
EDUCATION

Jupyter and Galaxy: Easing entry barriers into

complex data analyses for biomedical

researchers

Björn A. Grüning1,2*, Eric Rasche3, Boris Rebolledo-Jaramillo4, Carl Eberhard5,

Torsten Houwaart1, John Chilton6, Nate Coraor6, Rolf Backofen1,2, James Taylor5*,

Anton Nekrutenko6*

1 Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University, Freiburg, Freiburg,

Germany, 2 Center for Biological Systems Analysis (ZBSA), University of Freiburg, Freiburg, Germany,

3 Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States

of America, 4 Centro de Genética y Genómica, Universidad del Desarrollo, Santiago, Chile, 5 Department of

Biology, Johns Hopkins University, Baltimore, Maryland, United States of America, 6 Department of

Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania,

United States of America

* bjoern.gruening@gmail.com (BAG); james@taylorlab.org (JT); anton@nekrut.org (AN)

Abstract

What does it take to convert a heap of sequencing data into a publishable result? First, com-

mon tools are employed to reduce primary data (sequencing reads) to a form suitable for fur-

ther analyses (i.e., the list of variable sites). The subsequent exploratory stage is much

more ad hoc and requires the development of custom scripts and pipelines, making it prob-

lematic for biomedical researchers. Here, we describe a hybrid platform combining common

analysis pathways with the ability to explore data interactively. It aims to fully encompass

and simplify the "raw data-to-publication" pathway and make it reproducible.

Author summary

Galaxy users can utilize a large number of tools and workflows. What they could not pre-

viously do is run ad hoc scripts and arbitrary tools within their Galaxy instance. This was

very limiting, as initial analyses of data often involve interactive exploration with tools like

Jupyter or RStudio—powerful platforms that are becoming increasingly popular in life sci-

ences. Here, we showcase Galaxy Interactive Environment framework, designed to com-

bine Galaxy’s tools and workflows with environments such as Jupyter.

Introduction

Trees, rivers, and the analysis of next generation sequencing (NGS) data are examples of

branching systems so ubiquitous in nature [1]. Indeed, numerous types of NGS applications

(i.e., variation detection, analyses of DNA/Protein interactions [ChIP-seq] or transcriptome

[RNA-seq]) share the same initial processing steps (quality control, read manipulation and

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005425 May 25, 2017 1 / 10

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Grüning BA, Rasche E, Rebolledo-

Jaramillo B, Eberhard C, Houwaart T, Chilton J, et

al. (2017) Jupyter and Galaxy: Easing entry barriers

into complex data analyses for biomedical

researchers. PLoS Comput Biol 13(5): e1005425.

https://doi.org/10.1371/journal.pcbi.1005425

Editor: Francis Ouellette, Ontario Institute for

Cancer Research, CANADA

Published: May 25, 2017

Copyright: © 2017 Grüning et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: This project was supported by NIH/

NHGRI Grant U41 HG005542 (JT and AN), a

German Federal Ministry of Education and

Research grant 031A538A de.NBI (RB), and

Collaborative Research Centre 992 Medical

Epigenetics grant SFB 992/1 2012 (RB). Additional

funding was provided by Huck Institutes for the

Life Sciences at Penn State and, in part, under a

grant with the Pennsylvania Department of Health

using Tobacco Settlement Funds. The Department

specifically disclaims responsibility for any

analyses, interpretations or conclusions. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

https://doi.org/10.1371/journal.pcbi.1005425
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005425&domain=pdf&date_stamp=2017-05-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005425&domain=pdf&date_stamp=2017-05-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005425&domain=pdf&date_stamp=2017-05-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005425&domain=pdf&date_stamp=2017-05-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005425&domain=pdf&date_stamp=2017-05-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005425&domain=pdf&date_stamp=2017-05-25
https://doi.org/10.1371/journal.pcbi.1005425
http://creativecommons.org/licenses/by/4.0/


filtering, mapping, post-mapping thresholding, etc.), making up the trunk and main branches

of this tree. Each of these main branches subsequently gives off smaller offshoots (variant call-

ing, RNA-seq, ChIP-seq, and other "seqs") that, in turn, split further as analyses become

focused towards the specific goals of an experiment. As we traverse the tree, the set of estab-

lished analysis tools becomes increasingly sparse, and it is up to an individual researcher to

come up with statistical and visualization approaches necessary to reach the leaves (or fruits)

that represent conclusive, publishable results. Consider transcriptome analysis as an example.

