric potential coincide with the values previously known
and thus, if the variation of parameters of the Pure Love-
lock black hole follows a first law of thermodynamics in the
extended phase space.

1.2.1 Vacuum black hole in pure lovelock gravity:
uncharged asymptotically AdS case

Let us consider the static spherically symmetric geometry
described by the line element

ds2 = − f (r)dt2 + dr2

f (r)
+ r2dΩ2

d−2. (13)

For the line element (13) the (t, t) and (r, r) components
of the equations of motion (12) are the same, see [49], and
are given by:

d

dr

(
rd−2n−1(1 − f (r)

)n + rd−1

l2n

)
= 0, (14)

whereas the angular equations are satisfied identically by
the solution to the component (t, t) or (r, r) of Gμν = 0.
Solutions of these equations have been studied in references
[47,49]. In terms of Eq. (13) the solution is defined by

f (r) = 1 −
(

2M

rd−2n−1 − r2n

l2n

)1/n

. (15)

The thermodynamic pressure can be read off this definition
as

p = − Λ

(d − 2)Ωd−2
, (16)

where Ωd−2 is the unitary area of a d−2 sphere. It is worth to
stress that our definition of pressure for Pure Lovelock grav-
ity, see Eqs. (11, 16), differ from the standard definitions for
generic Lovelock theories, where the pressure has the same
value independent of the power of n [62,65]. Our definition
only coincide for n = 1 with the standard definitions of
Refs. [12,42].

It must be stressed that, given that the cosmological con-
stant must be negative to have a positive pressure, see equa-
tion (16), f (r) is bound to take complex values, for ranges of
r , for even n. This forbids the existence of a proper asymp-
totic region, namely for r → ∞. Because of this, as in ref-
erence [46], in this work will be considered only the case
of odd n, neglecting even n. This, for example, removes the

pure Gauss Bonnet case (n = 2) from the discussion. Now,
replacing Eqs. (11, 16) into Eq. (15) yields

f (r) = 1 −
(

2M

rd−2n−1 − 2Ωd−2r2n

d − 1
p

)1/n

, (17)

where the dependence of f (r) on p, M have been made
explicit.

1.2.2 Charged pure Lovelock solution

The charged case is slightly difference since it is necessary
to solve the Maxwell equations and to include an energy
momentum tensor into the gravitational equations. Let us
start by defining Aμ = At (r)δt

μ, which defines only the non-
vanishing component of the Maxwell tensor

Ftr = −∂r At (r). (18)

For the charged case, the equations of motion correspond to
Gμν = T μν in conjunction with the Maxwell equations:

∇μFμν = 0. (19)

For the line element (13), the (t, t) and (r, r) components
of the gravitational equations lead to

d

d

(
rd−2n−1(1 − f (r)

)n + rd−1

l2n

)
= (Ftr )

2rd−2, (20)

where, again, the remaining angular equations are identically
satisfied. The only non vanishing component of the Maxwell
equations is given by

∇μFμν = 0 → d

dr

(
rd−2 Ftr

)
= 0. (21)

One can notice that it is straightforward to integrate
Eqs. (21, 20). This yields, see [52],

f (r) = 1 −
(

2M

rd−2n−1 − r2n

l2n
− Q2

(d − 3)r2d−2n−4

)1/n

,

(22)

and

Ftr = Q

rd−2 → At (r) = φ∞ + Q

(d − 3)rd−3 , (23)

φ∞ = 0 is fixed such that limr→∞ At (r) = 0.
Now, by direct observation, one can notice that for even

n the existence of certain ranges of r where f (r) can take
complex values. To avoid this only odd n will be considered
from now on.
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As done previously, by replacing Eqs. (11, 16) into
Eq. (22), f (r) can be written in terms of the thermodynamics
variables as

f (r) = 1 −
(

2M

rd−2n−1 − 2Ωd−2r2n

d − 1
p − Q2

(d − 3)r2d−2n−4

)1/n

.

