
Feasibility and Cost Minimisation for a
Lithium Extraction Problem

P. Bosch​a​, J.P. Contreras​a​, J.
Saavedra-Rosas​b,c,∗

a​Facultad de Ingeniera, Universidad del Desarrollo, Santiago, Chile ​b​Universidad de

Chile, Facultad de Ciencias F ́ısicas y Matemáticas, Departamento de Ingenier ́ıa de

Minas, Santiago, Chile ​c​Curtin University, Department of Mineral and Energy

Economics, Perth, WA, Australia

Abstract

In this paper we address the problem of allocating extraction pumps to
wells, when exploiting lithium rich brines, as part of the production of
lithium salts. The problem of choosing the location of extraction wells is
defined using a transportation network structure. Based on the
transportation network, the lithium rich brines are pumped out from each
well and then mixed into evaporation pools. The quality of the blend will
be based on the chemical concentrations of the different brines,
originating from different wells. The objective of the problem is then to
determine a pumping plan such that the final products have predefined
concentrations, and the process is operated in the cheapest possible
way. The problem is modelled as a combinatorial optimisation problem
and a potential solution to it is sought using a genetic algorithm. The
evaluation function of the genetic algorithm needs a method to determine
feasible minimum cost flows for the proposed pumping alloca- tion, thus
requiring the formulation of a blending model in a flow network for which
a new iterative non-convex local optimisation algorithm is proposed. The
model was implemented and tested to measure the algorithm’s
efficiency.

Keywords: Optimisation, Feasibility, Mine Planning, Lithium, Non-convex
Optimisation

∗​Corresponding author
Email addresses: ​pbosch@udd.cl ​(P. Bosch), ​juan.contrerasff@usach.cl

(J.P. Contreras), ​jsaavedra@ing.uchile.cl ​(J. Saavedra-Rosas)

Preprint submitted to Computers & Operations Research February 26, 2019

1. Introduction and motivation ​1

New mobile technologies such as digital cameras, notebooks and mobile ​2
phones are essential components of modern life. However, regardless of
which ​3 ​equipment is being used, its operational capability is limited by the
quality of ​4 ​the batteries used to power it. Increasing battery life has
motivated research ​5 ​of new technologies to store energy. Among several
new options for energy ​6 ​storage, fabrication of lithium based batteries has
become popular, this has ​7 ​been mainly motivated by the properties of this
element. Lithium is one ​8 ​of the lightest elements of the periodic table and it
is capable of providing ​9 ​a high electric potential, properties that have
transformed it into a highly ​10 ​consumed and demanded product. ​11 ​A good
source of lithium can be found in salt flats. Some of the most ​12 ​important
deposits in the world are located in Bolivia (Uyuni), northern ​13 ​Argentina
(Hombre Muerto), Israel (Dead Sea), United States (Great Salt ​14 ​Lake,
Silver Peak, Searle Lake and northern Chile (Salar de Atacama). ​15 ​The
Atacama salt flats are the biggest in Chile with an approximate ​16 ​extension
of 300 square kilometres, it is located in a valley between the ​17 ​Andes
Domeyko moutain ranges. This particular salt flat is composed by ​18 ​big
quantities of gypsum and salt rocks. The salt rocks are continuously fed ​19 ​by
brine with a 28-47 parts per million (ppm) concentration coming from the ​20
Salado and San Pedro rivers [16]. ​21 ​The extraction process consists in
pumping out brine from the salt flat ​22 ​using shallow surface wells, it needs to
be noted that pumping out brine ​23 ​from a well requires the use of a pump
that needs to be placed on the well. ​24 ​The extracted brine, when available

from the well, is saturated in salt and ​25 ​gypsum with high concentrations of

Na​+​, K​+​, Mg​+2​, Li​+​, Ca​++​, SO​4​−2 ​y ​26 ​Cl​− ​among others [15]. ​27 ​In the case of
Salar de Atacama, there are more than 200 wells enabled ​28 ​and around 90
available pumps that can be operated simultaneously to per- ​29 ​form the
extraction process. The chemical characteristics of each well are ​30 ​not
constant and change according to different properties such as depth or ​31
porosity of the soil, just to mention a couple of them. The constant input ​32 ​of
rivers, and the same extraction process, produce changes in the chemi- ​33
cal properties of the wells, which makes regular measurement of the those ​34
properties essential for the operation of the extraction method. Finally, the ​35
extracted brine is sent (by means of pumping) into evaporation pools where
36 ​different processes such as evaporation or decantation are used to obtain
the ​37

2

final products following specific chemical specifications. ​38 ​Given the
disparity in the nature of the wells, chemical properties and ​39 ​pump
capacities, it is possible that the mixture that is created in the evapora- ​40
tion pools (also called terminals or sinks), fails to provide the desired
chemical ​41 ​properties and concentrations in the final products. To avoid the
occurrence ​42 ​of this problem, intermediate accumulation pools that sit
between the ex- ​43 ​traction wells (sources) and the evaporation pools (sinks)
are used. These ​44 ​intermediate pools enable mixtures that increase the
chances to obtain the ​45 ​required concentration in the sinks. The pumping of
brine requires the use of ​46 ​energy which translates into costs that the
companies using this extraction ​47 ​technique have to pay. Due to different
characteristics, different extraction ​48 ​wells will require different energy
quantities used to transport the brines. ​49 ​It is desirable for the company to
obtain a final product, within specified ​50 ​specifications, with minimum
production cost. ​51 ​Figure 1 shows a schematic representation of a typical
operation. It can ​52 ​be observed that the different elements such as
extraction wells, connect- ​53 ​ing tubes, accumulation and evaporation pools
conform a network of inter- ​54 ​operating elements that allow the flow of
brines from the salt flat to the final ​55 ​destination where the product is

produced. ​56

Figure 1: Representative diagram of the network flow (sectional cut)

The general problem considered in this paper is to determine the set ​57 ​of
wells in which extraction pumps are going to be located, to create an ​58
extraction network together with an extraction schedule. This should be ​59
done in such a way as to obtain a flow satisfying chemical requirements in ​60
the final product and ideally at a minimum cost of production. ​61 ​The problem
thus formulated can be decomposed into two main elements: ​62 ​feasibility
and optimality. The first component, feasibility tries to obtain an ​63 ​extraction
schedule that is able to produce final product with the desired ​64

3
characteristics. ​65 ​The second problem looks at the cost component of the ​66 ​operation of
the system. For the purposes of this study, the problem has ​67 ​been decomposed
similarly into two components. One component uses a non- ​68 ​convex optimisation
algorithm to determine feasible flows when the location ​69 ​of the pumps has been
determined. The feasibility component is then called ​70 ​by an optimisation procedure,
that tries to obtain the cheapest possible way ​71 ​to operate a feasible flow, based on the
current characteristics of the wells ​72

and available pumps. ​Genetic Algorithm: wells selection problem
Each individual of population is a fixed network

The fitness function is the minimum cost ​flow on each ​fixed network

Flow in fixed network
Minimise Cost

Feasibility problem

Feasibility Problem
Minimise Chemical feasibility Error

Feasible flows of the network

Figure 2: Representative diagram of the structure of the algorithm
73 ​The remainder of this paper is organised as follows: In section 2 we per- ​74 ​form a

literature review and analyse classical pooling problem formulations ​75 ​over a fixed
network. In section 3 we develop a new model that considers ​76 ​specific requirements
present in extraction of Lithium rich brines(represented ​77 ​in figure 2 as the Feasibility
Problem box), and we establish an algorithm for ​78 ​local optimisation for a given
arrangement of extraction pumps, where the to- ​79 ​tal cost of the operation is
proportional to the amount of brine moved trough ​80 ​the network. This optimisation
algorithm uses the feasibility problem and ​81 ​approximates the final concentrations
adding cost constraints (represented in ​82 ​figure 2 as the Flow in fixed network box). In
section 4 the network topology 4

problem is considered and approached using genetic algorithm (GA) utilis- ​83

ing the feasible flow algorithm defined before. The GA calls the algorithm ​84

presented on section 3 to assess the feasibility of a proposed arrangement
of ​85 ​pumps being evaluated (see figure 2). In section 5 numerical tests run
over ​86 ​a simulated instance with 90 extraction wells, 8 mixing pools, 6
evaporation ​87 ​pools and 10 components are presented. Finally, in section 6
we conclude ​88 ​and present some possible extensions. ​89

