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A B S T R A C T

Up-to-date information on different modes of travel to monitor transport traffic and evaluate
rapid urban transport planning interventions is often lacking. Transport systems typically rely
on traditional data sources providing outdated mode-of-travel data due to their data latency,
infrequent data collection and high cost. To address this issue, we propose a method that
leverages mobile phone data as a cost-effective and rich source of geospatial information
to capture current human mobility patterns at unprecedented spatiotemporal resolution. Our
approach employs mobile phone application usage traces to infer modes of transportation
that are challenging to identify (bikes and ride-hailing/taxi services) based on mobile phone
location data. Using data fusion and matrix factorisation techniques, we integrate official data
sources (household surveys and census data) with mobile phone application usage data. This
integration enables us to reconstruct the official data and create an updated dataset that
incorporates insights from digital footprint data from application usage. We illustrate our
method using a case study focused on Santiago, Chile successfully inferring four modes of
transportation: mass-transit (all public transportation), motorised (cars and similar vehicles),
active (pedestrian and cycle trips), and taxi (traditional taxi and ride-hailing services). Our
analysis revealed significant changes in transportation patterns between 2012 and 2020. We
quantify a reduction in mass-transit usage across municipalities in Santiago, except where
metro/rail lines have been more recently introduced, highlighting added resilience to the
public transport network of these infrastructure enhancements. Additionally, we evidence an
overall increase in motorised transport throughout Santiago, revealing persistent challenges in
promoting urban sustainable transportation. Findings also point to a rise in the share of taxi
usage, and a drop in active mobility, suggesting a modal shift towards less sustainable modes
of travel. We validate our findings comparing our updated estimates with official smart card
transaction data. The consistency of findings with expert domain knowledge from the literature
and historical transport usage trends further support the robustness of our approach.
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1. Introduction

Understanding travel behaviour is key to creating more resilient and sustainable urban transport systems. The global collective
ontribution of the transport sector to carbon emissions was estimated to be over 14% of the global estimate (Allen et al., 2012).
s cities expand and absorb population growth, global warming (Acar and Dincer, 2020), air pollution (Colvile et al., 2001), traffic
ongestion (Thomson, 1998), and urban sprawl (Brueckner, 2005) exert increasing pressure on decarbonising transport networks
nd prioritising more sustainable modes of mobility.

However, cities often lack appropriate data analytics to evaluate and implement transport planning interventions to achieve
hese goals. Traditional data sources, such as travel surveys, manual count studies, censuses and stated preference surveys have
onventionally been used to estimate traffic counts, potential demand of transport, and assess the spatial patterns of human mobility
ithin cities (Zannat and Choudhury, 2019). Yet, these data sources are expensive, infrequent, and suffer from data latency (Rowe,
023). Thus, while these data from traditional sources may provide an accurate representation of urban transport networks at a
iven time, such representations might become unreliable or outdated a few years into the future, particularly in fast-expanding
ities, or those that experience shocks due to social unrest, natural hazards (Rowe, 2022) or pandemics (Green et al., 2021).

Mobility information obtained from sources such as the Global System for Mobile Communication (GSM) network can help
vercome these deficiencies (Rowe, 2023). Mobile network data, when they are available, provide a cost-effective source of
eospatial information to capture human mobility at unprecedented geographic and temporal granularity (Zannat and Choudhury,
019). Mobile phone data also offer information to capture travel behaviour in real or near-real time, providing an opportunity to
requently update information about how people move around cities to support transport planning (Antoniou et al., 2011). However,
hey only provide geospatial information. They do not deliver data on users’ personal attributes, such as age, gender, and income
hich are often associated with different travel behaviours, or information on mode of transportation. Information on mode of

ransport trip counts (defined as mode split) is a key ingredient to developing transportation interventions to reduce private car
sage and promote sustainable transport modes (Rodríguez-Núñez and García-Palomares, 2014).

To leverage the strengths and address these limitations of traditional and new emerging forms of data, we develop a generalisable
ata Fusion (DF) framework to update area-level estimates of mode split. DF involves the integration of multiple related datasets

o render a unified representation that facilitates the identification of relevant patterns.
In transportation, DF has been used for multiple purposes, such as traffic demand prediction and forecasting (El Faouzi et al.,

011). Unlike prior work, we use DF to produce updated mode split estimates from travel survey data. This involves integrating
nferred origin–destination mode of transport distributions from more up-to-date mobile phone data from Deep Packet Inspection
DPI), Extended Detail Records (XDRs), and socioeconomic and demographic information from a representative household survey
nd census data. XDRs and DPI data are used to infer more up-to-date origin–destination mode of transport estimates. XDRs provide
eospatial locations of users, and DPI data offer information on application usage of related transport modes to infer these estimates
ased on existing travel survey data. To enhance the accuracy and address potential distributional biases in mobile phone data, we
ncorporate data on the socio-economic and demographic composition of the resident population obtained from a representative
ousehold survey and census data.

Our work contributes to expanding the approach followed by Graells-Garrido et al. (2018b), to estimate the modal split. We
chieve this by using a DF framework and incorporating data: (1) from mobile phone application records to infer the use of bike-
haring platforms and taxi services, thus improving estimates of bicycle and taxi transport modes; and (2) from socioeconomic and
emographic attributes of the local resident population to integrate information about variation in the usage of different transport
odes.

This paper is structured as follows: The Background section delves deeper into existing literature and research related to transport
ata collection and analysis methods regarding modal split. In the Context and Data section, we present the specific context of our
tudy, focusing on Santiago, Chile, and describe the data sources used, including household surveys, census data, and mobile phone
pplication usage traces. The Methods section outlines our approach, which involves leveraging mobile phone location data and
mploying data fusion and matrix factorisation techniques to integrate official data sources with digital footprint data. The Results
ection presents the findings of our analysis, including insights into transportation patterns and shifts between 2012 and 2020 in
antiago, and a thorough analysis and interpretation of the results, comparing them with expert domain knowledge and validation
ata. The Discussion section explains the practical and theoretical implications of our work, as well as its limitations and future
ines of research. Finally, the Conclusions section closes the paper by highlighting our contribution to knowledge and transportation
lanning.

. Background

Information on transportation modes is critical to urban transport planning. It enables improving the efficiency of transport
ystems by identifying suitable options for specific travel needs (e.g., long-distance commuting or freight transport) and designing
ultimodal transportation networks (Karlaftis, 2004). Accurate information on modes of transport also enables the assessment of

ransport demand by identifying locations with high demand for specific travel options, thus informing the appropriate allocation
f resources (Karlaftis, 2004). Different modes of transport require varying types of infrastructure and have different environmental
ootprints (Vuchic, 2007). Having current information on modes of transport is thus essential to identify critical infrastructure needs
nd develop strategies to reduce carbon emissions and promote more sustainable forms of urban mobility (Vuchic, 2007).
2
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The estimation of transportation modes using traditional statistical methods and machine learning techniques is a well-established
roblem in transportation research. Traditionally, estimates of mode split have been derived from data collected through household
ravel or travel diary panel surveys, involving retrospective, self-reporting records of how often people use various modes of
ransport (Lee et al., 2020; Molin et al., 2016), or of individuals’ trips for a selected number of days (Heinen and Chatterjee, 2015;
uhnimhof et al., 2006). Data collection through these surveys is however costly and time-consuming posing significant limitations

o their scalability to cover large geographical areas, population samples and complex multimodal systems. In recognition of these
imitations, there have been increasing efforts to leverage the emergence of digital footprint data for estimating transportation modes
Bachir et al., 2019; Graells-Garrido et al., 2018b).

Two forms of digital footprint data feature prominently in the estimation of travel counts by transportation modes: (1) mobile
etwork data (including DPI and XDRs), and (2) GPS data. GPS data have been used to estimate mode of transport use by leveraging
n the accuracy of GPS technology. They provide accurate location information to render individual travel trajectories in real time by
riangulating records on speed, time and location (Bantis and Haworth, 2017; Dabiri and Heaslip, 2018). However, the availability
f individual GPS records is ethically sensitive, geographically sparse, and limited to a small set of users. This is because their
ollection relies on the use of tracking mobile phone applications (Rowe et al., 2022), and only a segment of the population uses
given application or allows tracking (Grantz et al., 2020). Moreover, tech companies (e.g., Apple) have implemented features to

revent tracking by mobile phone applications, and new legislation (e.g., GDPR) has tightened the use of mobile phones to collect
nd store personal data. All these issues challenge the use of GPS records to accurately capture human mobility and, consequently,
o derive reliable mode split estimates.