(24)

2 Extended phase space in vacuum pure Lovelock
gravity

In this section will be found the entropy, thermodynamic
volume and electric potential, based in the variation of the
function f (r+) respect to its parameters M, p and Q in the
extended phase space. Let us start by noticing that the fist
law of the thermodynamics, Eq. (4), for the non rotating case
takes the form

dH = dM = T dS + V d p + φdQ. (25)

Now, in order to construct a thermodynamic interpreta-
tion one must notice that under any transformation of the
parameters the function f (r+, M, Q, l) must still vanishes,
otherwise the transformation would not be mapping black
holes into black holes in the space of solutions. Indeed,
δ f (r+, M, Q, l) = 0 and f (r+, M, Q, l) = 0 are to be
understood as constraints on the evolution along the space
of parameters. However, there is another approach by recall-
ing that the mass parameter, M , is also to be understood as a
function of the parameters M(r+, l, Q) as well.

Since the thermodynamic parameters are S, p and Q,
therefore it is convenient to reshape M = M(S, p, Q) in
order to explicitly obtain

dM =
(

∂ M

∂S

)
p,Q

dS +
(

∂ M

∂p

)
S,Q

d p +
(

∂ M

∂ Q

)
p,S

dQ.

(26)

This corresponds to the definitions of the component of the
tangent vector in the space of parameters, but also correspond
to the definitions of the temperature, thermodynamic volume
and electric potential in the form of

T =
(

∂ M

∂S

)
p,Q

, (27)

V =
(

∂ M

∂p

)
S,Q

and (28)

φ =
(

∂ M

∂ Q

)
S,p

. (29)

On the other hand, the variation along the space of param-
eters of the condition defined by f (r+, M, p, Q) = 0,

d f (r+, M, p, Q) = 0

= ∂ f

∂r+
dr+ + ∂ f

∂ M
dM + ∂ f

∂p
d p + ∂ f

∂ Q
dQ,

(30)

yields a second expression for dM given by

dM =
(

1

4π

∂ f

∂r+

) (
− 1

4π

∂ f

∂ M

)−1

dr+

+
(

− ∂ f

∂ M

)−1 (
∂ f

∂p

)
d p +

(
− ∂ f

∂ M

)−1 (
∂ f

∂ Q

)
dQ,

(31)

which must coincide with equation (26). In Eq. (31) one can
recognize presence of the temperature, which geometrically
is defined as

T = 1

4π

∂ f

∂r+
, (32)

which is a very known result, yielding

(
− 1

4π

∂ f

∂ M

)−1

dr+ = dS. (33)

It is worth to stress that this expression can be also derived
using the Wald’s formalism, roughly speaking δS = δ

∫
∂L
∂ R

provided d f = 0 is satified. See Eq. (30). This will become
manifest below in Eq. (38).

Now, by the same token, the thermodynamic volume and
electric potential are given by

V =
(

∂ M

∂p

)
S,Q

=
(

− ∂ f

∂ M

)−1 (
∂ f

∂p

)
(34)

and

φ =
(

∂ M

∂ Q

)
S,p

=
(

− ∂ f

∂ M

)−1 (
∂ f

∂ Q

)
, (35)

respectively. In this way, it is possible to compute the entropy,
thermodynamic volume and electric potential by mean of
the variation of the function f (r) respect to its parameters
M , p and Q. These expressions will be discussed in the
next sections to test if the values computed coincide with
the values previously known for Pure Lovelock theory in the
literature.
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2.1 New version of the Smarr expression

Considering Plank units, one can notice that p, the pressure,
has units of [p] = �−2n . See Eqs. (11, 16, 41). Likewise,
one can check that [M] = �d−2n−1, [Q] = �d−n−2 and
[S] = �d−2n .

Following Euler’s theorem [67], with M(S, p, Q), one
can construct the Smarr formula for Pure Lovelock gravity
given by

d − 2n − 1

d − 2n
M = T S + d − n − 2

d − 2n
φQ − 2n

d − 2n
V P. (36)

It must mention that due to the structure of the generic Love-
lock theories is not possible in general to write down a Smarr
formula as a function of the different powers presented in the
Lovelock Lagrangian. However, for Pure this can be done
swiftly. This expression coincides with the definitions dis-
cussed in [12,42,67] for n = 1. Derivations of the Smarr
formula for generic Lovelock theory are discussed in [68,69].