Initial steps of RNA-seq analysis (in our tree analogy, these are trunk and main branches),

such as quality control, read mapping, and transcript assembly and quantification are reason-

ably well established. Yet completion of these steps does not produce a publishable result.

Instead, there is still the need for additional analyses (progressively smaller branches of our

tree), ranging from simple format conversion to statistical tests and visualizations. Thus, every

NGS analysis can, in principle, be divided into two stages. The first stage involves processing

of raw data using a small set of common, generic tools. This stage can be scripted and auto-

mated and also lends itself to building graphical user interfaces (GUIs). The second stage

involves a much greater variety of tools that need to be customized for every given experiment

(in many cases, there are no tools at all, and custom scripts need to be developed). As a result,

it is not readily coerced into a handful of automated routines or generic GUIs.

The main motivation for this work was the development of a system wherein biomedical

researchers can perform both stages of data analysis: initial steps using established tools and

exploratory and data interpretation steps with ad hoc approaches. Merging both steps into a

unifying platform will lower entry barriers for individuals interested in data analysis, signifi-

cantly improve reproducibility of published results, ease collaborations, and enable straightfor-

ward dissemination of best analysis practices.

Materials and methods

Jupyter integration into Galaxy takes advantage of the recently developed and increasingly

popular Docker containerization platform (https://www.docker.com). It uses the Interactive

Environment (IE) plug-in functionality written for Galaxy that also allows integration of other

similar tools such as RStudio. It consists of an Interactive Environment Entry Point (IEEP)

and an associated configuration file. The IE configuration allows administrators to set it so

that all data transfer is done via Secure Socket Layer (SSL), which is useful for production

instances. Additionally, individual sites can specify custom Docker images instead of the

default provided Jupyter notebook, allowing administrators to craft Docker images more spe-

cific to their users. The default image will be downloaded and installed from Docker Hub or

quay.io—popular Docker image hosting services. The default Docker image is specifically

crafted for use in conjunction with the Jupyter Interactive Environment (see below).

The IEEP launches a Docker container on a random port for communication and config-

ures it to access Galaxy through environment variables passed to the container. This container,

by the very nature of Docker itself, is isolated from the filesystem and processes on the Galaxy

server. In addition, administrators can configure Docker containers to run on remote comput-

ing resources using Docker’s built-in client/server architecture. Doing so also provides an ad-

ditional layer of security by fully resource-separating the IE container from the Galaxy server.

For greater scalability, Docker Swarm, the distributed Docker container engine provided with

the Docker software, is supported. The host and port on which the container is running are

stored in a database on the Galaxy server so that Galaxy and the Dockerized Jupyter web ser-

vice can communicate securely while isolated from the rest of the Galaxy instance for security

reasons.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005425 May 25, 2017 2 / 10

Competing interests: The authors have declared

that no competing interests exist.

https://www.docker.com/
https://doi.org/10.1371/journal.pcbi.1005425


The container is built on top of the official “jupyter/minimal-notebook” image (which is

maintained by Project Jupyter) and provides a Jupyter server, along with its dependencies,

such as NumPy [2], SciPy [3], and Matplotlib [4]. Additionally, the image contains several

Jupyter kernels (different programming language environments), such as R, Ruby, Haskell,

Julia, and Octave. By utilizing a Docker image with a full suite of scientific analysis tools and

libraries, users are able to immediately perform their analysis and calculations. In the Python

kernel, additional packages can be installed with the python package manager called “pip.”