In contrast, mobile network data generally cover entire geographical areas (e.g. countries) and population systems such as the
sers of a network operator. They are continuously generated as a by-product of an administrative process by network operators.
s a result, mobile network data offer more extensive coverage and are more readily available than GPS data. However, mobile
etwork data are geographically sparse and irregular because their collection depends on the location and facing position of
elecommunication antennas. They do not provide exact information on location, and users’ location needs to be inferred from
heir position relative to telecommunication antennas. This poses a challenge to accurately estimate the use of different modes of
ransportation at a given location.

A significant number of studies have focused on using of mobile network data to address this challenge and estimate the use of
ifferent modes of transportation (Huang et al., 2019). A large body of the literature has focused on estimating the use of trains
nd cars, particularly using data on intercity trips (Doyle et al., 2011; García et al., 2016; Hui et al., 2017; Schlaich et al., 2010;
moreda et al., 2013; Wu et al., 2013). The focus on intercity trips may have been determined by the accuracy of the estimates that
an be produced inferring train and car trips from relatively low spatial and temporal resolution mobile phone network data. Less
ork has focused on inferring trips by alternative modes of transportation, such as bus, trams, bikes and walk (Graells-Garrido et al.,
018b; Holleczek et al., 2015; Horn and Kern, 2015; Li et al., 2017; Wu et al., 2013). These alternative modes of transportation
re often aggregated into general groupings, such as public transport versus private transport (Horn et al., 2017; Phithakkitnukoon
t al., 2017; Qu et al., 2015; Wang et al., 2010), air versus ground (Hui et al., 2017), moving versus stationary (Calabrese et al.,
011) or rail versus road (Asgari, 2016; Bachir et al., 2019; Doyle et al., 2011). While useful in specific settings, such aggregations
ave more limited utility in the current policy context, which seeks to develop planning interventions to promote active forms of
obility, identify associated critical infrastructure, and reduce carbon emissions.

Previous work seeking to infer mode of transportation from mobile network data has largely used unsupervised or semi-
upervised machine learning algorithms. Notable studies include Bachir et al. (2019), Graells-Garrido et al. (2018b), Kalatian and
hafahi (2016), Wang et al. (2010). Wang et al. (2010) and Kalatian and Shafahi (2016) employed unsupervised machine learning
lgorithms and mobile phone data to cluster travel times and travel speeds, respectively, to identify different modes of transport.
ang et al. (2010) identified two forms of transport (i.e., road and public transport), while Kalatian and Shafahi (Kalatian and

hafahi, 2016) distinguished between walking, public transportation and private cars. Using data from Santiago (Chile), Graells-
arrido et al. (2018b) proposed a method based on semi-supervised Non-negative Matrix Factorisation (NMF) to infer various

ransport modes, including rail, car, bus, rail & bus, and pedestrian modes. Bachir et al. (2019) employed agglomerative hierarchical
lustering to group Voronoi sectors of Paris with similar transport usage and identify rail, road, and multimodal (rail+road) modes. A
ovelty of their work was to use census data to rescale the resulting origin–destination estimates, thereby improving their statistical
epresentation.

While these studies have progressed our capacity to infer mode split patterns from mobile network data, key challenges remain.
or example, Wang et al. (2010) and Kalatian and Shafahi (2016) only distinguished a selected number of transport modes and are
ased solely on travel times or travel speed, which can vary at different traffic stages and show similarities under certain conditions,
articularly in congested cities.

The model proposed by Graells-Garrido et al. (2018b) can infer multiple modes, including road, public transport, rail, pedestrian,
nd rail+bus, but it tends to underestimate pedestrian mode results. On the other hand, the model by Bachir et al. (2019) considers
bimodal partition (rail and road) and does not account for the intermodality of trips.

We argue that integrating information from disparate data sources is crucial for inferring different modes of transportation.
MF or traditional clustering methods may not be the most suitable approaches to integrate different data sources as they do not
irectly take advantage of systematic relationships identified between attributes across multiple datasets. We argue that data fusion
lgorithms can provide a more robust approach to integrate disparate data sources as they are explicitly designed to use systematic
atterns observed across various datasets to fuse them. This fusion is achieved by quantifying and identifying mathematical patterns
3

n the dataset as if they were part of a single model.



Transportation Research Part C 155 (2023) 104285E. Graells-Garrido et al.

l
2
h
b
s
c
e
C
w
t
o
B
s
i

o
m
h

o
p
a

3

u
a
u

Data fusion algorithms have been predominantly applied in biomedical research (Li et al., 2018) and the modelling of urban
ifestyles (González, 2019). Their application in urban transportation contexts is less prominent although not absent (El Faouzi et al.,
011). In our context, they have been used with travel surveys to update modal split estimates (Chang et al., 2019). However, they
ave not yet been employed to integrate mobile phone data. We recognise that the concept of data integration is not new and has
een incorporated in supervised algorithms of modal split estimation by Huang et al. (2018). They used it to combine mobile phone
ignalling data with subway smart card data and taxi GPS data to develop a model that predicts one-hour ahead traffic population
ounts by area in Shenzhen (China). We also recognise a variety of applications of supervised machine learning approaches to
stimate modal split based on mobile phone data. These include Chen et al. (2017), Semanjski et al. (2017), Breyer et al. (2022).
hen et al. (2017) uses magnetic signals combined with the accelerometer data from intelligent devices of different trips labelled
ith seven modes (stationary, bus, bike, car, train, light rail, and scooter). Semanjski et al. (2017) uses labelled trips collected

hrough an application combined with urban infrastructure obtained from OpenStreetMap (OSM), to predict the following modes
f transportation: driving, public transport, biking, and walking in the Flemish Brabant province (Belgium). On the other hand,
reyer et al. (2022) proposes a semi-supervised model to classify trips between cities from mobile network data. A key limitation of
upervised machine learning approaches is that they require labelled data identifying the modes of travel. Such a labelled dataset
s difficult to generate at scale because they are costly and normally cover a reduced geographical area.

Thus, significant progress has been made to generate area-level estimates of transportation modes and to identify various modes
f transportation based on travel surveys and mobile phone data. Most existing work has relied on unsupervised or semi-supervised
achine learning algorithms due to the limited availability of labelled data identifying transportation modes. Less progress has,
owever, been made in inferring trips undertaken by bike and emerging forms of shared mobility, such as ride-hailing services.

While data fusion approaches have displayed great potential to integrate disparate datasets and identify systematic patterns in
rder to infer modal split, they have not been widely adopted to produce modes of transportation estimates. This paper seeks to
ropose a data fusion framework to integrate various data sources to estimate the extent of bike and ride-hailing service usage,
long with public and motorised forms of mobility.

. Context and data

Our work studies the Great Metropolitan Area of Santiago, Chile. Santiago is a city with almost 8 million inhabitants and an
rban surface of 867.75 square kilometres as of 2017, composed of more than 40 independent municipalities, 35 within the urban
rea, whereas the rest are on the periphery. The city has an integrated multimodal system with an almost flat fare between metro,
rban buses, and one rail service, allowing up to three legs within a two-hour window. The bip! smart card is the only accepted

payment method in the public transportation system.
The city also has widespread taxi services, access to several ride-hailing applications, and a public bike-sharing system. For this

work, we congregate all modes of transportation into four categories: mass-transit, which includes all public transportation that uses
the city smart card; motorised, which refers to cars and similar vehicles; active, which includes pedestrian and cycle trips; and taxi,
which includes traditional taxi and ride-hailing applications.

The last official mode split for Santiago was published in 2015, based on a travel survey from 2012. The survey is outdated
considering the different interventions and changes in the city, making it difficult to understand current travel behaviour patterns.
We emphasise three of these changes. First, the population composition of the city has significantly changed due to external and
internal migration waves. Second, new transportation infrastructure was built, including two metro lines and a new train service
from 2017 onwards, and new mobile phone applications and other transportation systems appeared, including ride-hailing apps such
as Uber, electric scooters such as Lime, and shared bike-systems such as Mobike. And third, the social upheaval from October 2019
caused a series of massive demonstrations and multiple riots throughout the city, including burned metro stations (Urquieta Ch,
2019), the closing of commercial districts, and an associated economic crisis (Somma et al., 2021).