2. Related literature ​90

Blending problems with cost minimization have been largely studied un- ​91
der the distinctive name of pooling problems. In [18] pooling problems are ​92
described as a mix between blending problem and classical network flow ​93
problems. Three types of resources are distinguished in the network: source
94 ​containing material with a known chemical specification, intermediate pools
95 ​used for accumulation and mixing, and sinks where material is blended
into ​96 ​a specific quality specification. The usual objective in pooling problems
is to ​97 ​determine a minimum cost plan to flow material within the network
such that ​98 ​final blend specifications are satisfied. The pooling problem is
very important ​99 ​in the petrochemical industry context. Nevertheless, its
general formulation ​100 ​can be adapted to other application areas such as
waste-water treatment, ​101 ​paint industry or emissions control. More details
about application areas ​102 ​for this problem can be found in [21]. In this paper,
a novel application of ​103 ​pooling models has been proposed for Lithium
industry. ​104 ​The first mathematical nonlinear formulations were introduced by
[19], ​105 ​for this model which uses specification variables, corresponds to the
most in- ​106 ​tuitive model and its know as p−formulation. Later, newer

modelling options ​107 ​were proposed, for example the q−formulation was
proposed in [7] and [27] ​108 ​replaced the specification variables by proportion
variables which denote the ​109 ​fraction of incoming flow from sources to
mixing pools. The pq−formulation ​110 ​proposed in [32], incorporates some
extra and valid inequalities derived from ​111 ​a reformulation-linearisation
technique into the q−formulation. Also, a hy- ​112 ​brid formulation that
combines specification and proportion variables can ​113 ​be find in [4], where
the proposed model extends the q−formulation. The ​114 ​same author defines
generalized pooling problems where connections between ​115 ​pools are
permitted. In [23], the model became more general and included ​116 ​the
topology of the decision network. Pooling problems are known to be ​117
NP-hard and all the models above are equivalent, a complete survey about
118

5

different models can be found in [17]. Some points are common for all formu-
119 ​lations: classical flow constraint are used to model material transport
trough ​120 ​the network, objective function is linear and represents the cost of
transport- ​121 ​ing material through the network, or can represent profit
associated with the ​122 ​sale of products obtained in terminal sinks. Upper
bounds are used to limit ​123 ​incoming flow into the network resources. Bilinear
constraint are required ​124 ​to describe chemical specifications in pools and
final blends, those last ones ​125 ​being also involved in range constraints. ​126
Lithium applications requires some modifications with respect to the clas- ​127
sical formulations of the pooling problem. In particular, in this paper we ​128
consider demand constraints in final blends. Demand constraints force po- ​129
tential solutions to the problem to bring flow in all the terminal sinks, and at
130 ​the same time all the chemical specification constraints in the problem
must ​131 ​be satisfied. This represent a departure with respect to the more
classical ​132 ​pooling problem formulations, because in the standard pooling
problem a ​133 ​flow equals to zero is always a feasible solution for which
specification con- ​134 ​straint are trivially satisfied. As mentioned in [29], using
demand constraints ​135 ​to find a feasible solution makes the problem harder,
however, the feasibility ​136 ​domain for the problem gets smaller and it might
be easier find an optimal ​137 ​solution using exact methods. ​138 ​Several
approaches to solve pooling problems have been proposed using ​139 ​local

and global optimization techniques. Some local optimization techniques ​140
include successive linear programing (SLP) [31, 5], here bilinear constraints
141 ​are linearised using Taylor’s expansion and a sequence of strategic linear
142 ​programs (LPs) are solved. In [4], a branch-and-cut quadratic algorithm is
143 ​proposed, also new variable neighborhood search heuristics (VNS) are
de- ​144 ​veloped, and then a comparison of this method with the SLP method
is ​145 ​provided. Methods that approximate bilinear constraints, such as the
one ​146 ​found in [26] are also found in the literature, in this work the author
discre- ​147 ​tises quality variables, whilst in [2] the discretisation is done in the
domain of ​148 ​proportion variables. Global optimization efforts include:
generalized Ben- ​149 ​der’s descomposition [12] and Lagrangian-based
methods [3, 1]. Applications ​150 ​of general methods like global optimization
algorithm (GOP) defined in [33], ​151 ​approximate a global solution through a
series of primal and relaxed dual ​152 ​problems. Also, different
branch-and-bound or branch-and-cut procedures ​153 ​have been proposed,
see for example [27], where a relaxed LP is proposed ​154 ​and used in a
spatial search. In [13], convex approximations of the bilinear ​155 ​terms are
investigated. A more detailed and complete survey about tech- ​156

6
niques ​157 ​to solve pooling problems can be found in [18]. ​158 ​3. Flow in a fixed network ​159
The transport network is modelled as a directed graph G = (V,A), defined ​160 ​by a set of
nodes V = S ∪ I ∪ P, where S,I,P are disjoint sets which ​161 ​correspond to extraction
wells, accumulation pools and evaporation terminals ​162 ​respectively. In the set A of
edges for the graph, the only pairs that are found ​163 ​are those that connect nodes of S
with nodes of I, and those that connect ​164 ​nodes in I with nodes in P, no direct arcs
between sources and terminals are ​165 ​permitted. A = {(s, i) : s ∈ S, i ∈ I}∪{(i, p) : i ∈ I,
p ∈ P} (1)
166 ​For each accumulation pool it is considered that there is a minimum incoming ​167 ​flow
(ε > 0), otherwise the existence of the pool would not be justified. The ​

168 ​variable f​u,v

denotes the flow being moved from node u to node v. The ​169 ​condition f​u,v ​≥ 0 ∀(u, v) ∈

A indicates that the flow is unidirectional. The ​170 ​following constraints are introduced into

the model: • (C1) Flow conservation: ​∑​
s∈S​

f​
s,i ​− ​∑​

p∈P​171

f​
i,p ​= 0 ∀i ∈ I • (C2) Available capacity in sources: ​∑​

i∈I ​172 ​f​s,i ​≤ F ​s ​max ​∀s ∈ S ​173

• (C3) Minimum flow required in terminals: ​∑​f​i,p ​≥ F ​p ​min ​∀p ∈ P ​i∈I

174

• (C4) Minimum flow required in accumulation pools: ​∑f​
s,i ​≥ ε ∀i ∈ I ​s∈S​175 ​The set of

feasible flows of the network is thus defined by the satisfaction 7
of ​176

these four constraints and parametrised by ε: Φ​ε ​=

�​�������������​�​��������������������������

∑f​s,i ​≤ F ​s ​max ​∀s ∈ S ∑​i∈I

s∈S​������������� ​f​s,i ​− ​∑​p∈P​f​i,p ​= 0 ∀i ∈ I ​f ∈ R​|A|

+ ​
: ​∑​i∈I

(2)
177 ​3.1. Feasibility flow ​178 ​The problem currently modelled in this first stage is a feasibility
problem, ​179 ​i.e., our objective is to find a flow creating a mixture of chemical solutions ​180
in the evaporation nodes, where the expected concentrations are obtained in ​181 ​those
nodes. Some mathematical transformations and operations are intro- ​182 ​duced in order
to model the feasibility problem as a conditioned least squares ​183 ​problem, and then use
classical non-linear optimization techniques to solve ​184 ​it. ​185 ​In what follows, E denotes
the set of chemical products present in the ​

186 ​mixture. On each node v ∈ V of the

network, a variable z​v,e ​is defined which ​187 ​denotes the concentration of the component
e present in that particular node. ​188 ​The initial concentrations in the source nodes can
be measured and they will ​