The same is true for the other kernels and their associated package managers. Moreover, tools

that can be installed and run in a nonprivileged user account can be added to the container on

demand. Once the container has launched on the backend, it is embedded inside the Galaxy

interface, at which point it can be used to interactively program, develop, and analyze data in

any of the aforementioned programming languages. Each invocation of the IE by a Galaxy

user results in the launch of a new Docker container, meaning that users are isolated from

each other. If the page with the Interactive Environment is closed by the user, Galaxy instructs

Docker to terminate the process. Additionally, during Docker container startup, a service is

launched that monitors whether the IE is still being used by checking the network traffic so

that it can automatically terminate itself when the IE is no longer in use.

Within the Jupyter notebook, two important custom functions are defined that enable the

user to load data from the history or store data to the Galaxy history using the Galaxy API [5].

The “get” function expects one parameter: the numerical identifier of the dataset as shown in

the history. The retrieved dataset is stored as a file inside the container, which can be accessed

via the usual means for the language kernel in use (e.g., the “open” function). The “put” func-

tion automatically builds a connection to the host Galaxy instance and transfers a specified file

from inside the Docker container to the user’s history. Thus, any dataset the user has access to

in Galaxy can be loaded into the notebook, datasets can be combined or modified program-

matically, and the results can be written back to the history. The entirety of Galaxy–IE commu-

nication occurs between the Galaxy host and the Docker container, without the need for the

user to upload or download data to their personal workstation. This is not only faster in most

cases, but it also has positive implications on data security, as the data did not leave the com-

pute center.

In addition to the SSL-secured dataset transfer already mentioned, all of Docker’s security

and resource control features are available to the administrator. These include CPU and mem-

ory limits and SSL-secured client/server communication. Additionally, every container can be

password protected if desired—a password is randomly generated and presented to the user

during startup of the container in his/her web browser. Notebooks can be saved to the Galaxy

history at any time; once in Galaxy’s history, they can be inspected like any other Galaxy data-

set, allowing for a read-only view of the analysis steps that we run. Additionally, notebooks can

be reused. A new Jupyter instance is created that retains the stored work. This functionality

ensures the reproducibility of data analysis and is therefore an essential feature of the Jupyter

Interactive Environment.

Results/Discussion

To avoid "reinventing the wheel" in designing our platform, we first evaluated existing systems

that can be leveraged to fulfill our goals. For the first stage of the analysis, we needed a system

that exposes existing common tools through a unifying interface and makes computational

infrastructure needed to perform large-scale analyses transparent to the user. There are several

systems potentially satisfying these requirements, including Genepattern [6], Mobyle [7],

CyVerse [8], Galaxy [9], and GenomeSpace [10]. These systems allows users to utilize a large

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005425 May 25, 2017 3 / 10

https://doi.org/10.1371/journal.pcbi.1005425


number of tools and workflows, as well as record provenance, ensuring reproducibility of anal-

yses. However, these systems are only as useful as their set of featured tools and do not aid in

ad hoc data exploration.

The number of available choices for the second stage of the analysis (ad hoc exploration) is

enormous. One can simply use scripting languages, relational databases, spreadsheet applica-

tions, or commercial packages to conduct data interpretation. One important feature we

sought is the ability for a system to record analysis steps in order to make the final outcome

reproducible. In this regard, two well-established open environments designed specifically for

reproducible data exploration stood out as de facto standards in scientific computing: IPy-

thon/Jupyter [11] and RStudio [12].

In the end, we proceeded with Galaxy (due to its considerable user base [http://bit.ly/

gxyStats]) as the underlying platform for management of data, tools, and infrastructure and

Jupyter as an initial data exploration plug-in (at the time of writing, RStudio has also been inte-

grated and is being tested). Galaxy is a web-based analysis environment that exposes tools using

GUI, allows combining them into workflows, and is supported by software and hardware infra-

structure suitable for analysis of very large multisample datasets. The benefit of Galaxy is that

anyone with a web browser can perform analyses in a straightforward manner without being

concerned with how or where the underlying software is executed. In addition, Galaxy is used in

other scientific domains distinct from life sciences (e.g., [13]), and thus, the approach described

here will benefit other disciplines as well. Jupyter (formerly known as IPython) is an interactive

programming environment allowing reproducible data analysis with over 60 programming lan-

guages (such as Python, Julia, R, and others). It is built around the concept of Jupyter notebook

—a web application allowing the combining of executable programming language code with

visualization and explanatory annotations into a single "live" document. The advantage of Jupy-

ter is that there is essentially no limit on what one can do, as supported languages and underly-

ing libraries enable the full spectrum of data analyses. However, to be useful, Jupyter requires

programming and data management skills, as well as access to computational infrastructure.