To estimate an updated mode split, we integrated the following data sources about Santiago: mobile phone data from 9–13
March 2020, official data sources from 2020, urban infrastructure in 2020, and the travel survey collected in 2012. We focus on
trips made during morning peak periods (between 6AM and 9AM) on weekdays. In this way, we try to capture regular activity-based
trips, such as work or study. On the other hand, the morning peak period is the most congested, and therefore the most interesting
period from a planning perspective.

3.1. Urban infrastructure from OpenStreetMap (OSM)

OSM is a global, open geographical database that is freely available and fairly accurate for many cities (Haklay, 2010; Zhang
and Pfoser, 2019). It contains several types of geographical features, including urban infrastructure networks. OSM data can be
downloaded freely, either from the OSM organisation itself or in data aggregators such as GeoFabrik. We parsed OSM data from
March 2020 in Santiago using the pyrosm tool (Tenkanen et al., 2022). Then, we identified the following urban network information:
highways, primary (or main) streets, secondary streets, tertiary streets, rail and metro networks, cycleways, and pedestrian streets
(see Fig. 1). These features are arguably associated with several modes of transportation. We assume that cycleways and pedestrian
streets increase the chance of observing active trips in mobile phone records located near them, whereas the highways increase the
4

chance of observing motorised and taxi; we assume that mass-transit is associated with primary streets and the rail network as well.
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Fig. 1. Urban infrastructure from OpenStreetMap in March 2020.

3.2. Official data sources from 2020

We integrated the following official data sources: a socio-economic characterisation survey (2020), a travel survey (2012), and
statistics regarding car permits and global metro usage from the National Institute of Statistics (2020). The travel survey provides
an initial estimation of the mode split, whereas the other sources are used to update the initial estimate, jointly with the mobile
phone data detailed in the next section. In addition, we incorporate origin–destination matrices for mass transit according to smart
card data for 2012 and 2020 to validate the model. We describe these datasets in the section Smart Card Data.

The survey for socio-economic characterisation is named CASEN (Ministerio de Desarrollo Social y Familia, 2020). Its 2020
edition is the last one released at the time of reporting this work. Relevant questions for our work include the income distribution
per municipality (in quintiles, see Fig. 2a for the distribution of the richest quintile), the distribution of professions and occupations
per municipality, and the distribution of migrants with respect to their country of origin per municipality. These variables are
relevant for our methods as Santiago has experienced migration waves in recent years and a social outburst in 2019. Both have
caused changes in work habits, such as an increase in remote work in areas affected by political protests, and mobility habits, as
migrants have different mobility choices than locals (Rowe and Bell, 2020).

The Santiago Travel Survey (EOD, from its name in Spanish) was collected in 2012 by the Chilean Ministry of Transport
and Telecommunications (SECTRA, 2015). As our mobile phone data were from labour days within a week in March 2020, we
estimated an initial mode split for the municipalities under study in a workday in morning commute hours (see Fig. 2b for the
mass-transit municipal share, c.f. the income distribution of Fig. 2a, which is negatively correlated). This estimation aggregates all
trips originating at each municipality per mode of transportation, and sums their survey weights. Following the same procedure,
we also estimated the speed range distribution per mode of transportation (see Fig. 3a), as it can be a relevant feature when
discriminating the mode split in OD flows (Wang et al., 2010). However, these distinctions may be unreliable in high traffic areas,
which is something common in commuting times due to how work areas are concentrated in Santiago (Suazo-Vecino et al., 2019).
Additionally, since the travel survey contains income information, it is also possible to estimate a mode split per income quintile,
that is, the total sum of survey weights of trips per mode performed by people with a given home income. There is a high association
between motorised transport and higher income levels (see Fig. 3b), and thus, imputed income according to home municipality could
be a relevant signal for mode inference.

The National Institute of Statistics (INE, from its initials in Spanish) publishes yearly information regarding car permits per
municipality, smart card transactions at the whole Metro (subway) network, and population composition in 2012 and 2020 (Instituto
Nacional de Estadísticas, 2022). These statistics inform our method. On the one hand, car permits must be renewed yearly, and, as
such, they are a proxy of how much the motorised modal share has changed: on average, car permits have increased by 31.76%
between 2012 and 2020. On the other hand, the number of smart card transactions at Metro stations has decreased by 43% from
2012 to 2020, even though there have been new metro and rail lines since 2012. There are potential explanations for this, including
the effect of the social outburst, where several stations were burned. As such, the official sources indicate that motorised usage has
increased globally, and Metro usage, which is part of mass-transit, has decreased.

We expect these official sources to aid our proposed model when estimating an updated mode split. Some of these variables are
important when estimating the mode split (such as income, car permits, etc.). Other variables provide demographic controls for the
model, which may help to modulate potential biases in the anonymised data (such as the population distributions from 2012 and
2020).
5
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Fig. 2. Geographical distributions of: (a) the richest household income quintile, from CASEN (2020); (b) share of mass transportation in morning commute time,
per municipality, from the Santiago Travel Survey (2012).

Fig. 3. Distribution of speed ranges (a) and income quintiles (b) per mode of transportation (lowest income is Q01, highest income is Q05). Each matrix is
column-normalised.

3.3. Mobile phone data

We used two mobile phone datasets provided by the telecommunications operator Telefonica Movistar in Chile: aggregated
trajectories from eXtended Detail Records (XDRs), and aggregated traffic from Deep Packet Inspection (DPI). Both datasets were
generated from 1.18M phones active in the period and area under study. The operator has nearly one-third of the market in the
country. In the urban area of Santiago, it operates 2076 towers distributed in the area of study (see Fig. 4a). Note that towers are
not distributed uniformly in the city. According to the mobile phone operator, the distribution follows mobile population patterns
in order to ensure quality of service. We studied municipalities with at least 5 towers in the area under study, resulting in 40
municipalities, with an average of 48.27 towers (see Supplementary Material A1 for a characterisation of the tower distribution).
We focused on the morning commute time (from 6 AM to 9 AM), as it is the most generalisable period that can be studied, as
mentioned earlier.

The XDRs dataset is derived from the mobile phone network and is generated through the polling of device locations (Huang
et al., 2019). Each record in the dataset represents a billable event, including calls, SMS, and Internet downloads. It is important
to note that a single record may encompass multiple events, such as multiple downloads or multiple connections during a phone
call. To determine the most representative tower for these events, a criteria defined by the company is employed. For calls, this
typically corresponds to the originating call tower, while for Internet downloads, it is often the most frequently used tower within
a given set of events. Furthermore, not all records are generated equally, as the company profiles data usage by its users and has
different billing frequencies depending on how active each customer is. On average, the records are generated in 15-minute intervals
for each device in the Telefónica Movistar network in Santiago (Graells-Garrido et al., 2016). Each record contains the ID of the
representative tower the device was connected to, a timestamp, and an anonymised device ID. Device IDs are consistent in the
dataset, i.e., two connections with the same ID describe the trajectory of the same device.

To compute trips in XDRs, we utilised a stop-based method (Graells-Garrido et al., 2018b), which involves comparing the
timestamp and distance between two consecutive events. If the speed of the transition is above a threshold of 0.5 km/h, the transition
6
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Fig. 4. (a) Distribution of mobile phone towers (also denoted waypoints) in the area under study. Each dot is a mobile phone tower. (b) Each municipality
is coloured according to the difference between inbound and outbound trips; red municipalities have a positive flux, that is, attracting more trips than those
generated by them, whereas blue municipalities have a negative flux. Red areas concentrate work and wealthy areas in the city.

Fig. 5. (a) Distribution of trips observed in mobile phone data according to the time of the day (purple line). Each line marks the start of a period of time
defined in the Santiago Travel Survey. In this paper, we focus on commuting times at morning peak. (b) Cumulative density function of observed trip speeds
from XDRs. (c) Cumulative density function of observed distances covered by trips from XDRs.

encodes part of a trip. This threshold discards slow transitions that could be associated with movement inside a venue, for instance,
the device of someone who works in a university will connect to different towers when moving around the venue. Adjacent parts
of a trip are chained to identify its origin and destination towers, as well as the intermediary towers that serve as waypoints for
each trip. We filtered out displacements with a distance greater than 60 Km, which is approximately the urban radius of Santiago.
In total, we identified 19M trips in the whole period of study. Of these, 3M were detected during the morning commute period,
between 6AM and 9AM (Fig. 4b shows the total influx minus outflux of trips for each municipality at that period).