189 ​be considered being data for the problem and denoted by

ˆz​s,e​. A natural ​190 ​condition is then imposed: z​s,e ​= ˆz​s,e ​∀ s ∈ S, e ∈ E (3)
191 ​The concentration of components in pools and terminals can be deter- ​192 ​mined
uniquely from the flow and initial concentrations by means of a mass ​193

balance (in absence of chemical reactions of the components) z​i,e ​= ​f​i,p ​≥ F ​p ​min ​∀p ∈ P

∑​s∈S​f​s,i ​≥ ε ∀i ∈ I

∑z​s,e​f​s,i ​∑​s∈S​∑​i∈I

s∈S​f​s,i

z​i,e​f​i,p ​∀i ∈ I,e ∈ E ∧ z​p,e ​=
∑∀p ∈ P, e ∈ E (4)

i∈I

194 ​Defining Z = (z​v,e​) as the matrix that contains all the concentration va- ​195 ​riables, then

the initial condition (3) and the equations (4) can be written 8
f​i,p
more ​196
concisely (in matrix form) as: L(f)Z =
]
(5)
197 ​where L is an operator that associates to each flow a square matrix (lower ​198

triangular) whose elements are l​n,m​(f) =

[​Z
�

 S

0​(|V |−|S|)×|E|

�​����������

1 ​∑​if m = n, n ≤ |S| ​u∈V ​f​u,n ​if m = n, n > |S|

−f​m,n ​if m<n ​0 otherwsise
(6)
Being L a lower triangular matrix, its determinant can easily be computed as the product
of the elements on its diagonal. Using also constraints (C3) and (C4) we obtain the
following expression for the determinant:

det(L(f)) = ​∏

v∈V −S

(​∑​f​u,v​)

≥ ε​|I| ​∏​
u∈V ​p∈P

F ​P ​min ​> 0

199 ​hence, the operator L is invertible (det(L(f)) = 0) and the concentration ​200 ​variables
can be expressed uniquely in terms of flows and initial concentra- ​201

tions Z(f) = L(f)​−1 ​[​
Z​̂ S

0​(|V |−|S|)×|E|

]​. (7)
202 ​On each terminal it is expected that a final product with a pre-specified ​

203 ​chemical

composition can be obtained. If we denote by ˆz​p,e ​the concentration ​204 ​of component e

expected in terminal p, we are then interested in those flows ​205 ​f such that z​p,e​(f)=ˆz​p,e ​∀

p ∈ P e ∈ E (8)
206

The previous condition can be expressed in matrix form as Q​P​Z(f) = Z​ ​̂P​(f) (9)

207 ​where Q​P ​= ​[​0​|P|×(|V |−|P |) ​Id​|P|​208 ​]​, then ​the concentration variables in the terminal ​Z​P​(f)

nodes ​:= ​whilst ​Q​P​Z(f) ​Z​
​̂
P​(f) corresponds is the matrix to ​209

|P|×|E| that groups the elements ˆz​p,e​. ​9
It ​210 ​is proposed that the following non-linear optimisation problem is solved ​211
to find flows satisfying the condition expressed by equation (9) min H(f) :=

∥​∥∥Z​P​(f) − Z​ ​̂P​s.t.

∥​∥∥​2​F ​f ∈ Φ​ε

(10)

212 ​here · ​F ​represents the Frobenius matrix norm, with the flows of inte- ​213 ​rest being
those such that H(f) = 0. The objective function, being non ​214 ​convex, could result in
local solutions to the optimisation problem for which ​215 ​H(f) = 0, in these cases only an
approximation to the desired concentrations ​216 ​is obtained. ​

217 ​The function H(f) is

differentiable for all f ∈ Φ​ε ​and its partial deriva- ​218
tives are given by the formula: ∂H(f)

∂f​u,v ​= tr​(​(​Z
�

 P ​− Z​P​(f)​) ​
(​Q​P​L(f)​−1​

∂L(f)

∂f​u,v ​
))

Z(f)(11)
219

220

where tr(.) represents the trace of a matrix derivatives of the components of L(f), more

and precisely ​∂L(f)

∂f​u,v ​is the matrix of the ∂L(f) ∂f​u,v ​=

(​∂l​m,n

)f​u,v

N×N ​∧ ​∂l​
m,n

f​u,v ​�​�​= ​�
1 , is n = v,m = v −1 ,if m = u, n = v

0 , otherwise
(12)
221 ​The calculation of the gradient of the objective function allows the use ​222
223

224

of which ​f​̂ m ​classical ​is obtained ​is a method non-linear ​as the ​of directions ​solution

optimisation ​of ​f​
m+1 ​

the ​techniques ​following ​= f ​m ​+αsuch ​m​(linear f ​̂ m ​as ​−fproblem:

Frank-Wolfe ​m​) where the ​method, ​vector ​min ∇H(f​m​) f
s.t.
f ∈ Φ​ε
(13)

225 ​On each iteration, the size of the step α​m ​can be chosen using an Armijo ​226 ​rule. Of
course, different direction methods and step size rules can be used ​227
to solve the problem, see for example [8] and [6]. 10
3.2. ​228 ​Incorporating Cost ​229 ​The movement of flows through the network requires an
important ex- ​230 ​penditure of energy, which directly translates into economic costs for
the ​231 ​company exploiting the salt flat. This cost is a variable one because it de- ​232
pends on the flow being moved. We must point out that obtaining a flow that ​233 ​satisfies
the demand constraint and chemical specifications - in evaporation ​234 ​nodes - is
important but not enough, because a solution having an excessive ​235 ​cost to it, is not
deemed practical alternative. ​236 ​It has been natural to model the cost function
components for the problem ​237 ​as linear ones [17]. Under this modelling paradigm, the
total cost of the ​238 ​operation will be proportional to the amount of brine moved trough
each ​239 ​element of the network. There are elements that are costlier than others ​240
(depending on distances, altitude with respect to the sea level, etc.). Let us ​

241 ​denote

c​u,v ​> 0 as the cost coefficients that indicate the cost of moving one ​242 ​flow unit using the
arc (u, v) ∈ A in the network, hence the total cost is given ​243

and noted as C f = ​∑

(u,v)∈A​
c​

u,v​f​u,v ​(14)
244

In an ideal situation, the problem that we would like to solve is: min C f s.t.
f ∈ Φ​ε ​H(f)=0

(15)
245 ​which is simply cost minimisation subject to flow feasibility constraints. Ho- ​246 ​wever,
constraint H(f) = 0 is a difficult one to achieve due to the non-convex ​247 ​nature of the

function H. To search for solutions that approximate product ​248 ​requirements and have a
minimal cost, we propose a method that exploits the ​249 ​linearity of the objective function
and use the idea developed in the previous ​250 ​section to obtain feasible flows. The
proposed method is iterative and works ​251 ​in the following way: ​252 ​1. On iteration k = 0 a
minimum cost flow is obtained f​(0) ​that solves ​253
the following linear problem LP min C f
s.t.
f ∈ Φ​ε
, (16)
11
let ​254 ​σ​∗ ​denotes the value of the minimum cost C f​(0)​. ​255 ​2. For iteration k, the flow f​(k−1)

of the previous iteration is used as a ​256
starting point for the Frank-Wolfe algorithm to solve the problem min H(f)
s.t.

f ∈ Φ​ε ​C f ≤ (1 + α​k​)σ​∗
(17)

257 ​3. If C f ​(k) ​< σ​∗​(1 + α​k​) or H(f​(k)​) is small enough, then the method ​258 ​finishes providing

f​(k) ​as a solution. Otherwise, we return to point 2 ​259 ​for iteration k + 1. ​
260 ​The sequence

of positive parameters α​k ​is chosen to be increasing, in a ​261 ​way such that lim​k→∞ ​α​k ​=

+∞, however the growth rate for the parameter ​262 ​should decrease from one step to the
other. One possible option is to build ​263

the parameters as α​k ​=

∑​k​j=1

a​j ​(18)