Table 1 contrasts the pros and cons of the two platforms (Galaxy and Jupyter) and shows that

their combination provides an almost perfect analysis solution for biomedical domain.

How can these two very dissimilar applications, Galaxy and Jupyter, work together in prac-

tice? In Galaxy, datasets corresponding to each step of analysis are recorded in the history as

"history items" (right panes of the interface in Fig 1). Once an analysis reaches the point at

which there are no tools available for the next step, it is time to switch to Jupyter. This is done

by clicking a button adjacent to the dataset, which will start an isolated instance of Jupyter (or

other so-called Interactive Environments, such as RStudio) directly within the Galaxy inter-

face. This instance interacts with Galaxy’s Application Programming Interface (API) using

custom methods for transferring data back and forth from Galaxy’s history. Jupyter’s "note-

books" allow ad hoc analyses to be recorded automatically, providing the utmost level of repro-

ducibility during data exploration. After performing analyses, the user can save the notebook

Table 1. Congruence between Galaxy and Jupyter as a function of their pros and cons.

Feature Galaxy Jupyter Galaxy/Jupyter

Low barrier of entry for a naive user * *

Versatility of available tools * *

Provenance tracking * * *

Hardware backend for processing of large datasets * *

Attractive to experimentalists * *

Attractive to bioinformaticians and data scientists * *

https://doi.org/10.1371/journal.pcbi.1005425.t001

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005425 May 25, 2017 4 / 10

http://bit.ly/gxyStats
http://bit.ly/gxyStats
https://doi.org/10.1371/journal.pcbi.1005425.t001
https://doi.org/10.1371/journal.pcbi.1005425


as a Galaxy history item that can be downloaded and used as a template for a new tool. It can

be re-run with changed parameters on different datasets, and like any other history item, it can

be shared with other Galaxy users. Additionally, in the future, it will be possible to export the

code, aiding in rapid development of Galaxy tools. It can also be converted into a PDF, docu-

menting details of the analyses. Here, we used this functionality to generate S1, S2 and S3 Files,

corresponding to the three examples described below.

To demonstrate the utility of Galaxy/Jupyter integration, we devised three examples. In all

three cases, we break down the analysis in parts 1 (Galaxy) and 2 (Jupyter). For each example,

part 1 involves processing and mapping of the sequenced reads. In the first example, we use a

simple combination of command line tools and Python scripting language to plot read cover-

age across the HIV genome. In the second example, we leverage Python and R to normalize

read counts and shrink variance in an RNA-seq experiment. Finally, in the most complex

example, we perform data processing and replicate main summary figures from our previous

study [14]. This third example demonstrates the capabilities of Galaxy and Jupyter to process

large, multisample datasets. In this example, Galaxy’s power is leveraged for mapping and pro-

cessing of hundreds of datasets, and Jupyter is used for the final interpretation and replication

of published figures. These examples can be viewed in S1–S3 Files, or they can be interacted

with in a live Galaxy/Jupyter instance by using the links indicated below (see S1 Fig for an

explanation of how to use these links).

Example 1: Building a genome coverage plot

HIV-1 was resequenced from the blood of a single individual across three time points with the

ultimate goal of tracking nucleotide substitutions of the viral genome through time (simulated

reads were generated for this example). After assessing the quality of the reads and mapping

against the HIV-1 genome with bwa [15] within Galaxy, we wanted to visualize read coverage

across each sample to decide if further analyses are warranted. However, the main public Gal-

axy server did not have a dedicated tool for this purpose. Normally, the analysis will stop at

this point, and only by downloading data and analyzing them offline can one produce the cov-

erage distribution graph needed in this case. Integration of Jupyter to Galaxy changes this. Fig

1 highlights each step of this analysis, resulting in the coverage distribution graph. The entire

analysis can be seen in the Galaxy history, accessible at http://bit.ly/ie-hiv (see S1 File).