Each trip has features, such as date and time, average speed, distance covered, and waypoints. The trip distribution through
all days exhibits a typical city routine with two main peaks in trip volume (see Fig. 5a), one during morning commute times,
between 6:00 and 9:00, and another in afternoon commute times, between 18:00 and 20:00. Additionally, a much smaller but
still noticeable midday peak can be observed between 12:00 and 15:00. These patterns for workdays have also been reported in
studies that evaluated the demand for transportation in Santiago using smart card data and origin–destination surveys (Munizaga
and Palma, 2012; Muñoz et al., 2015).

The distribution of trip speed is skewed toward lower speeds (see Fig. 5b), which is expected in an urban setting due to mainly
commuting traffic. Note that we analysed trips with speeds between 5 km/h, which is just below the average human speed walking
(Browning et al., 2006), and 120 km/h, which is the legal maximum speed in Chile. Out of the 3M trips analysed, only 7.4 K had
speeds above 120 km/h, and 877 K had speeds below 5 km/h.

The distribution of covered distances (see Fig. 5c) also shows a skew toward shorter distances, as 50% of trips have a covered
distance smaller than 2.97 Km. To understand this distribution, we explored the geographical distribution of the distance quartiles
(see Fig. 6). The main insight from this analysis is that shorter trips tend to concentrate in areas with work locations and nearby
subway infrastructure. Finally, waypoints are intermediary towers that were part of the trajectory of each trip. These waypoints
are crucial for inferring modes of transportation, as certain waypoints are strongly associated with specific modes, such as towers
located within metro stations or near highways (Graells-Garrido et al., 2018b).

The DPI data contain the number of connections in each tower to the most accessed Internet domains from mobile phones (note
that this is not device-level data). These domains can be mapped to mobile phone applications or Web services, as company or
service names are encoded in domain addresses. To ensure the relevance of the data, we applied a three-step filtering process. First,
we discarded irrelevant domains, such as spyware, ad-tracking, and other types of tracking analytics performed on apps. Second,
7
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Fig. 6. Spatial distribution of origin and destination of trips according to their covered distances, grouped into quartiles.

we removed apps that showed concentration of usage in the city, meaning they were accessed from a small set of locations (defined
as those in the lower 10% of entropy with respect to the number of requests per tower). Finally, we unified domain names to avoid
duplicate app identifiers; for instance, the domains api.example.com and maps.example.com were grouped into example.com. In this
way, the DPI data indicates digital activities performed by the people connected to each tower through mobile phone applications
(Graells-Garrido et al., 2022).

Some applications may aid the identification of previous hard-to-detect modes, such as pedestrian, non-motorised and taxi (due
to ride-hailing applications such as Uber and Cabify). Other apps or activities are important too, as they may be held during
transportation (Jain and Lyons, 2008). Previous work has found that many types of activities or applications are relevant to
identify mobility patterns (Graells-Garrido et al., 2022, Graells-Garrido et al., 2018a), as such, we analyse a wide spectrum of
apps, without focusing on transportation apps only. For instance, they may be related to the mode of transportation of the device
owner (Graells-Garrido et al., 2018a). From a total of 1278 non-duplicate apps (or domain names), we kept 963 for analysis after
filtering.

As app usage may be related to the mode split by associating waypoints (as seen in XDRs) with activities (as seen in DPI), we
estimated the distribution of mobile phone applications accessed at each waypoint (tower). This distribution can be expressed as a
matrix (see next section for details of this and other matrices) where each cell contains the total access count to an app reported
in the data at a given tower. We applied the Log-odds ratio with Uninformative Dirichlet Prior formula to the access counts per
application (Monroe et al., 2008). This formula takes into account the frequency and variability of access to each application and
identifies which waypoints had significant values compared to a Dirichlet prior. Fig. 7 displays the association of each tower at
commuting times with example applications after applying this transformation: (a) Uber, a ride-hailing app related to taxi; (b)
Cabify, another ride-hailing app, related to taxi; (c) Waze, a GPS routing, related to motorised and taxi; (d) Transantiago, the official
domain of the mass-transit system; (e) Niantic Labs, the creator of augmented reality games such as Pokémon Go, which could be
related to active transport (Graells-Garrido et al., 2017); and (e) Spotify, an audio app with a distribution that resembles the metro
network (mass-transit).

Thus, with mobile phone data, there are observations of trips, with their corresponding speeds and waypoints, and information
associated with those waypoints. To the extent of our knowledge, this combination of XDRs and DPI has not been used in modal
8
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Fig. 7. Distribution of mobile application usage (from DPI data) in towers. Each tower is depicted with a circle with area proportional to the intensity of the
application usage. (a) Uber (ride-hailing). (b) Cabify (ride-hailing). (c) Waze (GPS routing). (d) Transantiago (mass-transit). (e) Niantic Labs (augmented reality
games such as Pokémon Go). (e) Spotify (audio). Black lines represent primary streets in the city, cyan lines represent the metro network. Urban network data
has copyright from OpenStreetMap contributors, used with permission.

split problems before. Then, we expect to obtain an updated modal split by integrating these data with the official data previously
described.

3.4. Smart card data

Finally, we include an additional dataset from the system ADATRAP (Gschwender et al., 2016) provided by the Direction of
Metropolitan Public Transport (DTPM from its initials in Spanish) for validation purposes. ADATRAP integrates multiple data sources
from the mass transit system in Santiago, including smart card data, bus GPS data, vehicle operator data, among others. In Santiago,
passengers must validate their bip! cards when boarding a bus or entering a Metro station, but no alighting validation is required,
thus, smart card data only registers the boarding location of trips. The system relies on usage patterns such as the regularity of
commuting trips to estimate the number of trips made. Hence, a methodology based on recurrent patterns of usage per user and
geometry of distances toward boarding sites is used (Munizaga and Palma, 2012). The ADATRAP methodology also incorporates
fare evasion correction (Munizaga et al., 2020). Trips are reported at municipality and macro-area levels (a macro-area contains
multiple municipalities).

To ensure a rigorous validation of our results, ADATRAP estimated mass-transit trip counts from commuting times using smart
card data between March 9, 2020 to March 13, 2020, from buses and metro . Specifically, we focused on trips during the morning
peak period (06:00 AM–09:00 AM). Given that ADATRAP provides trip counts with the corresponding time of day and date, we
calculated the average daily trip count during the morning peak period for the specified dates. In total, the system reported 932 K
trips in mass transit during the morning peak period in Santiago for the analysed dates (see the origin distribution in Fig. 8).

4. Methods

Here we propose a method that processes traditional and digital data sources (see an overview of the method in Fig. 9). The
method consists of three main stages:

(1) Initial mode split estimation, where official sources and domain knowledge are used to build a candidate mode split for all
administrative units.

(2) Data fusion using matrix factorisation, a procedure that generates a latent representation of several datasets represented in an
unified manner. As data we consider official and digital sources, with features related to mobility patterns, socio-demographic
characteristics, and urban infrastructure.

(3) Updated mode split estimation, where an updated mode split is computed taking into account all available information in the
latent representations from the previous point.
9
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Fig. 8. Distribution of trips per municipality in smart card data from ADATRAP.

Fig. 9. Schematic view of the methods and data used to estimate an updated mode split for a city.

As a case study, we work with data from Santiago, Chile. The administrative units under study are several municipalities in the
Santiago Metropolitan Area. We used the data sources described in the previous section. Next, we describe the pre-processing and
methods we apply to these data.