264 ​where (a​j​)​j∈N ​is a sequence converging to zero but whose series diverge, for ​265

example a​j ​= 1/j. ​266 ​The intuitive idea of the method is to approximate the final
concentrations ​267 ​on sets for which the cost is bounded. On each iteration the cost
increases ​268 ​allowing obtaining a better approximation of the required concentrations on
269 ​the final product. Also, the growth of the cost bound is smaller on each step ​270
allowing for a finer search. The method stops when an acceptable approx- ​271 ​imation is
obtained, this is when H(f​(k)​) is small, or when the cost bound ​272 ​is not active in problem
given by equation (17). In this last case, we are in ​273 ​presence of a local minimum for

the problem and there are no directions for ​274 ​which the search process could continue.
The previous statement and some ​275 ​properties are justified in the following theorem. ​276
Theorem 1. Let {f ​(k)​} the sequence generated by the iterative method, then ​

277 ​i. If f ​(k)

does not activates the cost constraint C f ≤ (1 + α​k​)σ​∗​, then it ​278 ​is a local minimum of H

over whole space Φ​ε​. ​279 ​ii. The iterative algorithm finishes. Also, if k is the first value for

which ​
280 ​H(f​(k)​) ≤ H​tol​, then the cost of f​(k) ​is at most (α​k ​− α​k−1​)σ​∗ ​units ​12

bigger ​281
f a local optima for the
ise C f

subject

to
H(f) ≤ H
∈ Φ​ε

(19
)

282 ​Proof. ​
283 ​i. This part is clear since φ​ε ​is convex and constraint C f ≤ (1 +

α​k​)σ​∗ ​284 ​is a cut. If f​(k) ​is a local minimum of problem (17) and the constraint ​
285

is not active, then no feasible descend directions of H over φ​ε ​can be ​286

found, and therefore is a local minimum of H over whole space Φ​ε​. ​287 ​ii. For

the second item, we know Φ​ε ​is compact due to the capacity con- ​288 ​straints

in the wells, then max{C f : f ∈ Φ​ε​} exists. As α​k ​→ ∞, ​289 ​at some point the
cost constraint is irrelevant and it wont be activate, ​290 ​which is one of our
stopping criteria. ​291 ​Finally, if k is the first non-negative integer for which H(f
(k)​) ≤ H​tol ​292 ​we have C f​(k−1) ​= (1+α​k−1​)σ​∗ ​because the algorithm does not stop

in ​293 ​k − 1, and C f ​(k−1) ​< C f ​(k) ​because f ​(k) ​is not attainable at iteration ​294 ​k −

1. Denote by f​∗ ​a local optimum of (19), then clearly H(f​∗​) ≤ ​
295 ​H​tol ​< H(f​(k−1)​),

and ​C f​(k−1) ​< C f​∗ ​≤ C f​(k) ​(20)

because f ​∗ ​is not attainable at iteration k−1. Join the results we

have

(1 + α​k−1​)σ​∗ ​≤ C f​∗ ​≤ C f​(k) ​≤ (1 + α​k​)σ​∗

from where it is easily obtained
that

C f​(k) ​≤ C f ​∗ ​+ (α​k ​− α​k−1​)σ​∗

296 ​D ​297 ​4. Choosing the Network: Genetic Algorithms ​298 ​The problem of
choosing the extraction wells consists in determining ​299 ​which wells (out of
all the possible set of wells) will be selected to build ​300 ​the definitive network
flow. Given that there are more wells than pumps 13

available to operate simultaneously, the problem is of a combinatorial nature
301 ​and we will use heuristic techniques to solve it. ​302 ​Between two different
wells the main two differences are: extraction cost ​303 ​and chemical
properties of the brine that can be extracted from them. In the ​304 ​previous
section, a method was proposed to determine flows that provide final ​305
products satisfying chemical requirements at minimum cost. In this section,
306 ​we will combine the method described previously with a genetic algorithm
307 ​(GA) to evaluate different network flow configurations and approximate an
308 ​optimal selection of the network configuration​1​. ​309 ​Let S be the set of all
the available wells with |S| = N and the whole ​310 ​network G = (S ∪ I ∪ P, A).
Let M be the quantity of extraction pumps ​311 ​that can be operated
simultaneously, we want to determine a subset S of S ​312 ​such that |S| = M

and the network G(S)=(S ∪ I ∪ P, A|​S​), which is the ​313 ​sub-network using
only the wells provided in S, be capable of providing a ​314 ​feasible flow at
minimum cost. ​315 ​Each time a subset S from S is fixed, a sub-network is
obtained for which a ​316 ​minimum cost flow can be sought that approximate
the desired requirements ​317 ​for the final product using the iterative method
presented in section 3.2. ​318 ​This mechanism provides an evaluation system
for any choice of wells and ​319 ​potentially allows the use of other heuristic
optimisation methods. ​320 ​Genetic Algorithms, originally proposed by J.
Holland [20], are methods ​321 ​that are able adapt to different problems in

search and optimisation. They ​322 ​are inspired in the Darwinian evolutionary
process for live organisms, in ​323 ​particular, natural selection and survival of
the fittest. ​324 ​GAs use the natural selection process as the key driver for an
adaptive ​325 ​search of good solutions to a given problem. It starts with a
selection of ​326 ​a representation of potential solutions to a problem (encoding)
and from ​327 ​there an initial population is generated (where each individual is
a potential ​328 ​solution to a given problem), those individuals are evaluated by
means of a ​329 ​fitness function (or objective function) and submitted to a
selection process ​330 ​that will define whose individuals will pair to produce
descendants (crossover ​331 ​and mutation). ​332

1​It is important to mention here that GAs do not provide a certificate of optimality but ​they are

generally used as an alternative in the context of difficult combinatorial problems, which
motivates our choice.

1
4

4.1. ​333 ​Proposed Encoding ​334 ​Encoding is a fundamental block in GAs. Each possible
solution to the ​335 ​problem needs to be encoded as an array of genes (data) and, ideally,
each ​336 ​chain of genes should correspond to a possible solution. For the wells selection
337 ​problem the feasible solutions are subsets of S with M elements, so we need ​338 ​an
encoding that represents such subsets. Lam [22], proposed an encoding ​339 ​with
pigeon-hole coding scheme for solving sequencing problems which is ​340 ​suitable for
being applied in our context of pump allocation. ​

341

342 ​Let S = N). To represent {s​i​1​, ..., the s​i​M​} subset a subset of of S selected = {s​1​, ..., s​N​}

with M elements (M ​wells S through the pigeon-hole ​< ​343 ​encoding we use an array of M

entries. The array components [p​1​, ..., p​M​] ​344

are chosen according to the following rule: p​1 ​= i​1

p​k ​= i​k ​−

∑​k−1​j=1

φ​k​(i​j​) k > 1 (21)
345

where φ​k ​is such that ​φ​k​(i​j​) =

{ ​1, if i​j ​< i​k

0, otherwise ​(22)

To better illustrate this coding scheme, a toy example will be considered. Suppose we

want to encode the selection S = {s​2​,s​3​,s​6​,s​8​}, i.e. the wells 2, ​3, 6 and 8 are selected
from a total of N = 9 possible allocations for pump installation. We start with a complete
list

s​1 ​− s​2 ​− s​3 ​− s​4 ​− s​5 ​− s​6 ​− s​7 ​− s​8 ​− s​9

The first element in the set S is s​2​, which is in the second position in the ​list. We set p​1 ​=