Example 2: Normalizing read counts for an RNA-seq experiment

In this example, we use a subset of RNA-seq data from a dataset published by Schurch et al.

[16] (SRA accession ERP004763) consisting of 48 replicates of two Saccharomyces cerevisiae
populations: wildtype and snf2 knock-out mutants. For simplicity, we selected only two repli-

cates for each wildtype and snf2 knock-outs. Here, we first use Galaxy’s existing RNA-seq tools

to map reads against the yeast genome using HiSat [17] and to compute the number of reads

per gene region using HTseq-count [18] (Fig 1B; see Galaxy history at http://bit.ly/rnaseq-

jupyter and S1 Fig). Datasets are then imported into Jupyter’s environment (cells 4–9; see S2

File), where we first merge datasets into a single table by joining them on gene names using

Python’s Pandas library (cells 10–12). We then proceeded to normalize the counts with

DESeq2 [19] (cells 13–30) and assessed the effects of normalization and variance shrinkage on

the data (cells 31–35; also see center pane of Fig 1B).

Example 3. Estimating mitochondrial bottleneck in humans

In the third example, we replicate the key analyses reported in a study of human mitochondrial

heteroplasmy transmission dynamics, previously published by our group [14]. The goal of this

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005425 May 25, 2017 5 / 10

http://bit.ly/ie-hiv
http://bit.ly/rnaseq-jupyter
http://bit.ly/rnaseq-jupyter
https://doi.org/10.1371/journal.pcbi.1005425


Fig 1. Overview of steps involved in performing analyses outlined in Examples 1 and 2. A. Example 1.

Right (green) side of Galaxy interface is the history pane. The analysis begins with uploading three Illumina

datasets (datasets 1–3) and a reference genome sequence (dataset 4). Datasets are mapped to the

reference genome with bwa-mem (datasets 5–7) and read groups are assigned (datasets 8–10). This allows

resulting BAM datasets to be merged into a single BAM file (dataset 11). At this point, the Jupyter IE is

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005425 May 25, 2017 6 / 10

https://doi.org/10.1371/journal.pcbi.1005425


study was to detect heteroplasmies (variants within mitochondrial DNA) and to trace their fre-

quency changes across mother–child transmission events using primary sequencing data gen-

erated by [14] (mitochondria is transmitted maternally, and heteroplasmy frequencies may

change dramatically and unpredictably during the transmission due to a germ-line bottleneck

[20]). The first part of the analysis is performed using Galaxy’s mapping and variant calling

workflow outlined in Fig 2A. The goal of this part is to generate a preliminary list of sequence

variants. The input data consist of over 118 GB of sequencing reads corresponding to 312 fastq

datasets (SRA accession SRP047378) derived from 156 samples (39 mothers and 39 children,

with two tissues analyzed per individual, each tissue generating two fastq datasets for the for-

ward and reverse read sets, together resulted in the 312 original datasets; Fig 2B, dataset 313).

Using Galaxy, we combine all 312 datasets into a single entity, a dataset collection, in order to

avoid repetitive tasks (see Galaxy history at http://bit.ly/jupyter-mt, S1 Fig and Fig 2B). The

workflow maps the reads and performs de-duplication and extensive filtering of resulting

BAM datasets, as well as identifies variable sites. The workflow reduces sequencing reads to a

160 MB data matrix with over 2.6 million rows containing variants for all 156 samples. Despite

the fact that we have reduced the primary sequence data to a set of variable sites, this dataset

hardly resembles an interpretable result. At this point, exploratory analyses must begin. Unfor-

tunately, it is also the point at which users are forced to leave Galaxy, confounding efforts for

reproducibility of the analysis. With Galaxy/Jupyter integration, this deficiency can be avoided.