2.2 Uncharged asymptotically AdS

Replacing the solution of Eq. (17) into Eq. (33) yields

(
− 1

4π

∂ f

∂ M

)−1

dr+ = 2πnrd−2n−1+

= d

(
2

d − 2n
nπrd−2n+

)
= dS, (37)

or equivalently

S = 2

d − 2n
nπrd−2n+ , (38)

which coincides with reference [47]. Although it is not obvi-
ous, it is straightforward to check that equation (38) can be
obtained from Wald’s prescription [70] in this case. It is worth
to state that in this case the entropy differs completely from
the area law for n > 1. This in the sense that, in our case,
the entropy is not a mere correction to the area law but scales
with different power of the horizon radius or area as in the
generic Lovelock case, see reference [71]. This is due to
the Lagrangian is the (single) n-term in generic Lovelock
Lagrangian, and therefore only contains n− powers of the
Riemann tensor. Equivalently, this can be obtained by using
the expression in [72] for Lovelock gravity with the all, but
one, vanishing coefficients. Equation (34), on the other hand,
yields

(
− ∂ f

∂ M

)−1 (
∂ f

∂p

)
= V = Ωd−2

d − 1
rd−1+ , (39)

which corresponds to the volume of a (d−2) sphere of radius
r+ . This coincides with the definition in Refs. [12,42]. In
this way, it has been shown that, by means of the variation of
the function f (r) respect to its parameters M and p in Pure
Lovelock gravity, the values of entropy and thermodynamics
volume coincide with the values previously known.

2.2.1 New version of the fluid equation of state

It is worth to notice at this point that the temperature, see
Ref. [46], can be expressed as

4πnT = d − 2n − 1

r+
+ (d − 1)

r2n−1+
l2n

, (40)

where, the temperature has units of �−1. One can make
explicit the dependence on the pressure, by inserting Eqs. (11,
16) into Eq. (40). Therefore,

2Ωd−2 p = 4πn
T

r2n−1+
− d − 2n − 1

r2n+
. (41)

It is worth to mention that this state equation differs from
the previously known state equation found in the literature
for Lovelock theories. As for example, for n = 3 the Pure
cubic state equation has only two terms whereas the state
equation in 3rd-order generic Lovelock gravity has six terms
taken the uncharged case [62].

2.2.2 Physical pressure

Before to proceed a digression is necessary. As mentioned
above [p] = �−2n , however the physical pressure, pG , must
be satisfied [Force/Area]= �−d

p , since the area has units of
[area]= �d−2

p . In the literature pg is called the geometrical
pressure. Since p and pG must be connected by pG ∼ αn p,
namely [pG] = [αn p] = �−d

p , therefore

– the coupling constants must satisfy [αn] = �2n−d [61].
For n = 1 this coincides with the inverse of the higher
dimensional Newton constant G−1

d [73] and
– there is still room for a dimensionless constant which can

be used to adjust the definition.

With this in mind, pG can be taken as

pG = 2Ωd−2�
2n−d
p p = 4πn

T

�d−2n
p r2n−1+

+ · · · , (42)
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which, in turns, defines the specific volume of the system as

v = Ωd−2

2π
�d−2n

p r2n−1+ . (43)

where the magnitude of �p = 1 [74]. Notice that v indeed
has units of volume, namely [v] = �d−1

p . Finally, after some
replacements,

p = nT

v
− 1

2Ωd−2(2π/Ωd−2)2n/(2n−1)

d − 2n − 1

v2n/(2n−1)
, (44)

which can be recognized as the Van der Walls equation for
n = 1, namely P = T/(v − b) − a/v2, with b = 0 [12].

2.2.3 Hawking-page phase transition

In reference [22] was analyzed the thermodynamic behav-
ior of Schwarzschild AdS space, which differs from the
Schwarzschild case due to the presence of the AdS gravi-
tational potential, namely the presence of ∼ r2/ l2 in f (r)

[75]. In this case there is a phase transition between black
hole and AdS radiation at a critical temperature TH P where
the Gibbs free energy, G = M − T S vanishes [42,75,76].