4.1. Initial guess of the updated mode split

The first step in our methodology is to build an initial guess of an updated mode split for the city. Recall that there are
observations from official data that can aid an initial estimation of an updated mode split, and we can use expert knowledge of the
city as well. On the one hand, the National Institute of Statistics (INE) provides a city-wide count of smart card transactions in the
Metro system and the number of car permits per municipality, as well as population projections. These statistics are available for
2012 and 2020. On the other hand, we assume that taxi trips have increased, due to the emergence of ride-hailing applications,
although this increase is modest at commuting times (Tirachini and del Río, 2019); we also assume that pedestrian trips have
decreased due to the effects of the social outburst from October 2019. Taking these factors into account, and starting from the trip
counts per mode of transportation 𝑚 as measured by the Santiago Travel Survey 2012, we use the updated population change from
2012 to 2020 and the aforementioned factors to estimate an initial guess of the updated mode split in the following way:

𝑀𝑇20(𝑚) = 𝑀𝑇12(𝑚) ×
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛20(𝑚)
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛12(𝑚)

×

√

𝑀𝑒𝑡𝑟𝑜20
𝑀𝑒𝑡𝑟𝑜12

(1)

𝐶20(𝑚) = 𝐶12(𝑚) ×
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛20(𝑚) ×

√

𝑃𝑒𝑟𝑚𝑖𝑡𝑠20(𝑚) (2)
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𝐴20(𝑚) = 𝐴12(𝑚) ×
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛20(𝑚)
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛12(𝑚)

× 0.975 (3)

𝑇20(𝑚) = (𝑇12(𝑚) + 1) ×
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛20(𝑚)
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛12(𝑚)

× 1.09. (4)

In these equations, m is a municipality, Population is the corresponding municipal population at the years 2012 and 2020, Metro
is the number of smart card transactions, Permits is the corresponding municipal car permits at the years 2012 and 2020; MT is
mass-transit, C is motorised transport, A is active transport, and T is taxi. In all modes of transportation we multiply the number of
trips per municipality m with their ratio of change according to the population distribution. The number of trips represents the daily
average for the period of study for 2020, to ensure comparability with the trip count obtained from the travel survey. Specifically,
it accounts for an average commuting trip count for laboral days in non-festive periods.

We adjusted MT according to available data: metro trips were reduced by 43.70%. However, as public transport includes buses
and trains, and the metro network was severely affected by the social outburst from 2019, with many stations closed or not operative
during the study period, we modulate the change in smart card records using a square root. For motorised trips, we adjusted C using
a similar approach. In addition to updating the amount of trips according to population change, we adjusted them using the change
in car permits per municipality. We also modulated this rate of change with a square root, considering that not all cars are solely
used for commuting purposes; some cars serve secondary household usage or work-related activities. Active transport A follows a
similar schema. Here, we assume that those trips have reduced their relative share by 2.5%, given the social context of the city.
Finally, for taxi trips T, we applied the population change factor and the increase factor based on previous reports on ride-hailing
usage (Tirachini and del Río, 2019). To avoid having zeros in the updated modal partition, we added one trip to the observed taxi
trip count in 2012 for some municipalities that did not have taxi trips during commuting times in laboral days.

The ratio between this initial mode split estimation and a naive one where the original mode split is multiplied municipality-wise
with the fraction of population change is 0.96. These equations are fairly direct, and new data sources or modulation factors can
be introduced according to expert knowledge if needed.

4.2. Data integration through an unified representation

The datasets described earlier were generated by different sources, although they contain several shared concepts. For instance,
all of them have data related to the municipalities in the area under study, either explicitly, or through aggregation of data. Here
we describe a unified representation that enables data integration.

First, we identified all different concepts present in the data (e.g., municipality, mode of transportation, waypoint, etc.; see
Table 1 for all of them, including description). Under this definition, every table from the datasets expresses a relation between
concepts as a matrix. For instance, the mode split for different speed ranges (see Fig. 3a) is a matrix, where rows are modes of
transportation, columns are speed ranges, and cell values quantify the fraction of trips that correspond to the specific mode/speed
range pair. Similarly, the mode split per municipality is also represented as a matrix.

Second, we built a relationship network (see Fig. 10) with all matrices under analysis (see Table 2). We work with a total of 14
matrices referred to as 𝑅𝑛, where 𝑛 ranges from 01 to 14. Most of these matrices were built directly from the data. Note, however, that
two of these matrices, Application Usage and Mode of Transportation (R13), and Urban Infrastructure and Mode of Transportation
(R14) were manually built by us. For example, R13 was built relating apps domains such as uber.com and transantiago.cl, with modes
of transportation such as taxi and mass-transit. We explored the full list of apps/domains to establish these associations and found
53 apps that could be associated with at least one mode of transportation. Some domains are associated with two. For instance,
waze.com may be used by any motorised vehicle, and this includes the taxi category. Additionally, the Municipality and Waypoints
matrix (R05) was weighted using TF-IDF, a common weighting method that normalises each row in the matrix. Previous experiments
have shown that such weighting increases the stability and accuracy of the model (Graells-Garrido et al., 2018b). Supplementary
Material Section A2 shows a visualisation of all relations in the dataset.

The association between domains and modes of transport is quantified on a scale from 0 (no association) to 1 (strong association).
This value represents the strength of the relationship between a specific app domain and a mode of transportation. For the apps
where an association cannot be established directly, we assign a value of 0.25 to these (so all associations for an app sum 1).
Similarly, for the R14 matrix, the matrix which relate the urban infrastructure of the city to a mode of transport, was manually
assigned using a boolean flag (0 or 1) to each pair made of infrastructure type and mode of transportation, as described in the
OpenStreetMap section earlier.

The R01 matrix contains the initial solution of the mode split per municipality estimated earlier in this section. In the remainder
of this paper we describe a method to obtain an updated R01, as the other matrices contain information that may help in improving
the updated mode split.

4.3. Data fusion using matrix factorisation

At this point, we have a set of relationships between concepts. Although these relationships have a common representation, as
all of them are matrices, they have not been unified yet; in other words, we do not get new insights from all these relationships
being analysed together. In our context, we would expect to improve our initial guess of mode split by employing the other relations
expressed in the data. Our goal is to compute a new R01 matrix (mode split), denoted R01’, that contains an updated modal split
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Table 1
List of concepts expressed in our datasets.

Concept Description Datasets Cardinality Example values

Application Application or web
domain accessed by
mobile phones.

DPI (2020) 963 uber.com,
transantiago.cl

Income Mean income at a
given area, in quintiles.

EOD (2012),
CASEN
(2020)

5 Q01, Q05

Migration Country of origin of
migrant population.

CASEN
(2020)

55 Spain, Venezuela

Mode of Transportation Type of vehicle used
for commuting trips.

EOD (2012) 4 mass-transit,
motorised

Municipality Administrative unit
used for analysis

All 40 Santiago,
Providencia

Population Demographic
characteristics (age in
decades) per year

INE (2012,
2020)

22 0 to 10 years, >
65 years

Urban Infrastructure Characteristics of the
built environment
related to
transportation

OSM (2020) 7 near railways,
near highways

Speed Average speed,
aggregated in ranges

EOD (2012),
XDRs (2020)

8 <5 Km/h, 30 to
60 Km/h

Waypoint A mobile phone tower DPI (2020),
XDRs (2020)

1878 BTS-0001,
BTS-0087

Work Type A profession or
occupation

CASEN
(2020)

10 scientist,
machine
operator

Fig. 10. Diagram of concept relations from our datasets. Nodes (circles) are the different concepts we analyse from the data. Each edge is a relation between
concepts, which we formally represent as a matrix from the dataset. The purple arrow represents the mode split per municipality.
12
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Table 2
All relations analysed. Each relation is a matrix built from the data.

ID Source concept Target concept Cell value description Source

R01 Municipality Mode of
Transportation

The number of trips originated at a
given municipality for a given mode of
transportation.

Initial Estimation
using EOD
(2012) and INE
(2020)

R02 Municipality Work Types The number of people in a given
profession that lives in a given
municipality.

CASEN (2020)

R03 Municipality Migration The number of migrants from a given
origin country that live in a given
municipality.

CASEN (2020)

R04 Municipality Population The number of people in a given age
range that lives in a given municipality,
for two different years.

INE (2012,
2020)

R05 Municipality Waypoints A weighted value estimated from the
number of trips from people that live in
a given municipality that passes through
a given waypoint or mobile phone
tower.

XDRs (2020)

R06 Municipality Income The number of people in a given income
quintile that lives in a given
municipality.

CASEN (2020)

R07 Municipality Speed The number of trips originating at a
given municipality that have an average
speed within a given speed range.

XDRs (2020)

R08 Waypoints Speed The number of trips that pass through a
given waypoint that have an average
speed within a given speed range.

XDRs (2020)

R09 Waypoints Application
Usage

A weighted value estimated from the
number of accesses to a given
app/domain from a given waypoint.

DPI (2020)

R10 Waypoints Urban
Infrastructure

Whether (boolean) there is a given type
of urban infrastructure in a ratio of 500
metres around a given waypoint.

XDRs(2020) and
OSM (2020)

R11 Income Mode of
Transportation

The fraction of trips in a given mode of
transportation for a given income
quintile.

EOD (2012)

R12 Speed Mode of
Transportation

The fraction of trips in a given mode of
transportation for a given speed range.