The second part of the analysis begins with starting a Jupyter notebook from inside the Galaxy

interface. It proceeds through numerous custom data processing steps and statistical analyses

outlined in S3 File. Two main conclusions of this analysis are the positive correlation between

the age of the mother and the number of heteroplasmic sites, which has potential implications

for the higher rate in mitochondrial DNA (mtDNA) diseases in children born to older mothers

(Fig 2C), and the very small size of mitochondrial bottleneck (Fig 2D) at only approximately

40 segregating units.

The above three examples highlight the power of combining ad hoc programmatic analyses

with a collection of robust tools already provided by Galaxy. In our opinion, this has the poten-

tial to streamline the ways in which biomedical data analysis is performed. In particular, we

see the following implications:

Lowering entry barriers. At this point, it is widely acknowledged that every biomedical

researcher should be able to at least try performing basic data manipulation and analysis tasks.

In practice, they are often discouraged from doing this by lack of familiarity with systems such

as Jupyter or RStudio and may not know how to configure them for initial use. Integration of

Jupyter into Galaxy gives these users a risk-free opportunity to try and learn basic exploratory

skills without the need to install or maintain anything.

Allowing reuse and experimentation. Jupyter notebooks are designed to be shareable,

just like Galaxy’s workflows, histories, and datasets. This significantly simplifies reuse: one

may, for instance, simply import the notebook we developed in Example 3 and apply it to their

own data. This also aids in experimentation: what would happen if, in the analysis described

by [14], we were to use a different mapper and/or variant caller? It is easy to answer this

launched. Lower part of the notebook is visible in the center pane, showing the read coverage distribution for

the three isolates (three different colors). B. A similar screenshot for Example 2. Here, Illumina reads for two

RNA-seq replicates from wildtype and snf2 knock-out are mapped against the Drosophila melanogaster

genome (dm3) using HiSat split mapper. Next, HTSeq-count takes BAM datasets generated by HiSat and,

using gene annotation for dm3 genome downloaded from the UCSC Table Browser (history dataset 9),

computes per-gene read counts. These counts are then imported to Jupyter (center pane) to perform

normalization and variance shrinkage calculations using Bioconductor’s DESeq2 package.

https://doi.org/10.1371/journal.pcbi.1005425.g001

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005425 May 25, 2017 7 / 10

http://bit.ly/jupyter-mt
https://doi.org/10.1371/journal.pcbi.1005425.g001
https://doi.org/10.1371/journal.pcbi.1005425


Fig 2. Reanalysis of data from [14] using Galaxy and Jupyter. A. Workflow used in the analysis. As an

input, the workflow takes a collection of paired Illumina datasets and outputs an unfiltered list of variable sites.

B. Galaxy history showing all steps of these analyses. It only contains 12 steps because we use dataset

collections to combine multiple similar datasets into a small number of history entries. This significantly

simplifies processing. For example, collection 313 contains all 312 paired-end Illumina datasets generated for

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005425 May 25, 2017 8 / 10

https://doi.org/10.1371/journal.pcbi.1005425


question by applying the existing notebook to a set of variant calls produced with an alternative

workflow.

Increasing collaborative possibilities. Galaxy is popular with biologists due to the ability

to run complex analyses without the need to use the command line interface (CLI). However,

this is also the reason why many computational scientists are skeptical and often avoid the plat-

form: they feel constrained without the ability to have full control over tool execution and work-

flow construction. Integration of Jupyter will bring the two communities closer: computational

scientists and bioinformaticians will be able to develop analyses using interactive environments

in the form of notebooks, which will immediately be usable by biomedical researchers.

One potential argument against environments such as Jupyter (particularity in the context

of life sciences, in which a majority of users are new to data analysis) is the need for an initial

set of programming/scripting skills. This is true: such a need unavoidably exists. However, our

approach is allowing users to alternate between the comfort of Galaxy’s interface and the versa-

tility of Jupyter. We believe that this gives users the opportunity to experiment with simple

programming tasks to gain skills and confidence to explore further. As such, our system (and

its subsequent evolution) is the first step in making more and more researchers within the life

sciences familiar with scientific computing principles.