2 and we eliminate s​2 ​from the list:

s​1 ​−​ ​s​2 ​− s​3 ​− s​4 ​− s​5 ​− s​6 ​− s​7 ​− s​8 ​− s​9

The second element in S is s​3​, which is the second element in the remaining ​list, then

we set p​2 ​= 2 and we eliminate s​3 ​from the list:

s​1 ​−​ ​s​2 ​−​ ​s​3 ​− s​4 ​− s​5 ​− s​6 ​− s​7 ​− s​8 ​− s​9

15

The ​
346 ​process continues with s​6 ​that is in position 4, and then with s​8 ​that is in ​347

position 5 after the elimination of s​6​. The resulting chromosome is [2,2,4,5]. ​348 ​This
encoding rule allows to obtain chromosomic representations for which ​349 ​each entry k =
1, ..., M of the array is allowed to take values in a fixed range ​350 ​[1,M −k+1]. This
encoding allows the construction of feasibility preserving ​351 ​operators as they eliminate
the possibility of creating infeasible solutions ​352 ​after crossover and mutation operators
are applied to the individuals. This ​353 ​means that all chromosomes obtained represent
subsets with exactly M wells ​354 ​selected. This is an advantage of the pigeon-hole coding
with respect to ​355 ​others, more details and examples of this encoding can be found in
[22], where ​356 ​a similar idea is used in permutation problems. This same work shows
that ​357 ​the phenotype expression of these solutions can be obtained in O(M logM) ​358
time. ​359 ​4.2. Proposed Fitness Function ​360 ​The fitness function will be defined mainly as
the cost. However, combi- ​361 ​nations of wells for which there is no feasible flow can
exist. In the literature ​362 ​many techniques to deal with constraints in genetic algorithms
have been ​363 ​proposed, see for example [9, 24, 28]. In this paper infeasible networks

are ​364 ​penalised to avoid them propagating into future generations. The form of ​365

the fitness function is given by equation (23). F(S) = C ​S​f​S ​∗​
max{​1,1 + ​H(f​

S​∗​H​) ​tol

− H​
tol

}
(23)

366 ​Here, H​tol ​is the maximum error that should exist between the desired and ​
367

368

369 ​obtained network formed concentrations, by the wells f​S ​∗​in ​is ​S, ​the ​whilst ​flow ​in the

same network. ​vector obtained in section 2 for the ​C ​S​f ​S ​∗​
represents the cost of this flow

370 ​This fitness function takes the cost value if there is a feasible flow. In ​
371

372 ​the the opposite value of the case, objective the term function (H(f ​S​∗​)−H​will

tol​)/Hincrease ​tol ​is ​in ​positive ​relation ​and ​to the ​consequently ​cost. The ​373

374 ​last expression is and H​tol ​the bigger ​a ​will ​relative ​be the ​error, ​penalty ​the ​and ​bigger

thus ​the ​there ​difference ​will be ​between ​an incentive ​H(f ​S​to ​
∗​) ​

375 ​descend to
combinations that provide feasible flows [28]. ​376 ​4.3. Proposed Crossover and Mutation
377 ​Crossover consists in the combination of genetic material from at least two ​378
individuals (parents) in order to produce offspring. This is usually done by 16

splitting the chromosomic representation at a chosen point and exchanging
379 ​material from both genes in order to produce two individuals (offspring). ​380
Alternatively, there have been more complex crossover operations that have
381 ​been defined, for example multi-point crossover proposed by [14]. We
used a ​382 ​variant of a multi-point crossover which allows to preserve feasible
individuals ​383 ​after the application of the operator and not losing information
in the process. ​384 ​In this crossover variant, the chromosomes of the parents
are reordered by ​385 ​using a permutation π chosen at random, the permuted
chromosomes are ​386 ​then split in a randomly selected point to then
exchange the genetic material ​387 ​based on this point following the classical
crossover operator mechanism. ​388 ​Finally, the two new chromosomes
representing the offspring are reordered ​389 ​using the inverse permutation

π​−1​. This variant was tried in [22] showing ​390 ​being more effective than
regular multi-point crossover functions. ​391 ​The mutation process is very
important to avoid the accelerated conver- ​392 ​gence and provide chances of
completely exploring the feasible space. In our ​393 ​case, the mutation
operator works by selecting an individual gene from a ​394 ​chromosomic
representation for an individual. The selected gene is changed ​395 ​for other
gene feasible for the current encoding, i.e., if the gene k is selected ​396 ​then

the value at position k (denoted by p​k​) is changed to any value in the ​397
range [1,M −k+1] which is the set of feasible values for the gene in position
398 ​k. ​399 ​It also important to say that crossover and mutation are applied only
400 ​to a fraction of the individuals in the current population, that fraction is a ​401
parameter of the GA and is usually defined before the algorithm is executed.
402 ​There are possible ways of creating an evolving mutation pressure [11],
but ​403 ​that is out of the scope of the present work. ​404

5. Numerical Results ​405

To evaluate the efficiency of the proposed methods, an instance of the ​406

problem with 90 extraction wells, 8 mixing pools, 6 evaporation pools and ​407

10 components was simulated. The chemical qualities of the brine on each

408 ​well were simulated using a normal distribution with mean μ​e ​and variance

409 ​σ​2​e ​
specific for each component, these distributions were taken from a

real-life ​
410 ​dataset which cannot be revealed due to confidentiality

restrictions. In table ​411 ​1 the values for each one of the nine components of
the brine are shown, also ​412 ​explicit on the table are three ranges of
variability for each component (Low, ​413 ​Medium and High). Let us recall here
that the tenth component of the brine ​414

1
7

is water, and that this component is fixed after the remaining nine compo- ​415

nents are determined in order to accomplish the desired chemical balance
for ​416 ​the brine. Following a similar technique, the concentrations required for

the ​417 ​product were simulated at the evaporation pools. ​418

K​+ ​Na​+ ​Mg​++ ​Ca​++ ​SO​−− ​4 ​
Li​+ ​Cs​+ ​Rb​+ ​Cl​− ​μ​e ​4 6 1.5 0.05 1.6 0.2 0.002 0.002 15 σ​e ​(Low) 1.2 1.8

0.45 0.015 0.48 0.06 0.0006 0.0006 4.5 ​σ​e ​(Medium) 1.6 2.4 0.6 0.02 0.64 0.08 0.0008 0.0008
6 σ​e ​(High) 2 3 0.75 0.025 0.8 0.1 0.001 0.001 7.5

Table 1: Values used to generate
concentrations

The maximum flows in the wells, minimum flows in the sinks and costs ​419 ​for
every arc of the system were obtained from uniform distributions that ​420 ​were
defined based on real-life examples. In table 2, the bounds for each ​421

uniform distribution used later in numerical simulations are shown. ​422

F ​max ​s ​
F ​min ​p ​

c​
i,p ​c​s,i ​(Low) c​s,i ​(Medium) c​s,i ​(High) ​Uniform[a, b] [100,500] [500,1500] [50,300]

[50,250] [250,750] [750,1000]

Table 2: Range of values to generate capacities and
demands

Finally, the 90 extraction wells were grouped in 9 categories depending ​423 ​on
the range of variation of the cost of their connections and the variability ​424 ​σ​e

with which they were simulated, see table 3. ​425

Wells Cost Deviation σ​e

1-10 Low Low 11-20 Medium Low 21-30 High Low 31-40 Low Medium 41-50
Medium Medium 51-60 High
Medium 61-70 Low High 71-80
Medium High 81-90 High High

Table 3: Cost level and deviation associated to each well of the
instance

The rationale for this categorisation was to try the efficiency of the GA to ​426

determine the low cost wells over the rest. Also, different deviations allow for
427 ​heterogeneous wells and thus provide more chances to obtain feasible
flows. ​428

1
8

Once a set of parameters were fixed, a representative instance of a real ​429

operation was simulated, this instance being used for all the subsequent nu-
430 ​merical experiments. All the numerical experiments were implemented in
431 ​Matlab 2015b ​R ​and run over a two-cores Intel ​R ​Xeon ​R ​2.10 GHz proces-
432 ​sor with 120 GB RAM. ​433