Figure 1 displays the numerical behavior of the Gibbs free
energy v/s temperature for n = 3 and d = 10 for Pure Love-
lock. The upper curve represents the unstable small black
hole (namely with negative heat capacity) and the lower curve
represents the stable large black hole. It is direct to show that
this behavior is similar for any other set of values of n and d.
The intersection between the two curves defines a tempera-
ture Tmin, whereas the intersection between the stable large
BH curve and the horizontal axis defines a temperature TH P .

One can notice that for [Tmin, THP[ the large stable black
hole has positive Gibbs free energy, therefore, the preferred
state corresponds to the thermal AdS radiation. On the other
hand, for T > TH P , the preferred state is the large stable
black hole whose Gibbs free energy is negative. This hints
the existence of a Hawking Page phase transition between
radiation and the large black hole states at T = TH P .

Finally, it is worth to notice, from Fig. 1, that the value
of TH P increases as the pressure increases. This behavior is
similar to the HP phase transition for the Schwarzschild AdS
black holes [12,77] or the polarized AdS black holes [78].

2.3 Charged pure Lovelock solution

By replacing Eq. (24) into Eqs. (33, 34) the expressions for
the entropy (38) and the volume (39) are obtained . On the
other hand, replacing Eq. (24) into Eq. (35) yields

φ = Q

(d − 3)rd−3 . (45)

Fig. 1 HP phase transitions for n = 3, d = 10 and Q = 1, p =
0.0000045 (blue), p = 0.0000050 (red), p = 0.0000055 (green). T
(horizontal axis) v/s G (vertical axis)

The values of the entropy, thermodynamic volume and the
electric potential, obtained by means of the variation of the
function f (r) with respect to its parameters M , p and Q in
Pure Lovelock gravity, coincide with the values previously
known.

2.3.1 New version of the fluid equation of state

In this case the temperature can be written as

4πnT = d − 2n − 1

r+
+ (d − 1)

r2n−1+
l2n

− Q2

r2d−2n−3+
. (46)

By inserting equations (11,16) into equation (46) is obtained

2Ωd−2 p = 4πn
T

r2n−1+
− d − 2n − 1

r2n+
+ Q2

r2d−4+
. (47)

Now, by using the definition of the specific volume, defined
in Eq. (43) with �p = 1,

p = nT

v
− 1

2Ωd−2(2π/Ωd−2)2n/(2n−1)

d − 2n − 1

v2n/(2n−1)

+ 1

2Ωd−2(2π/Ωd−2)(2d−4)/(2n−1)

Q2

v(2d−4)/(2n−1)
.

(48)

It must be stressed that state equation found, for Pure Love-
lock theory, differs from the state equations found in liter-
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Table 1 Critical values and compressibility factor (Z )

n d vc Tc pc Z = pcvc

Tc

1 4 Ωd−2/(2π)Q
√

6 1/(18π Q)
√

6 1/(24Ωd−2 Q2) 3/8

1 5 Ωd−2/(4π)(120Q2)1/4 4/(75π)(6750/Q2)1/4 2/(45Ωd−2 Q)
√

30 5/12

1 6 Ωd−2/(6π)(6804Q2)1/6 9/(98π)(201.684/Q2)1/6 9/(112Ωd−2)(294/Q2)1/3 7/16

3 8 Ωd−2/(2π)(14Q2)5/6 3/(490π)(145/Q2)1/6 1/(280Ωd−2 Q2) 7/24

3 9 Ωd−2/(4π)(215 · 23 Q10)1/8 8/(945π)(217 · 2/Q2)1/8 4/(735Ωd−2)(21 · 23/Q6)1/4 9/28

3 10 Ωd−2/(18π)(792)1/2 Q 3/(242π)(27 · 119 · 9/Q2)1/10 9/(704Ωd−2)(726/Q6)1/5 11/32

5 12 Ωd−2/(2π)(22Q2)9/10 5/(2178π)(229/Q2)1/10 1/(792Ωd−2 Q2) 11/40

ature for other Lovelock theories. See for instance [34,64].
For example, for n = 3 the Pure cubic state equation has only
three terms whereas the state equation in 3rd-order generic
Lovelock gravity has seven terms [62].