Supporting information

S1 Fig. Importing Galaxy’s history and starting Jupyter notebook. Go through steps

highlighted in this figure to start Jupyter notebooks described in examples 1, 2, and 3.

(PDF)

S1 File. Jupyter notebook for Example 1.

(PDF)

S2 File. Jupyter notebook for Example 2.

(PDF)

S3 File. Jupyter notebook for Example 3.

(PDF)

Acknowledgments

We are grateful to the members of Galaxy development team for their help with preparation of

this manuscript.

References
1. Fleury V, Gouyet JF, Leonetti M. Branching in Nature. Dynamics and Morphogenesis of Branching

Structures, from Cell to River Networks. Springer Science & Business Media; 2013. Available from:

this study. This allows us to deal with just one history item instead of 312. The next item in the history is a

collection of BAM datasets generated by mapping each read-pair from collection 313 against human genome

(hg38) with bwa-mem. These BAM datasets are de-duplicated (collection 627), filtered (by only retaining

reads mapping to mitochondrial DNA, with mapping quality of 20 or higher, and mapped in a proper pair;

collection 941), realigned to mitigate misalignment around indels or structural variant calls (collection 1098), and

used to call variants with Naive Variant Caller [21]. Finally, we use Variant Annotator to process VCF datasets

generated by Naive Variant Caller and to create a list of variants (collection 1412) and the concatenation tool to

reduce collection 1412 into a single table (dataset 1413). This dataset is used for further processing with

Jupyter. C. The relationship of minor allele frequencies for heteroplasmic sites between tissues (panels A and

B) and individuals (panels C and D). D. Estimates for bottleneck size with (red) and without (blue) accounting for

mitotic segregation.

https://doi.org/10.1371/journal.pcbi.1005425.g002

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005425 May 25, 2017 9 / 10

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005425.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005425.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005425.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005425.s004
https://doi.org/10.1371/journal.pcbi.1005425.g002
https://doi.org/10.1371/journal.pcbi.1005425


http://books.google.com/books?id=WKXyCAAAQBAJ&pg=PR6&dq=intitle:branching+in+nature&hl=

&cd=1&source=gbs_api.

2. van der Walt S, Colbert SC, Varoquaux G. The NumPy Array: A Structure for Efficient Numerical Com-

putation. Comput Sci Eng. 2011; 13(2):22–30.

3. Jones E, Oliphant T, Peterson P. SciPy: Open source scientific tools for Python, 2001-2008b;. Available

from: https://www.scipy.org/

4. Hunter JD. Matplotlib: A 2D Graphics Environment. Comput Sci Eng. 2007; 9(3):90–95.

5. Sloggett C, Goonasekera N, Afgan E. BioBlend: automating pipeline analyses within Galaxy and Cloud-

Man. Bioinformatics. 2013; 29(13):1685–1686. https://doi.org/10.1093/bioinformatics/btt199 PMID:

23630176

6. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0. Nat Genet. 2006; 38

(5):500–501. https://doi.org/10.1038/ng0506-500 PMID: 16642009

7. Néron B, Ménager H, Maufrais C, Joly N, Maupetit J, Letort S, et al. Mobyle: a new full web bioinformat-

ics framework. Bioinformatics. 2009; 25(22):3005. https://doi.org/10.1093/bioinformatics/btp493 PMID:

19689959

8. Goff SA, Vaughn M, McKay S, Lyons E, Stapleton AE, Gessler D, et al. The iPlant Collaborative: Cyber-

infrastructure for Plant Biology. Front Plant Sci. 2011; 2:34. https://doi.org/10.3389/fpls.2011.00034

PMID: 22645531

9. Goecks J, Nekrutenko A, Taylor J, Galaxy Team. Galaxy: a comprehensive approach for supporting

accessible, reproducible, and transparent computational research in the life sciences. Genome Biol.

2010; 11(8):R86. https://doi.org/10.1186/gb-2010-11-8-r86 PMID: 20738864

10. Qu K, Garamszegi S, Wu F, Thorvaldsdóttir H, Liefeld T, Ocana M, et al. Integrative genomic analysis

by interoperation of bioinformatics tools in GenomeSpace. Nat Methods. 2016; 13(3):245–247. https://

doi.org/10.1038/nmeth.3732 PMID: 26780094

11. Pérez F, Granger BE. IPython: A System for Interactive Scientific Computing. Comput Sci Eng. 2007; 9

(3):21–29.