5.1. Results of the Algorithm on a Fixed Network ​434 ​In this subsection the
results for the iterative algorithm proposed in sec- ​435 ​tion 3.2 are shown. In
the first experiment the algorithm was run in a network ​436 ​formed by the first
30 wells, the first 6 mixing pools and the first 4 terminals. ​437 ​The ε parameter

was set to 150 on each pool and the bound for the flow was ​438 ​set at H​tol ​=

0.005. ​439 ​Table 4 shows the detail associated with the execution of the
algorithm ​440 ​on each iteration. It can be seen that the cost increments on
each iteration ​441 ​in exchange for an improvement in the error H. Also, on
each iteration the ​442 ​upper bound for cost is activated by flow, this indicates
that the algorithm ​443 ​hasn’t yet reached a local minimum for the error
function H. The algorithm ​444 ​finally stops because the feasibility condition is

satisfied on the tenth iter- ​445 ​ation because H(f​(10)​) ≈ 0.0048 < H​tol ​= 0.005,

which corresponds to the ​446 ​tolerance for the tolerance parameter used. ​447

Cost Chemical Feasibility Number of Linear Step Upper Bound Iteration C f​(k) ​Error Problems Solved Time (s)
Size for Cost

k 10​6​× H(f​(k)​) α​k ​(1 + α​k​)σ​
∗

0 1.28006 0.0387624 1 0.06792 1 1.33824 0.0249418 5 0.33961 0.0454545 1.33824 2 1.3939
0.0202474 8 0.54338 0.0889328 1.3939 3 1.44723 0.0171903 3 0.20377 0.130599 1.44723 4 1.49843
0.014379 8 0.54336 0.170599 1.49843 5 1.54767 0.0122924 5 0.33958 0.209061 1.54767 6 1.59508
0.0103324 4 0.27168 0.246098 1.59508 7 1.64079 0.00868291 4 0.27172 0.281812 1.64079 8 1.68493
0.00770056 13 0.88299 0.316295 1.68493 9 1.7276 0.00593553 12 0.81506 0.349628 1.7276 10
1.76889 0.00484909 14 0.95091 0.381886 1.76889

Table 4: Detail of the first 10 iterations of the algorithm

The relationship between the required concentrations and the ones ob- ​448
tained by the algorithm solution can be observed in Table 5. ​449

1
9

Final Concentrations Obtained by the Solution p​i ​K​+ ​Na​+ ​Mg​++ ​Ca​++

SO​−− ​4 ​1 4.21571 6.95081 0.985001 0.278726 1.68288 ​2 3.90522
5.78063 1.48044 0.0824016 1.59547 3 3.70371 5.59635 1.48876

0.0439441 1.55669 4 3.59542 6.24282 1.49284 0.0656936 1.5741

Li​+ ​Cs​+ ​Rb​+ ​Cl​− ​H​2​O ​1 0.1935 0.00958781 0.0100856 17.6296 68.0441 2 0.243044
0.0039782 0.00737257 16.9589 69.9426 3 0.214274 0.00273388
0.00321942 15.8596 71.5307 4 0.215697 0.00280991 0.00258133
14.2589 72.5492

Expected Concentrations in Terminals p​i ​K​
+ ​Na​+ ​Mg​++ ​Ca​++ ​SO​−− ​4 ​1

4.16501 7.23714 0.908952 0.345733 1.70645 ​2 3.93163 5.75791
1.46414 0.0658964 1.62662 3 3.63805 5.57221 1.57454 0.0503128

1.64443 4 3.52376 6.33129 1.68021 0.0522424 1.56423

Li​+ ​Cs​+ ​Rb​+ ​Cl​− ​H​2​O ​1 0.184971 0.0069297 0.00826535 17.7987 67.6378 2 0.240016
0.0049896 0.00553624 16.7229 70.1803 3 0.180214 0.00210902
0.00167513 15.4334 71.9031 4 0.203566 0.00196312 0.00227591
12.867 73.7735

Table 5: Comparison between concentrations obtained and expected in for ten
compounds

The next experiment performed was designed to answer the following ​450
question: What would happen if we change the 30 wells initially chosen?, ​451
i.e., if we chose a different set of 30 wells leaving all the other parameters ​452
equal. On the first column of Table 6 the wells chosen are individualised (out
453 ​of a list of 90 wells of our previously simulated instance), the second
column ​454 ​is the cost for the flow that is obtained in the step k = 0 of the
algorithm, ​455 ​i.e., when the flow is minimised without considering the
chemical feasibility ​456 ​constraint (see problem (16)). The third column of the
table just shown the ​457 ​chemical feasibility error of the initial (unconstrained)
solution. The remain- ​458 ​ing columns are concerned with the application of
the iterative algorithm ​459 ​and show the cost, the error, number of iterations
and time respectively of ​460 ​the application of the iterative algorithm. ​461 ​It is
important to note the great behavioural difference that exists between ​462

problems of the same size, but for whom the only difference are the initial ​463
chemical compositions for the brines on the extraction wells. In particular, it
464 ​can be seen that for the second set (wells from 11 to 40), it was not
possible ​465 ​to attain a feasible solution, the algorithm stopped on the third
iteration ​466 ​without finding a chemically feasible flow, i.e., the algorithm
stopped because ​467

2
0

Selected Minimum cost, Problem (16) Iterative Algorithm
wells C f​(0) ​(10​6​×) H(f​(0)​) C f​∗ ​(10​6​×) H(f​∗​) Iter. time (s) 1–30 1.2801 0.0388 1.7689 0.0048 11 5.23 11–40 1.3885 0.0727 1.3339
0.0674 3 0.38 21–50 1.1606 0.1056 1.2639 0.0050 3 8.30 31–60 1.1606 0.1056 1.3120 0.0033 4 8.14 41–70 1.0314 0.2386 1.2074
0.0048 5 35.47 51–80 1.0157 0.2192 1.1483 0.0036 4 24.87 61–90 1.0157 0.2192 1.1483 0.0038 5 25.23
Table 6: Variation of the thirty extraction wells

C f​(3) ​< Cf​(0)​(1 + α​3​) (see step 3 of the algorithm in section 3.2). The fact ​468 ​that there are
some sets of wells for which there is no chemically feasible ​469 ​flow justifies the choice of
fitness function for the genetic algorithm (see ​470 ​23). Also, it can be seen that the total
cost associated to the feasible flow ​471 ​changes greatly depending on which 30 wells are
used in the brines extraction ​472 ​operation; in the next section the numerical results
relating to finding which ​473 ​30 wells to use by means of a genetic algorithm will be
discussed. ​474 ​Table 7 compares the performance of the proposed algorithm in relation
475 ​to other established algorithms. The summary of the average obtained for ​476 ​the 6
problems that were run previously for which there was a chemically ​477 ​feasible solution
is reported. For the analysis, the problem instance for which ​478 ​there was not chemically

feasible flow, according to the tolerance parameter ​479 ​H​tol ​= 0.005, was excluded from

the reported results. ​480
Minimum Cost Iterative Algorithm MINOS BARON
(CPLEX)

Cost C f​∗ ​(multiplied by 10​6 ​) ​
1.11068 1.3081 2.127 2.048

Chemical Feasibility

Error H(f​∗​) ​0.1545 0.0042 0.005 0.005

Solver Iterations ​1 6 1413 1874

Computational

Time (s) ​0.48 17.87 268.24 > 300

Table 7: Comparison between minimum cost flow, iterative algorithm, MINOS and Baron
21

In Table 7, the first column corresponds to the solution of minimum ​481 ​cost
without chemical specification constraints (16). The last three columns ​482
present a comparison between the solution obtained by the iterative algo- ​483
rithm developed in this work and the solutions obtained by commercial soft-
484 ​ware such as MINOS [25] and BARON [30]. In all cases, the problem that