2.3.2 Critical points and compressibility factor

To compare Eq. (48) with the behavior of a Van der Waals
fluid it is necessary to determine the critical points of the
system. The second order critical points are defined by the
conditions,

∂p

∂v
= 0 and

∂2 p

∂v2 = 0. (49)

These determine the critical values

vc = Ωd−2

2π

(
2d2 − 2dn − 7d + 4n + 6

n(d − 2n − 1)
Q2

)(2n−1)/(2d−2n−4)

,

(50)

and

Tc = n(d − 2n − 1)

2πn(2n − 1)(2π/Ωd−2)1/(2n−1)v1/(2n−1)

− (d − 2)Q2(2π/Ωd−2)(2n−2d+3)/(2n−1)v(2n−2d+3)/(2n−1)

2πn(2n − 1)

(51)

Notice that pc = p(vc, Tc) can be determined from equation
(48) by evaluation on the critical values Tc and vc. Thus, it
can be noted that the critical values of v, T and p are analytic
functions of n and d for a fixed value of Q. Indeed, there is a
single critical point (vc, Tc, pc) for a fixed value of Q, unlike
generic Lovelock theories where there may be a much larger
number. For instance, up to three critical points in Ref. [62].

In the Table 1 new critical valuesvc, Tc and pc and the com-
pressibility factor Z = pcvv/Tc are displayed for different
values of n and d. For n = 1 and d = 4 the compressibility

factor has the exact value Z = 3/8 which coincides with
the value of the compressibility for a Van der Waals fluid.
However, for n > 1 and d > 4 the expression is different
and given by

Z = 2d − 2n − 3

4(d − 2)
, (52)

It must be stressed that Z < 1 strictly, implying that in gen-
eral this can be interpreted as a real gas.

2.3.3 P − v curve

In Fig. 2 is displayed for n = 3 and d = 10 the behavior of
the curve p −v defined by equation (48). Although this is an
example still this behavior is generic for any values of n and
d.

For values of temperature T > Tc, the second and third
factors of Eq. (48) are negligible in comparison with the first
one, and therefore the curve approximates the form p ·v ∝ T
and thus mimicking the behavior of an ideal gas. Conversely,
for T < Tc as v increases the p, which diverges for v = 0,
decreases until reach a local minimum, located at v = vmin.
Next, p increases until reaching a local maximum, located at
v = vmax. Finally p decreases asymptotically until reaching
p = 0. Thus for T < Tc ( or for p < pc due that T ∝ p) the
behavior is analogue to the Van der Waals fluid.

In standard vapor-liquid theory is well established that
an increase in pressure must be correlated with a decrease
in volume and vice versa. Therefore, see Fig. 2, one can
notice the existence of a range of the specific volume, says
]vmin, vmax[, which must be considered nonphysical due to
both pressure and volume increase simultaneously. On the
other hand, it can be also noticed that for a single value of
the specific pressure, there might exist up to three possible
values of specific volume v with one of them always within
the nonphysical region. Therefore, for analysis one must only
consider the two proper solutions that satisfy either v1 < vmin

or v2 > vmax with p(v1) = p(v2). In fluid theory these two
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Fig. 2 p − v curve for T1 < T2 < T3 < Tc < T4 < T5

solutions are known as the Van der Waals loop and physically
this corresponds to a vapor liquid equilibrium, highlighting
that phase transitions take place.

2.3.4 Temperature

The behavior of the temperature is displayed in Fig. 3a for
p > pc, in Fig. 3b for p = pc and in Fig. 3c for p <

pc . Although for these figures n = 3 and d = 10 it is
straightforward to show that this enfolds the generic behavior
for any n and d. One can notice the presence of an extreme
black hole case for small r+ where the temperature vanishes.
For p > pc the temperature is an increasing function of
r+. For p = pc the temperature has one inflexion point at
r+ = rin f l . More relevant for this discussion is the case for
p < pc, where the fluid is analogous to the Van der Waals,
and where the temperature has a local minimum and a local
maximum at r+ = rmin and r+ = rmax, respectively.