EOD (2012)

R13 Application Usage Mode of
Transportation

The association (between 0 and 1) of a
given app/domain with a given mode of
transportation.

Manually built

R14 Urban Infrastructure Mode of
Transportation

Whether (boolean) trips from a given
mode of transportation use a given
urban infrastructure.

Manually built

to integrate datasets into an unified representation with the aim of extracting knowledge that cannot emerge from each data source
alone (El Faouzi et al., 2011).

In previous work, matrix factorisation has been used to infer mode of transportation usage (Graells-Garrido et al., 2018b).
ne of the characteristics of matrix factorisation methods is the ability to reconstruct matrices by means of matrix projection.
s such, the matrix R01’ can be expressed as a reconstruction of R01 based on the other matrices available on the dataset. Previous
ork using factorisation has employed Non-negative Matrix Factorisation (NMF), which decomposes a positive matrix 𝑀𝑖𝑗 into the

multiplication of two matrices:

𝐌𝐢𝐣 ≈ 𝐆𝐢 ×𝐆𝐣, (5)

here 𝐺𝑖 is a low-rank latent representation of concept 𝑖 (rows of 𝑀𝑖𝑗), and 𝐺𝑗 is a low-rank latent representation of concept 𝑗
columns of 𝑀𝑖𝑗). In this schema, if the matrix to be decomposed is R01, then the latent dimensions are interpreted as modes of
ransportation (Graells-Garrido et al., 2018b).

Although NMF is widely used in multiple areas, it is insufficient for our problem, because there is no direct way of incorporating
he additional information available in the solution. In other words, both concepts are clustered in the latent space without
onsidering the network of relations between concepts. In this situation, the Matrix Tri-factorisation approach provides a definition
f a co-clustering that considers these connections (Ding et al., 2006; Žitnik and Zupan, 2014), by separating the latent representation
f each concept from the latent representation of their relationship:

𝐌 ≈ 𝐆 × 𝐒 ×𝐆𝐓, (6)
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where 𝑆𝑖𝑗 is denoted as the backbone matrix that encodes the relation 𝑀𝑖𝑗 in the latent space, and 𝐺𝑖 (and, by analogy, 𝐺𝑗) is the
latent representation of the concept 𝑖 in all its relationships. In other words, the G matrices cluster concepts into latent dimensions,
and the S matrices encode the relationships between clusters of different concepts. The concept matrices have positive elements only
(as in NMF), whereas the backbone matrices may have negative elements. In this way, the backbone matrix may express positive
and negative associations between clusters of concepts.

Following this schema, the fully updated mode split matrix R01’ can be reconstructed from its corresponding backbone matrix
𝑆, and the concept matrices 𝐺𝑚𝑜𝑑𝑒 and 𝐺𝑚𝑢𝑛𝑖𝑐𝑖𝑝𝑎𝑙𝑖𝑡𝑦, which should be computed taking into account the full network of relationships.

To perform the factorisation, the following optimisation problem must be solved:

min
𝐆>=0

∑

𝐌𝐢𝐣∈

‖

‖

‖

𝐌𝐢𝐣 −𝐆𝐢𝐒𝐢𝐣𝐆𝑇
𝐣
‖

‖

‖

. (7)

Here,  represents the set of relations in our data, 𝐌𝐢𝐣 denotes a relation matrix between concepts 𝑖 and 𝑗, and ‖⋅‖ represents the
Frobenius norm. Although matrix factorisation is a NP-HARD problem, an efficient implementation to solve this problem, based on
multiplicative updates (Žitnik and Zupan, 2014), is available in the scikit-fusion library (Čopar et al., 2019).

As in other factorisation methods, each concept matrix 𝐺𝑖 requires a rank parameter 𝑘𝑖. The rank 𝑘 determines the dimension
of the latent space that represents the data; one interpretation of its meaning is how much the data is compressed in its latent
representation. For instance, if 𝑘 is very small in comparison to the total dimension of the concept, there is a risk of information
loss due to extreme compression; conversely, for large values of 𝑘, the model may overfit and give more importance to noise than
to the actual information in the model.

In our context, we aim at compressing the data enough to learn patterns behind each concept, while at the same time allowing
the reconstruction of the data to be different from its initial value, as we assume that we are updating the data, rather than merely
compressing/decompressing it. Furthermore, we need to balance the complexity of the model (higher ranks imply a more complex
model) with the computational cost of performing the factorisation. As such, we evaluated several rank functions and followed the
commonly used elbow method to select a function (see Supplementary Material Section A3 for details). We selected the following
heuristic to estimate the rank 𝑘𝑖 for a concept 𝑐𝑖:

𝑘𝑖 = 2 ×
√

|𝑐𝑖| − 1, (8)

here |𝑐𝑖| is the cardinality of 𝑐𝑖 (see Table 1).
By solving the optimisation problem, all relations in the dataset can be reconstructed by multiplying the corresponding concept

nd backbone matrices. In particular, the reconstructed mode split matrix R01’ can be obtained directly through the following
ultiplication:

𝐑𝟎𝟏′ = 𝐆𝐦𝐮𝐧𝐢𝐜𝐢𝐩𝐚𝐥𝐢𝐭𝐲 × 𝐒𝐦𝐮𝐧𝐢𝐜𝐢𝐩𝐚𝐥𝐢𝐭𝐲,𝐦𝐨𝐝𝐞 ×𝐆𝐓
𝐦𝐨𝐝𝐞. (9)

his R01’ matrix is the ultimate result of this pipeline, as it expresses the modal split in terms of the knowledge available in the
ntire dataset, in addition to the initial estimation.

The solution to the optimisation problem is guaranteed to be a local optimum only, due to the method being based on
ultiplicative updates. Since this method employs random numbers to initialise and then improve a solution, the procedure to

elect the best model is to run multiple instances, each with a different random seed for initialisation. The criteria for selection is
ased on minimising reconstruction error (Žitnik and Zupan, 2014). Here, we define the global error 𝑒 as the geometric mean of

normalised reconstruction error, defined as follows:

𝑒 = ||−1

√

√

√

√

√𝛱𝐌𝐢𝐣∈,𝐌𝐢𝐣≠𝑅01

‖

‖

‖

𝐌𝐢𝐣 −𝐆𝐢𝐒𝐢𝐣𝐆𝑇
𝐣
‖

‖

‖

‖

‖

‖

𝐌𝐢𝐣
‖

‖

‖

. (10)

The model with the smallest reconstruction error 𝑒 will be selected. Note that the R01’ matrix is excluded from this calculation as
its difference with the original R01 matrix is not interpreted as an error, rather, we interpret it as the change in modal split.

Next, we analyse the results of applying these methods to the data from Santiago, Chile.

5. Results

In this section we report the results of following the data fusion approach with data from Santiago (Chile). First, we focus on
the model selection procedure. Then, we analyse the updated mode split reconstructed by the best model. And finally, we validate
our results with an official data source.

5.1. Model selection

In total, we adjusted 100 different models with different seeds for the random initialisation. Here, we report the reconstruction
of the R01’ matrix in all these models (see Fig. 11). We observe that the relative mode share per municipality exhibits variability,
however, the municipalities with larger variability are outside of the main urban area. This could be expected, as peripheral
municipalities have less data available. In general, the behaviour is arguably stable: the greatest standard deviation in share change
14

per mode of transportation is 0.12 (mass-transit), whereas the smallest is 0.05 (taxi).
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Fig. 11. Each boxplot shows how the relative share of the mode split per municipality varies with respect to 100 adjusted models. Each model has a different
random initialisation.