485 ​was solved was (19) with prefixed tolerance of H​tol ​= 0.005, none of the

two ​486 ​software shown results in reasonable time for the second case where
the wells ​487 ​used were from 11 to 40. ​488 ​It can be observed that the minimum
cost solution is far from the other ​489 ​solutions from a chemical concentration
of the final product point of view, ​490 ​thus not representing a real solution to
the problem. It also needs to be ​491 ​highlighted that each iteration of the
proposed algorithm requires solving a ​492 ​non-linear problem, which is solved
using the Frank-Wolfe method which in ​493 ​turn performs several iterations
(see problem (10). This helps to explain the ​494 ​big difference that exists
between the number of iterations and the computa- ​495 ​tional time required to
solve the problem. We are specially concerned about ​496 ​computational times
due to the need of using the solution method as a sub- ​497 ​routine in the
genetic algorithm, the iterative algorithm is shown to be better ​498 ​than
commercial software in both aspects, time and quality of solution. ​499 ​The last
experiment was performed on the same instance created arti- ​500 ​ficially and
consisted on incrementing the network size. For this purpose, ​501 ​six
evaporation pools and eight mixing pools were used and the number of ​502
extraction wells were incremented by 10 on each problem. The results of this
503 ​experiment are shown in table 8. ​504

Amount Minimum cost, Problem (16) Iterative Algorithm of wells C f​(0) ​(10​6​×) H(f​(0)​) C f​∗

(10​6​×) H(f​∗​) Iter. time (s)
30 1.6194 0.1334 2.7764 0.0386 25 31.93 40 1.0833 0.1392 1.7678 0.0350 21 35.83
50 1.0833 0.1392 1.6995 0.0188 19 109.39 60 1.0833 0.1392 1.7896 0.0160 22
184.06 70 0.1000 0.2485 1.5631 0.0083 19 205.19 80 0.1000 0.2485 1.5586 0.0081
19 229.57 90 0.1000 0.2485 1.4418 0.0046 13 212.56

Table 8: Sensitivity to size for the proposed algorithm

The results shown in Table 8 should not be surprising as they prove ​505 ​that
increasing the number of evaporation pools (from 4 to 6), and hence ​506

increasing the number of chemical constraints, makes it more difficult for the
507 ​algorithm to find a solution. With few wells it becomes harder to satisfy ​508

2
2

all the chemical constraints on the evaporation pools. The reader can note ​509

that as more wells are added, there are more degrees of freedom on the ​510

mixing pools and the values for the chemical error H(f​∗​) diminishes. This ​511

observed behaviour allows to justify the operational design considerations in
512 ​the mining of Lithium rich brines. ​513

5.2. Results of the Genetic Algorithm ​514 ​In this subsection the results
obtained after implementing the genetic ​515 ​algorithm are shown. Three
different tests were run iterating 20 genera- ​516 ​tions with 100 individuals. In
the experiments some parameters such as ​517 ​crossover and mutation
probabilities were changed, also the number of ex- ​518 ​traction pumps and the
initial population chosen. On the first execution ​519 ​of the GA, M = 20 wells
was considered to be the size of the wells subset ​520 ​and a random initial
population. In the second run, the number of extrac- ​521 ​tion pumps was
increased to M = 30 and the initial population is chosen ​522 ​at random again.
On the third run 30 pumps were considered but the ini- ​523 ​tial population was
built using only wells with high and medium cost, the ​524 ​rationale behind this
choice was to see the capabilities of the GA to elimi- ​525 ​nate costly wells and
obtain individuals with good cost. Table 9 shows the ​526 ​probabilities used on
each case. ​527

Run 1 Run 2 Run 3 Crossover Probability ​0.8 0.8 0.9

Mutation Probability ​0.1 0.1 0.2

Table 9: Crossover and Mutation Probabilities

The graph of figure 3 shows the evolution of the fitness function through ​528
20 iterations. The dashed line represents the average fitness of all
generations ​529 ​while the solid line shows the fitness evolution for the best
individual. The ​530 ​horizontal line corresponds to an estimate of the best

fitness, this value has ​531 ​been calculated evaluating the fitness of the
individual possessing the 30 ​532 ​lowest cost simulated wells. ​533 ​In Table 10
the wells that are used on the GA solution for each run are ​534 ​presented. On
each case, the solution given by the GA corresponds to the ​535 ​individual with
better fitness found in 20 generations. Additionally, the wells ​536 ​in the
solution are classified according to their costs (see Table 3). The row ​537
corresponding to Run 0, represents the best fitness approximation. ​538

2
3

Figure 3: Average (segmented) and Best Fitness (continuous) for the 3 runs of the GA

It can be observed in Table 10 that the solutions are composed, mostly, ​539
by the use of low cost sources. This points out to a good performance of ​540
the genetic algorithm. Also, the fitness value for the best individual on each
541 ​run are all of them relatively close to the referential cost, with the
exception ​542 ​of the third run that obtained a higher cost. The increase in the
number of ​543 ​wells from the first to the second run does not translates into a
growth in ​544 ​cost, this is because the costs considered are a unit cost and
the flows remain ​545 ​the same. ​546 ​On Figure 3 it can be seen that the average

curve for Run 1 starts over ​547 ​its analogue of Run 2. The increase of the
average is due to the penalty ​548 ​factor used in the fitness function, because
by using 20 wells instead of 30 ​549 ​it becomes more difficult to achieve the
desired concentrations and several ​550 ​individuals end up being infeasible
ones. The average curve for Run 3 falls ​551 ​too quickly when compared to the
other two runs, this indicates the quick ​552 ​elimination of the high/medium cost
wells from the solution and the impact ​553 ​this has on the fitness function. It
needs to be noted that in this last run ​554 ​the average curve also starts below
the curve of the first run, this due to ​555 ​the higher number of wells and
absence of penalty for the fitness. This last ​556

2
4

Solution Low Cost Medium Cost High Cost Individual’s for Run Wells Wells Wells Fitness ×10​5

Run 0 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 31, 32 8.7358
33, 34, 35, 36, 37, 38, 39, 40, 61, 62, 63 64,

65, 66, 67, 68, 69, 70

Run 1 3, 4, 8, 31, 32, 34, 35, 36, 40, 11, 79 59, 60 8.7771
61, 62, 63, 64, 67, 68, 70

Run 2 2, 3, 4, 6, 7, 31, 33, 34, 35, 36, 37, 47, 73, 74, 80 21, 29, 86, 88 8.7464
38, 40, 60, 61, 62, 63, 64, 65, 66, 67, 68

Run 3 3, 4, 6, 31, 32, 34, 35, 36, 15, 41, 75, 76 22, 23, 26 8.8533 40, 61, 62, 63, 64, 65, 67, 68, 69 77, 79, 80 59, 81,
84

Table 10: Obtained solutions and their
classifications

shows that the penalty scheme used is good enough to differentiate from the
557 ​expensive solutions to the problem. ​558 ​Finally, a comparison between the
fitness results of runs two and three ​559 ​with the results shown in the fourth
column of Table 6, show the need to ​560 ​find a strategy that allows the
planner to appropriately select the 30 wells to ​561 ​be used in the extraction of
the brines. For example, in run two where the ​562 ​initial population was taken
at random, the cost was 8.7464×10​5​, whilst the ​563 ​best combination of wells

in table 6 was combination 51–80 with a cost of ​564 ​1.1483 × 10​6​. ​565

6. Conclusions ​566

This paper studied a problem which is associated to the location of ex- ​567

traction pumps for the mining of Lithium, product that is more utilised ​568

nowadays. To approximate the solution for the general problem, the work ​569

was divided into two stages. On the first stage the feasibility problem with ​570

minimum cost for a fixed network was solved by using an iterative scheme ​571

based on non-linear optimisation techniques, this stage provides a solution
572 ​that is able to provide a final product within specification of its chemical ​573

properties. On the second stage, the location of the best places to extract ​574

brine as to produce a product within specification requirements and minimum
575 ​cost was sought, this stage utilises the methods of the first stage to
evaluate ​576 ​the appropriateness of a given candidate solution and uses this
information ​577 ​in the search of an optimal solution to the general problem. ​578