2.3.5 Heat capacity

The heat capacity is displayed in Fig. 4a for p > pc, in
Fig. 4b for p = pc and in Fig. 5 for p < pc. As previously,
although n = 3 and d = 10 it is straightforward to show that
Fig. 4 enfold the generic behavior for any n and d. One can
notice that

• For p > pc the heat capacity is a positive increase func-
tion of r+, and there is no phase transition, thus black
hole is always stable.

• For p = pc small and large black hole coexist at the
inflexion point r+ = rin f l , where the heat capacity C →
∞.

(a) Temperature for p = 1 > pc .

(b) Temperature for p = pc ≈ 0, 001608

(c) Temperature for p = 0, 00001 < pc

Fig. 3 Temperature behavior for n = 3 and d = 10 with Q = 1
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(a) Heat capacity for p = 1 > pc.

(b) Heat capacity for p = pc ≈ 0, 001608

Fig. 4 Behavior of heat capacity for n = 3 and d = 10 with Q = 1

• For the p < pc case, the derivative (dT/dr+) can
vanish for two values of r+ = rmin and r+ = rmax,
as observed in the Fig. 3c. This implies, due to C =
(dS/dr+)/(dT/dr+)|p,Q , that the heat capacity becomes
ill-defined at those values of r+. In this way rmin and rmax

define three regions. For r+ < rmax one can notice that
C > 0 defining a small stable black hole. Next, there is
small unstable (C < 0) region for r ∈]rmax, rmin[. Finally
there is a third region r+ > rmin where the system is a
large stable black hole (C > 0). This hints the existence
of phase transitions but, by means of the following anal-
ysis of the Gibbs free energy, one can check that only the
small stable bh/large stable bh transition is allowed.

(a) Heat capacity for r+ ∈ (0.896, 1.6).

(b) Heat capacity for r+ ∈ (2.7, 3.5)

Fig. 5 Behavior of heat capacity for n = 3 and d = 10 with Q = 1,
p = 0, 00001 < pc

2.3.6 Gibbs free energy

The Gibbs free energy, defined as G = M − T S [12,74–76],
is displayed for n = 3 and d = 10 in Fig. 6a for p > pc,
in Fig. 6b for p = pc and in 7 for p < pc. It is direct
to check that this behavior is similar for other values of n
and d. As well known [25] the Gibbs free energy describes
the global stability of the system. It is worth to recall that
the global minimum represents the most likely state, while
the preferred state at fixed temperature corresponds to the
minimal value of the Gibbs free energy.

– For pressure larger than the critical pressure, the Gibbs
free energy is a single valued function.
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(a) Gibbs for p = 1 > pc .

(b) Gibbs for p = pc ≈ 0, 001608

Fig. 6 Gibbs free energy (vertical axis) v/s T (horizontal axis) for
n = 3 and d = 10 with Q = 1

– For p = pc there is a cusp at T = Tc, which coincides
with the radius r+ = rin f l , thus, since at this point C =
T dS/dT = −T (∂2G/∂T 2) → ∞, the discontinuity
on the second derivative of Gibbs function implies the
presence of second order phase transition between small
stable/large stable black holes.

Fig. 7 Gibbs for p = 0.00001 < pc

– The behavior of the Gibbs free energy for p < pc is dis-
played in Fig. 7. We see three possibles black hole states:
small stable, small unstable and large stable. The intersec-
tion between the stable small and the stable large curves
defines a temperature T0 and the intersection between the
unstable small and the stable small curves defines a tem-
perature Tmax. The preferred state is such that the Gibbs
free energy has the minimum value. Thus, for ]T0, Tmax]
the preferred state correspond to stable large black hole.
However, for T < T0 the preferred state corresponds to
the small stable black hole. Thus, at T = T0 there is a first
order phase transition between large/small stable black
hole.

2.3.7 Behavior near critical points

Let’s define the following dimensionless variables

ω =
(

V

Vc

)2n−1

− 1 =
(

v

vc

)d−1

− 1 (53)

and

t = T

Tc
− 1, (54)

to analyze the behavior nearby the critical points. It is direct
to check that near the critical points, i.e. V → Vc (or v → vc)
and T → Tc, the variables ω → 0, and t → 0, respectively.
The pressure in Eq. (48) is displayed in Table 2 at O(tω2, ω4).
The truncation will be justified below .