12. Gandrud, C. Reproducible Research with R and R Studio. 2013;.

13. Ide N, Pustejovsky J, Cieri C, Nyberg E, DiPersio D, Shi C, et al. In: Murakami Y, Lin D, editors. The

Language Application Grid. Cham: Springer International Publishing; 2016. p. 51–70. Available from:

https://link.springer.com/chapter/10.1007/978-3-319-31468-6_4

14. Rebolledo Jaramillo B, Su MSW, Stoler N, McElhoe JA, Dickins B, Blankenberg D, et al. Maternal age

effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA. Proc Natl Acad

Sci USA. 2014; 111(43):15474–15479. https://doi.org/10.1073/pnas.1409328111 PMID: 25313049

15. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013;.

16. Schurch NJ, Schofield P, Gierlin0ski M, Cole C, Sherstnev A, Singh V, et al. How many biological repli-

cates are needed in an RNA-seq experiment and which differential expression tool should you use?

RNA. 2016; 22(6):839–851. https://doi.org/10.1261/rna.053959.115 PMID: 27022035

17. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat

Methods. 2015; p. 1–6.

18. Anders S, Pyl PT, Huber W. HTSeq–A Python framework to work with high-throughput sequencing

data. Bioinformatics. 2014; 31(2):btu638–169.

19. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data

with DESeq2. Genome Biol. 2014; 15(12):1.

20. Cree LM, Samuels DC, de Sousa Lopes SC, Rajasimha HK, Wonnapinij P, Mann JR, et al. A reduction

of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes.

Nat Genet. 2008; 40(2):249–254. https://doi.org/10.1038/ng.2007.63 PMID: 18223651

21. Blankenberg Daniel, Kuster Von, Gregory Bouvier, Emil Baker, Dannon Afgan, Enis Stoler, Nicholas,

et al. Dissemination of scientific software with Galaxy ToolShed. Genome Biology. 2014; 15(2):403.

https://doi.org/10.1186/gb4161 PMID: 25001293

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005425 May 25, 2017 10 / 10

http://books.google.com/books?id=WKXyCAAAQBAJ&pg=PR6&dq=intitle:branching+in+nature&hl=&cd=1&source=gbs_api
http://books.google.com/books?id=WKXyCAAAQBAJ&pg=PR6&dq=intitle:branching+in+nature&hl=&cd=1&source=gbs_api
https://www.scipy.org/
https://doi.org/10.1093/bioinformatics/btt199
http://www.ncbi.nlm.nih.gov/pubmed/23630176
https://doi.org/10.1038/ng0506-500
http://www.ncbi.nlm.nih.gov/pubmed/16642009
https://doi.org/10.1093/bioinformatics/btp493
http://www.ncbi.nlm.nih.gov/pubmed/19689959
https://doi.org/10.3389/fpls.2011.00034
http://www.ncbi.nlm.nih.gov/pubmed/22645531
https://doi.org/10.1186/gb-2010-11-8-r86
http://www.ncbi.nlm.nih.gov/pubmed/20738864
https://doi.org/10.1038/nmeth.3732
https://doi.org/10.1038/nmeth.3732
http://www.ncbi.nlm.nih.gov/pubmed/26780094
https://link.springer.com/chapter/10.1007/978-3-319-31468-6_4
https://doi.org/10.1073/pnas.1409328111
http://www.ncbi.nlm.nih.gov/pubmed/25313049
https://doi.org/10.1261/rna.053959.115
http://www.ncbi.nlm.nih.gov/pubmed/27022035
https://doi.org/10.1038/ng.2007.63
http://www.ncbi.nlm.nih.gov/pubmed/18223651
https://doi.org/10.1186/gb4161
http://www.ncbi.nlm.nih.gov/pubmed/25001293
https://doi.org/10.1371/journal.pcbi.1005425