Regarding reconstruction error per matrix, there are several magnitudes depending on the relation being analysed (see Fig. 12).
First, the matrices related to population statistics had a very small error (median of 0.05 in all fitted models), whereas other matrices
presented slightly higher values (such as the median of 0.11 in the municipality and income relation). This implies that the latent
representations of the official data from the city are accurate. Moderate errors come from matrices such as the relation between
application usage and mode of transportation (median of 0.44). This value was expected to be high, as few applications were known
to be associated with modes of transportation, and the remaining applications had a uniform imputed value of 0.25 (so they were
equally associated with each mode of transportation). Larger errors come from the mobile phone data relations (median of 0.87
for the municipality and waypoints relation), which are larger and sparser than the other relations. As such, this was expected, as
these relations exhibit detailed behaviour from the population at waypoint resolution, whereas the other matrices, which are used
to reconstruct the data, contain data at a coarser resolution. We expect the model to find the most important patterns connected to
the other matrices, as in previous work using matrix factorisation of mobile phone data (Graells-Garrido et al., 2018b). To select the
best model among the 100 instances, we chose the one with the lowest global reconstruction error, defined as the geometric mean
of individual reconstruction errors. We observe that the municipality and mode of transportation relation (R01’) exhibited a median
change of 0.2, which indicates a moderate change in transportation patterns. Recall that this change is interpreted as the change
in the modal split rather than an error. We discuss these changes for the selected model in the next section. Since we focus the
remainder of this paper in the updated mode split by this model and its validation, we refer the reader to Supplementary Material
Section A4 for a detailed view of all latent matrices for concepts and relationships.
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Fig. 12. Boxplot of analysis of model error. Each glyph represents the normalised reconstruction error for a relation in the dataset. A box comprises the range
between the first and third quartile of values, as well as the median of the distribution. Whisker lines express the spread of the data, and dots represent outlier
model instances. In total, we ran 100 model instances.

5.2. Updated mode split

Next, we used the best model to reconstruct an updated mode split for the city. Compared with the initial mode split from 2012,
we observe the following changes from the best factorisation model: a decrease in mass-transit usage from 39.44% to 31.40%, an
increase in motorised transport from 40.64% to 50.36%, a decrease in active trips from 16.15% to 13.47%; and an increase in taxi
trips 3.76% to 4.76%. These changes are similar to those observed between the Santiago Travel Survey 2012 and 2001: motorised
transport increased by 5.1% and mass-transit was reduced by 6.4% (Muñoz et al., 2015).

The differences in the mode split reconstruction exhibit a geographical dependence on the distribution (see Fig. 13). Most relevant
changes happen in municipalities crossed or surrounded by metro or train lines. Only three municipalities exhibit an increase in
mass-transit share: Lo Espejo, Lampa, and Pe∼naflor; of them, only Lo Espejo is in the urban area. The increase in mass-transit share
in Lo Espejo is expected since Pineda and Lira (Pineda and Lira, 2019) found that after the implementation of the metro line 6 in
2017, trips with origin in Lo Espejo reduced their travel time by around 8 min. Additionally, this municipality was benefited for
the first time with a train station integrated into the public transport system in 2017, whereas Lampa and Pe∼naflor may have been
benefited by their arguably close distance to the terminal stations of the new train and metro services put into operation in 2017 and
2019, respectively. Other municipalities exhibit a small variation in mass-transit, including Cerrillos, San Joaquín, Estación Central,
Lo Prado, Independencia, and Providencia. These municipalities have access to new metro lines since 2017 (Pineda and Lira, 2019).
Of particular interest is the mass-transit increase in Vitacura, one of the wealthiest municipalities in the country, with a strong share
of motorised transport in the last travel survey. We hypothesise that, due to the increase of remote work after the social outburst in
2019, the number of motorised trips decreased, thus, increasing the relative share of mass-transit. We included a relationship between
municipalities and occupations to account for this phenomena in our dataset. However, as there is not an official dataset regarding
the share of remote work for 2022, the test of this hypothesis is left for future work. Conversely, Conchalí, in the northern area of
the urban radius, which is also crossed by a new metro line, exhibited a high decrease in mass-transit share; in turn, all other three
modes increased considerably. Metro operations in Conchalístarted in 2019; then, we hypothesise that the social upheaval from that
year delayed the expected modal shift to public transport. All other municipalities decreased their mass-transit share. Most of them
were already well-connected to public transport. This difference could be explained by the quality of service of the public transport
system, which is globally perceived as overcrowded and slow (Tirachini et al., 2017).

Motorised, taxi and active trips exhibit an increase through municipalities in the entire area of study. Arguably, the increase in
motorised is the most expected relationship, as cars have increased their sales in the last years (as evidenced by the increase in
car permits), and as these vehicles are likely to replace public transportation for their owners (Beirão and Cabral, 2007). A similar
expectation holds with respect to taxi, although there are specific cases worthy of discussion. The literature states that ride-hailing
applications tend to replace public transport and traditional taxis in Santiago (Tirachini and del Río, 2019), and taxi exhibits a
geographical pattern, as most of the municipalities with increased taxi share belong to the Centre, North and West macro areas of
the city. These macro areas had a stronger metro network than the others, thus, we may hypothesise that ride-hailing has a tendency
to replace metro trips in Santiago, including municipalities with access to new metro lines. This result may be controversial, as it is
expected that the number of trips in public transportation would increase in those municipalities served by the new metro line since
it generated a decrease of 14% in travel time for its users (Pineda and Lira, 2019); thus, this opens a line for future work regarding
the effect of the social outburst in travel patterns in Santiago. Finally, one interesting pattern for us is how the municipalities
where active transport increased are primarily residential in the West and South macro areas. Further work is needed to understand
these changes, as this is an aspect of transportation affected by the COVID-19 pandemic and its corresponding municipal mobility
restrictions (Pappalardo et al., 2023).
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Fig. 13. Geographical distribution of modal split differences per municipality.

Table 3
Comparison of average daily commuting trips between our
proposed model and those reported by the ADATRAP system.

Macro area Proposed model ADATRAP

Centre 106,969 182,790
North 80,261 107,999
East 129,314 184,268
West 137,696 212,244
South 190,424 244,946
Total 644,664 932,247

5.3. Model validation with external sources

We made the first comparison between our results and ADATRAP at the macro area level (see Table 3). We grouped the total
averaged trips from each macro area. We observe that there is a systematic difference, where the proposed model always predicted
less trips than ADATRAP. This could be related to our initial modulation of bip! smart card registers from the National Institute
of Statistics, which could have been stronger, and thus, the model would have reported more mass-transit trips. Then, to quantify
how similar the prediction of our model was to the actual measured trips at municipality level, we used the Pearson correlation
coefficient 𝑟, defined as follows:

𝑟 =
cov(𝑋, 𝑌 )
𝜎𝑋𝜎𝑌

. (11)

This coefficient measures the statistical association between two vectors with the municipal averaged trip counts (𝑋 and 𝑌 ). The
𝑟 coefficient lies in [−1, 1], where a value of −1 indicates negative correlation, a value of 1 indicates positive correlation, and 0
indicates total independence. The results obtained from the comparison yielded a value of 𝑟 = 0.88 (𝑝 < 0.001) for the proposed
model, suggesting a strong positive correlation between the predicted trips and the actual measured trips. The initial guess of the
updated mode split also had a correlation of 𝑟 = 0.84 (𝑝 < 0.001), indicating that the initial estimation of the mass-transit share
was fairly accurate. The proposed model captures behaviour observed in official data sources and improves the initial guess by
integrating digital traces and other official data (see Fig. 14).

On the other hand, since we integrated several official data sources, where some of them are not directly related to transportation,
we tested two additional data configurations: one without DPI data, and without any mobile phone data (XDRs and DPI), with all
the other sources remaining active in each configuration. Note that the process to adjust a model in each configuration is always the
same, the only difference is the amount of available relation matrices. For each configuration, we fitted 100 model instances, and
then we estimated the Pearson correlation coefficient 𝑟 between each instance and the observed data by ADATRAP (see Fig. 15).
We observed that the global error is always greater when using more data. This can be explained due to the size and density of the
17
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Fig. 14. The bubble plot of correlation shows the relationship between the mass-transit trip counts predicted by the proposed model and the actual counts
observed in smart card data for the same period of study. Each bubble in the plot represents a municipality and its size is proportional to the municipality’s
population in 2020. In addition, each bubble is connected to a small dot that represents the initial mass-transit trip count used by the model.

Fig. 15. Relationship between model error (𝑦-axis) and correlation between model outcomes for mass transit and validation data (𝑥 − 𝑎𝑥𝑖𝑠). We tested three
data configurations: the proposed one that fuses all available data (official data, OpenStreetMap and mobile phone data from XDRs and DPI), one with the same
data with exception of DPI (application usage), and one using only official data and OSM. Each marker represents a model within each group, with the best
model of each configuration highlighted with a greater size and with colour.

relationships that involve waypoints (mobile phone towers), which are one order of magnitude greater than the rest of the data.
We also observe that our criteria to select the best model does not always pick the model with the best correlation with ADATRAP
data. In the configuration with all data available, the best model is one of the most correlated with observed data. However, in the
other configurations, this is not guaranteed; indeed, in the configuration without mobile phone data, the selected model has one of
the worst correlations with observed data. Additionally, the selected models for the test configurations present a worse result than
the baseline correlation obtained with the initial guess of the mode split. Thus, even though our criteria does not find the actual
best model according to ground truth data, it does pick one that is considerably better than the baseline. This suggests that future
work should identify an ad-hoc strategy for model selection.