In general it is possible to approximate the pressure as

p ≈ 1 + n

Z
t − nt

(d − 1)Z
ω − (2d − 2n − 3)n

6Z(d − 1)3(2n − 1)2 ω3.

(55)
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Table 2 Behavior of pressure
near critical points

n d p

1 4 p ≈ 1 + 8/3t − 8/9tω − 4/81ω3

1 5 p ≈ 1 + 12/5t − 3/5tω − 1/32ω3

1 6 p ≈ 1 + 16/7t − 16/35tω − 8/375ω3

3 8 p ≈ 1 + 72/7t − 72/49tω − 12/8575ω3

3 9 p ≈ 1 + 28/3t − 7/6tω − 7/6400ω3

3 10 p ≈ 1 + 96/11t − 32/33tω − 16/18225ω3

5 12 p ≈ 1 + 200/11t − 200/121tω − 100/323433ω3

It must be noticed that the behavior of the equation of state
near the critical points is a analytic function of n, d and Z .
On the other hand,

dP = − Pcn

Z(d − 1)

(
t + (2d − 2n − 3)

2(d − 1)2(2n − 1)2 ω2
)

dω. (56)

To compute the critical exponents one can follow [42].

– The α exponent describes the behavior of the heat capac-
ity at constant volume defined as

Cv = T
∂S

∂T
∝ |t |−α. (57)

In the case at hand, since entropy and volume are both
functions of horizon radius, see Eqs. (38, 39), then a con-
stant volume implies a constant entropy as well. There-
fore it is satisfied that Cv = 0 which implies that there is
no dependence on |t |. In turn this implies that

α = 0. (58)

– The exponent β describes the behavior of the order
parameter defined as

η = Vl − Vs ∝ |t |β. (59)

To compute this order parameter one can use the
Maxwell’s area law
∮

V dP = 0, (60)

where, the volume (53) is approximated such that V dP
is truncated to O(tω3, ω5), in other words,

V ≈ Vc

(
1 + 1

2n − 1
ω

)
. (61)

Therefore, closed integral (60) becomes

Vc

∮
dP + Vc

2n − 1

∮
ωdP = 0. (62)

The second integral of the left side of (62) yields

∫ ωs

ωl

ωdP =
∫ ωs

ωl

ω

(
t + (2d − 2n − 3)

2(d − 1)2(2n − 1)2 ω2
)

dω = 0.

(63)

which has the non trivial solution given by

ωs = −ωl . (64)

On the other hand, the first integral of the left side of (62)
yields

∫ ωs

ωl

dP = 0

1 + n

Z
t − nt

(d − 1)Z
ωl − (2d − 2n − 3)n

6Z(d − 1)3(2n − 1)2 ω3
l

= 1 + n

Z
t − nt

(d − 1)Z
ωs − (2d − 2n − 3)n

6Z(d − 1)3(2n − 1)2 ω3
s ,

(65)

This, by condition (64), yields

ωl = (d − 1)(2n − 1)

√
− 6

2d − 2n − 3
t, (66)

with t < 0. Replacing Eqs. (61) and (66) into Eq. (59)
one can obtain

η = 2Vc

2n − 1
ωl = 2(d − 1)Vc

√
− 6

2d − 2n − 3
t, (67)

Comparing this result with Eq. (59) one can uncover that

β = 1

2
. (68)

– Now one can compute the exponent γ which describes the
behavior under isothermal compressibility, κT , defined
by
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κT = − 1

V

∂V

∂ P

∣∣∣∣
T

∝ |t |−γ . (69)

By using Eqs. (55, 61) one can prove that

∂ P

∂V
= Pc

∂p

∂ω

∂ω

∂V
∝ −(2n − 1)

Pc

Vc

n

(d − 1)Z
t, (70)

and therefore

κT ∝ (d − 1)Z

Pcn(2n − 1)t
, (71)

from which is direct to read that

γ = 1. (72)

– Finally, one can compute exponent δ which describes the
behavior on the critical isotherm T = Tc, and therefore
for t = 0. In this case this is defined by

|P − Pc| ∝ |V − Vc|δ. (73)