2
5

The problem over a fixed network seeks a solution over bounded sections ​579
of the feasibility set. The pump location problem was modelled as a combi-
580 ​natorial problem and solved using a genetic algorithm to find approximate
581 ​solutions to the problem. Both problems were solved on a simulated
instance ​582 ​to show the correctness of the proposed approach and due to
confidentiality ​583 ​issues with the real world data. It needs to be said that all
problems obtained ​584 ​from the simulated instance are representative of a
real operation. ​585 ​The iterative method proposed in this work has shown
better feasible ​586 ​solutions to the problem than the one that can be obtained
by commercial ​587 ​software such as MINOS and BARON. In addition, the
computational re- ​588 ​quired by the iterative method also showed a better
behavior, which allowed ​589 ​us to use this method to define the fitness
function of the Genetic Algorithm, ​590 ​even though a chemically feasible flow
could not be found for some configu- ​591 ​rations of fixed networks. The
Genetic Algorithm has shown to be useful in ​592 ​finding solutions that use
wells that provide flows with the expected quality ​593 ​and with a good cost. On

the Table 10, it can be seen that the GA is able ​594 ​to identify and maintain in
the population pool those solutions the low cost ​595 ​sources included in the
instance which suggests a correct implementation and ​596 ​performance. The
difficulty of this method lie on the higher computational ​597 ​requirement as for
each individual of population (network) the fitness func- ​598 ​tion requires the
resolution of a problem over a fixed network. Despite this ​599 ​increase in
computational time, the proposed GA is appropriate to solve the ​600 ​extraction
planning problem for Lithium deposits as this problem does not ​601 ​need to be
solved too frequently. ​602

Acknowledgment ​603

The authors wish to thanks to the anonymous referees for their careful ​604

readings and constructive criticism which provide a substantial improvement
605 ​of the paper. ​606

References ​607

[1] Adhya, N., Tawarmalani, M., Sahinidis, N. V., 1999. A lagrangian ap- ​608

proach to the pooling problem. Industrial & Engineering Chemistry Re- ​609

search 38 (5), 1956–1972. ​610

2
6

[2] Alfaki, M., Haugland, D., 2011. Comparison of discrete and continu- ​611

ous models for the pooling problem. In: OASIcs-OpenAccess Series in ​612

Informatics. Vol. 20. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. ​613

[3] Almutairi, H., Elhedhli, S., 2009. A new lagrangean approach to the ​614
pooling problem. Journal of Global Optimization 45 (2), 237–257. ​615

[4] Audet, C., Brimberg, J., Hansen, P., Digabel, S. L., Mladenovic, N., ​616

2004. Pooling problem: Alternate formulations and solution methods. ​617

Management science 50 (6), 761–776. ​618

[5] Baker, T. E., Lasdon, L. S., 1985. Successive linear programming at ​619
exxon. Management science 31 (3), 264–274. ​620

[6] Bazaraa, M. S., Sherali, H. D., Shetty, C. M., 2013. Nonlinear program- ​621
ming: theory and algorithms. John Wiley & Sons. ​622

[7] Ben-Tal, A., Eiger, G., Gershovitz, V., 1994. Global minimization by ​623
reducing the duality gap. Mathematical programming 63 (1), 193–212. ​624

[8] Bertsekas, D. P., 1999. Nonlinear programming. Athena scientific Bel- ​625
mont. ​626

[9] Coello, C. A. C., 2002. Theoretical and numerical constraint-handling ​627

techniques used with evolutionary algorithms: a survey of the state ​628 ​of the
art. Computer methods in applied mechanics and engineering ​629 ​191 (11),
1245–1287. ​630

[10] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., et al., 2001. ​631
Introduction to algorithms. Vol. 2. MIT press Cambridge. ​632

[11] Eiben, ́ A. E., Hinterding, R., Michalewicz, Z., 1999. Parameter control in
633 ​evolutionary algorithms. Evolutionary Computation, IEEE Transactions ​634

on 3 (2), 124–141. ​635

[12] Floudas, C. A., Aggarwal, A., 1990. A decomposition strategy for global
636 ​optimum search in the pooling problem. ORSA Journal on Computing ​637 ​2
(3), 225–235. ​638

[13] Foulds, L., Haugland, D., Jörnsten, K., 1992. A bilinear approach to the
639 ​pooling problem. Optimization 24 (1-2), 165–180. ​640

2
7

[14] Frantz, D. R., 1972. Non-linearities in genetic adaptive search.
641

[15] Garrett, D. E., 2004. Handbook of lithium and natural calcium chloride.
642 ​Academic Press. ​643

[16] Gonzalez, A., 2000. Riquezas minerales de chile a nivel mundial.
644

[17] Gupte, A., Ahmed, S., Dey, S. S., Cheon, M. S., 2013. Pooling
problems: ​645 ​relaxations and discretizations. School of Industrial and
Systems Engi- ​646 ​neering, Georgia Institute of Technology, Atlanta, GA. and
ExxonMobil ​647 ​Research and Engineering Company, Annandale, NJ. ​648

[18] Gupte, A., Ahmed, S., Dey, S. S., Cheon, M. S., 2015. Relaxations and
649 ​discretizations for the pooling problem. Journal of Global Optimization, ​650

1–39. ​651

[19] Haverly, C. A., 1978. Studies of the behavior of recursion for the pooling
652 ​problem. Acm sigmap bulletin (25), 19–28. ​653

[20] Holland, J. H., 1975. Adaptation in natural and artificial systems: an ​654

introductory analysis with applications to biology, control, and artificial ​655

intelligence. U Michigan Press. ​656

[21] Kallrath, J., 2000. Mixed integer optimization in the chemical process ​657

industry: Experience, potential and future perspectives. Chemical En- ​658

gineering Research and Design 78 (6), 809–822. ​659

[22] Lam, S. S., 1996. Genetic algorithm with pigeon-hole coding scheme ​660

for solving sequencing problems. Applied artificial intelligence 10 (3), ​661

239–256. ​662

[23] Meyer, C. A., Floudas, C. A., 2006. Global optimization of a combi- ​663

natorially complex generalized pooling problem. AIChE journal 52 (3), ​664

1027–1037. ​665

[24] Michalewicz, Z., Janikow, C. Z., 1991. Handling constraints in genetic ​666
algorithms. In: ICGA. pp. 151–157. ​667

[25] Murtagh, B. A., Saunders, M. A., 1983. Minos 5.0 user’s guide. Tech. ​668
rep., DTIC Document. ​669

2
8

[26] Pham, V., Laird, C., El-Halwagi, M., 2009. Convex hull discretization ​670

approach to the global optimization of pooling problems. Industrial & ​671

Engineering Chemistry Research 48 (4), 1973–1979. ​672

[27] Quesada, I., Grossmann, I. E., 1995. Global optimization of bilinear ​673

process networks with multicomponent flows. Computers & Chemical ​674

Engineering 19 (12), 1219–1242. ​675

[28] Richardson, J. T., Palmer, M. R., Liepins, G. E., Hilliard, M., 1989. ​676

Some guidelines for genetic algorithms with penalty functions. In: Pro- ​677

ceedings of the third international conference on Genetic algorithms. ​678

Morgan Kaufmann Publishers Inc., pp. 191–197. ​679

[29] Ruiz, M., Briant, O., Clochard, J.-M., Penz, B., 2013. Large-scale stan-
680 ​dard pooling problems with constrained pools and fixed demands. Jour- ​681

nal of Global Optimization 56 (3), 939–956. ​682

[30] Sahinidis, N. V., 1996. Baron: A general purpose global optimization ​683
software package. Journal of global optimization 8 (2), 201–205. ​684

[31] Sarker, R. A., Gunn, E. A., 1997. A simple slp algorithm for solving a ​685

class of nonlinear programs. European Journal of Operational Research ​686

101 (1), 140–154. ​687

[32] Tawarmalani, M., Sahinidis, N. V., 2002. Convexification and global ​688

optimization in continuous and mixed-integer nonlinear programming: ​689

theory, algorithms, software, and applications. Vol. 65. Springer Science ​690 ​&
Business Media. ​691

[33] Visweswaran, V., Floudast, C., 1990. A global optimization algorithm ​692

(gop) for certain classes of nonconvex nlpsii. application of theory and ​693 ​test
problems. Computers & chemical engineering 14 (12), 1419–1434. ​694

2
9