Finally, one of the contributions from this work is the usage of DPI (application usage) from mobile phones. Then, it would be
important to assess the effect of incorporating this source into the model. The existence of a potentially better or comparable result
using less data requires additional analysis to justify the usage of several types of mobile phone data. At this point, we already
18
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t

Table 4
Pearson correlation coefficients between the predicted mode
split in the proposed data configuration and two configurations
with less data but similar validation results. All p-values are
Bonferroni-corrected.

No DPI No mobile phone data

Mass Transit 0.98 (𝑝 < 0.001) 0 .97 (𝑝 < 0.001)
Motorised 0.98 (𝑝 < 0.001) 0 .97 (𝑝 < 0.001)
Taxi 0.90 (𝑝 = 0.4) 0.49 (𝑝 = 0.001)
Active 0.95 (𝑝 < 0.001) 0 .93 (𝑝 < 0.001)

know that one quality is its determinism, that is, being able to select a model using an established criteria based on global error.
However, we also need to identify how different the results are. To do so, we estimated the Pearson correlation coefficients for each
mode split between our proposal and the other two data configurations (see Table 4). We observe that the mode splits are similar
between configurations with mobile phone data, with high correlation coefficients (all greater or equal than 0.9, with statistical
significance). We also observe that the only mode of transportation that presents a divergence from the obtained mode splits is taxi
when working without mobile phone data (0.49, 𝑝 = 0.001). This has a two-fold implication. On the one hand, it becomes clear that
he contribution of the mobile phone data is the ability to pinpoint the new taxi share, arguably through the signal of ride-hailing

application usage. For all other modes, the official data used may have latent factors that enable the model to identify part of their
changes, however, such analysis should be approached in future work. On the other hand, although this result suggests that without
using DPI (app usage), or even XDRs (trajectories), we found that it is possible to have a good up-to-date estimation of the modal
partition. We highlight that the two types of mobile phone data are necessary, as only when using them we have a replicable criteria
to find a model with good results in comparison to the baseline comparison.

6. Discussion

In practice, the Data Fusion approach requires a limited amount of data (a weekday of mobile phone data, as in the case study)
and supports incorporating domain knowledge or any other data source that can be expressed as a matrix. This is a strength of the
proposed method, as the demand for frameworks to fuse data from a multidisciplinary perspective is increasing (Meta et al., 2022),
and incorporating domain knowledge is crucial to the adoption of data-driven initiatives for transportation planning (Graells-Garrido
et al., 2020). Another strength is that the model works with aggregated data. Although we used individual-level mobile phone data,
the actual input for the model was mobility behaviour aggregated at administrative levels (for XDRs trajectory data), and at cell
phone tower levels (for DPI application usage data). The usage of aggregated data arguably diminishes potential issues regarding
privacy, and facilitates data transfer between organisations, due to its reduced size and its inherent anonymisation. Furthermore,
the good correlations observed with models using different subsets of the available data indicate that the data fusion approach has
potential even when using official data and geographical data only, which also opens a future line of work to identify which already
available official sources can aid in the determination of an updated mode split.

The main theoretical implication of this work is that data-driven transportation planning projects can still provide relevant
insights even in the presence of biassed data. Data bias is commonly considered an artefact affecting digital traces, such as the
mobile phone data integrated here. Such bias comes from access to technology due to income, cultural, social, or geographical
barriers. Note that the model implicitly accounts for this because the integration of official socio-economic data affects how the
model computes the representation of each concept in the dataset: the mobile phone data is used as one additional data source, not
the main one in estimating the mode split. We find this relevant because assessing bias for mobile phone data is challenging, due
to the data being anonymised. Indeed, despite the presence of bias in the digital traces, the correlation obtained by our model is
high and statistically significant.

6.1. Limitations

We identify three main limitations in this work. First, our validation only concerns the public transport share, although the
observed differences in other modes of transportation are coherent with expectations from the literature and the urban context.
However, to assess all the model outcomes, a comparison with official data that includes all the other modes of transportation must
be made. To the extent of our knowledge, the data necessary to make such a comparison does not exist at the moment of writing
this paper.

Second, our method integrates official data regarding socio-economic characteristics, occupations, migration, and the local
population. Arguably these sources implicitly control for data bias, yet the extent of such control is not quantified. This aspect is
relevant mainly for policymakers and urban planners, as they would base their work on the results reported by data-driven models
such as the one presented here. We also observe that the temporal granularity of the data we analysed is different, however, we
argue that the phenomena under study (mode split) is depicted with the finest detail possible, as we are using mobile phone data,
whereas official sources may represent yearly averages of phenomena that is well captured by the official sources as, indeed, the
authority and other institutions make use of that data every year.
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Third, our results are bound by the mobile phone network event frequency, the geographical tower distribution, and the distance
hreshold hyper-parameter of the trip detection method. Connected phones could be redirected between towers if this is needed to
andle network requests, which could result in false positives in trip detection. However, XDRs are an aggregated dataset that
onsolidates multiple connections into a single record, with an interval of 15 min in particular in our context. Although we cannot
ontrol by this problem, because the XDRs data is already aggregated, we expect its effect to be negligible in our setting due to the
onsolidation of the data, the fact that in our study period the expected behaviour of people is to travel to work or study locations,
nd that towers are distributed in the city to ensure quality of service (as reported by the mobile phone operator). As a result of this
imitation, a direct application of this work into other countries or datasets may need a sensitivity analysis and a hyper-parameter
election process to determine if mobility patterns inferred from XDRs (or similar) have enough resolution to be included in the
ata Fusion model.

.2. Future work

There is still a space to be explored regarding the variability of outcomes given different initial conditions, as well as the solution
pace of the proposed method. On the one hand, the initial solution used as base for the Data Fusion process provided a solid starting
oint, however, the method is bound by these initial conditions; a different strategy to build the initial solution may provide other
esults. Yet, our validation proves that this was, indeed, a well defined initial condition. On the other hand, our process to select
model did not perform any regularisation or reduction of the solution space, as it was based only on the random initialisation of

he latent matrices. One potential way to subvert this limitation is to include an additional operation in the optimisation problem:
estriction of must-link and cannot-link values of each concept. This operation is supported by the original model (Žitnik and Zupan,
014). However, additional domain knowledge is required to specify these restrictions. We leave the exploration of that solution to
uture work.

Our work focuses on commuting times, the most recurring activity in a city, however, there are many other activities and time
eriods that should be accounted for in urban planning. We expect that the model could be made temporally-aware by working
ith tensors in all relationships that may have a temporal dimension, such as the aggregated trajectories or the application usage
er municipality (Chen et al., 2019).

. Conclusions

In this study, we developed a novel methodology to address the data challenges in evaluating and informing transport planning
nterventions in cities. By utilising mobile phone data and data fusion techniques, we accurately estimated the mode of transportation
sage in Santiago, a major Latin American city.

Our findings reveal significant shifts in transportation modes over time. We observed a decrease in mass-transit usage, except
n areas with new metro/rail lines, indicating the impact of these infrastructure improvements. Motorised transport has increased
itywide, highlighting the ongoing challenges in promoting sustainability. Additionally, taxi usage, including traditional taxis and
ide-hailing applications, has risen, while the share of active transportation, such as walking and cycling, has declined. We validated
hese results using official data from smart card transactions, demonstrating the reliability and accuracy of our methodology. The
onsistency of our findings with domain knowledge and historical trends further supports the robustness of our approach.

Looking ahead, as cities face escalating challenges in achieving sustainable transportation goals, cost-effective tools provid-
ng finer data resolutions will be essential. Collaboration among scientists, private and public institutions, and the continued
evelopment of innovative methods, like ours, will play a pivotal role in addressing these challenges effectively.

In conclusion, our research advances the understanding of travel behaviour patterns and underscores the need for data-driven
pproaches in sustainable transport planning. By harnessing mobile phone data and data fusion techniques, cities can make informed
ecisions to promote public transit, reduce reliance on motorised vehicles, and foster a more sustainable and resilient urban future.
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