From Eq. (55), at t = 0, it is possible to notice that

p − 1 ≈ − (2d − 2n − 3)n

6Z(d − 1)3(2n − 1)2 ω3. (74)

Using the approximation of Eq. (61) one can show that

P − Pc

Pc
≈ − (2d − 2n − 3)n

6Z(d − 1)3(2n − 1)2

(
(2n − 1)

V − Vc

Vc

)3

,

(75)

and therefore

δ = 3. (76)

This critical exponents just computed are similar to those
of Van der Waals gas. Although the presence of extra dimen-
sions and the value of n modify the value of the compress-
ibility factor respect to the well known value Z = 3/8, they
do not affect the value of the critical exponents, and thus, the
behavior is still similar to that of Van der Waals fluid near
the critical exponents.

3 Conclusion and discussion

In this article it has been analyzed the thermodynamics of
the Pure Lovelock solutions in d dimensions, in an extended
phase space including the introduction of pressure and vol-
ume as dual thermodynamic variables and the mass parame-
ter standing for the enthalphy of the system. A linear relation

between the cosmological constant and the thermodynam-
ics pressure, valid for all value of n (odd) and d, has been
established.

The first law of thermodynamics, in the extended phase
space for Pure Lovelock gravity, is constructed through the
variation of the (lapse) function f (r+) = 0 with respect to its
parameters M , p and Q. The entropy deduced coincides with
the value computed a la Wald [46,47]. The electric potential
matches the usual known definition and the volume corre-
sponds to a geometric volume of a (d − 2) sphere of radius
r+.

It is shown that the thermodynamics behavior of the Pure
Lovelock black holes (in the extended phase space) can be
represented by variables that are analytic functions of n and
d. Similarly, a new version of the Smarr formula that corre-
sponds to a function of n is provided. For the charged case,
it was found that the compressibility factor, Z , is a generic
function of d and n given by Eq. (52), thus, the new values
computed differ from the Van der Waals value Z = 3/8 for
n > 1 and d > 4. It is shown that Z < 1 strictly and therefore
the behavior always corresponds to a real gas. This is novel
result to our knowledge. On the other hand, the state equa-
tion and its behavior near the critical points are also generic
functions of n, d and Z , where for all the cases the critical
exponent are similar to those of the Van der Waals fluid.

In reference [34] is conjectured that in generic Lovelock
theories there might be n-tuple critical points. In reference
[64] was showed that in third order Lovelock black holes
there are two critical points in dimensions d = 8, 9, 10, 11.
In [62] was shown that there are up to three critical points
in Gauss-Bonnet and 3rd-order Lovelock gravities. For Pure
Lovelock the critical values of v, p and T are also functions
of n and d for Q to be determined by Eqs. (50, 51). How-
ever, unlike the generic case, there is a unique critical point
(vc, Tc, pc) for a fixed value of Q. Moreover, for Pure Love-
lock gravity the p−V critical behavior is similar for all d and
n odd. This differs from the result for generic theories where
the number of critical point depends on the value of d and
the coupling constants of the different powers of Riemann
tensor presented in the Lovelock Lagrangian.

New versions of the state equation for charged and
uncharged Pure Lovelock gravity were computed as generic
functions of n. These differ from the state equation for the
generic case. As for example, for n = 3 the Pure cubic
state equation has only two (three) terms in the uncharged
(charged) case, whereas the state equation in 3rd-order
generic Lovelock gravity has six (seven for the charged case)
terms [62].

It has been shown that for the uncharged case, the state
equation leads to a Hawking-Page-Like phase transitions
between thermal radiation and large stable black hole. On
the other hand, the thermodynamics behavior of the charged
case is also analogous to the Van der Waals fluid as in generic
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Lovelock theories despite their different ground state struc-
ture. It was found the existence of a critical temperature, Tc,
where phase transitions occur. The mapping of the p − v

curves indicates that for Pure Lovelock gravity the behavior
is similar to an ideal gas for T > Tc. For T < Tc the behav-
ior is analogous to a Van der Walls fluid. Furthermore, there
are a first order phase transition between small stable/large
stable black hole, which are analogous to liquid/gas phase
transitions.
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