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Abstract  

In this paper we address the problem of allocating extraction pumps to            
wells, when exploiting lithium rich brines, as part of the production of            
lithium salts. The problem of choosing the location of extraction wells is            
defined using a transportation network structure. Based on the         
transportation network, the lithium rich brines are pumped out from each           
well and then mixed into evaporation pools. The quality of the blend will             
be based on the chemical concentrations of the different brines,          
originating from different wells. The objective of the problem is then to            
determine a pumping plan such that the final products have predefined           
concentrations, and the process is operated in the cheapest possible          
way. The problem is modelled as a combinatorial optimisation problem          
and a potential solution to it is sought using a genetic algorithm. The             
evaluation function of the genetic algorithm needs a method to determine           
feasible minimum cost flows for the proposed pumping alloca- tion, thus           
requiring the formulation of a blending model in a flow network for which             
a new iterative non-convex local optimisation algorithm is proposed. The          
model was implemented and tested to measure the algorithm’s         
efficiency.  
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1. Introduction and motivation ​1  

New mobile technologies such as digital cameras, notebooks and mobile ​2 
phones are essential components of modern life. However, regardless of 
which ​3 ​equipment is being used, its operational capability is limited by the 
quality of ​4 ​the batteries used to power it. Increasing battery life has 
motivated research ​5 ​of new technologies to store energy. Among several 
new options for energy ​6 ​storage, fabrication of lithium based batteries has 
become popular, this has ​7 ​been mainly motivated by the properties of this 
element. Lithium is one ​8 ​of the lightest elements of the periodic table and it 
is capable of providing ​9 ​a high electric potential, properties that have 
transformed it into a highly ​10 ​consumed and demanded product. ​11 ​A good 
source of lithium can be found in salt flats. Some of the most ​12 ​important 
deposits in the world are located in Bolivia (Uyuni), northern ​13 ​Argentina 
(Hombre Muerto), Israel (Dead Sea), United States (Great Salt ​14 ​Lake, 
Silver Peak, Searle Lake and northern Chile (Salar de Atacama). ​15 ​The 
Atacama salt flats are the biggest in Chile with an approximate ​16 ​extension 
of 300 square kilometres, it is located in a valley between the ​17 ​Andes 
Domeyko moutain ranges. This particular salt flat is composed by ​18 ​big 
quantities of gypsum and salt rocks. The salt rocks are continuously fed ​19 ​by 
brine with a 28-47 parts per million (ppm) concentration coming from the ​20 
Salado and San Pedro rivers [16]. ​21 ​The extraction process consists in 
pumping out brine from the salt flat ​22 ​using shallow surface wells, it needs to 
be noted that pumping out brine ​23 ​from a well requires the use of a pump 
that needs to be placed on the well. ​24 ​The extracted brine, when available 



from the well, is saturated in salt and ​25 ​gypsum with high concentrations of 

Na​+​, K​+​, Mg​+2​, Li​+​, Ca​++​, SO​4​−2 ​y ​26 ​Cl​− ​among others [15]. ​27 ​In the case of 
Salar de Atacama, there are more than 200 wells enabled ​28 ​and around 90 
available pumps that can be operated simultaneously to per- ​29 ​form the 
extraction process. The chemical characteristics of each well are ​30 ​not 
constant and change according to different properties such as depth or ​31 
porosity of the soil, just to mention a couple of them. The constant input ​32 ​of 
rivers, and the same extraction process, produce changes in the chemi- ​33 
cal properties of the wells, which makes regular measurement of the those ​34 
properties essential for the operation of the extraction method. Finally, the ​35 
extracted brine is sent (by means of pumping) into evaporation pools where 
36 ​different processes such as evaporation or decantation are used to obtain 
the ​37  

2  

final products following specific chemical specifications. ​38 ​Given the 
disparity in the nature of the wells, chemical properties and ​39 ​pump 
capacities, it is possible that the mixture that is created in the evapora- ​40 
tion pools (also called terminals or sinks), fails to provide the desired 
chemical ​41 ​properties and concentrations in the final products. To avoid the 
occurrence ​42 ​of this problem, intermediate accumulation pools that sit 
between the ex- ​43 ​traction wells (sources) and the evaporation pools (sinks) 
are used. These ​44 ​intermediate pools enable mixtures that increase the 
chances to obtain the ​45 ​required concentration in the sinks. The pumping of 
brine requires the use of ​46 ​energy which translates into costs that the 
companies using this extraction ​47 ​technique have to pay. Due to different 
characteristics, different extraction ​48 ​wells will require different energy 
quantities used to transport the brines. ​49 ​It is desirable for the company to 
obtain a final product, within specified ​50 ​specifications, with minimum 
production cost. ​51 ​Figure 1 shows a schematic representation of a typical 
operation. It can ​52 ​be observed that the different elements such as 
extraction wells, connect- ​53 ​ing tubes, accumulation and evaporation pools 
conform a network of inter- ​54 ​operating elements that allow the flow of 
brines from the salt flat to the final ​55 ​destination where the product is 



produced. ​56  

Figure 1: Representative diagram of the network flow (sectional cut)  

The general problem considered in this paper is to determine the set ​57 ​of 
wells in which extraction pumps are going to be located, to create an ​58 
extraction network together with an extraction schedule. This should be ​59 
done in such a way as to obtain a flow satisfying chemical requirements in ​60 
the final product and ideally at a minimum cost of production. ​61 ​The problem 
thus formulated can be decomposed into two main elements: ​62 ​feasibility 
and optimality. The first component, feasibility tries to obtain an ​63 ​extraction 
schedule that is able to produce final product with the desired ​64  

3  
characteristics. ​65 ​The second problem looks at the cost component of the ​66 ​operation of 
the system. For the purposes of this study, the problem has ​67 ​been decomposed 
similarly into two components. One component uses a non- ​68 ​convex optimisation 
algorithm to determine feasible flows when the location ​69 ​of the pumps has been 
determined. The feasibility component is then called ​70 ​by an optimisation procedure, 
that tries to obtain the cheapest possible way ​71 ​to operate a feasible flow, based on the 
current characteristics of the wells ​72  

and available pumps. ​Genetic Algorithm: wells selection problem  
Each individual of population is a fixed network  

The fitness function is the minimum cost ​flow on each ​fixed network  

Flow in fixed network  
Minimise Cost  

Feasibility problem  

Feasibility Problem  
Minimise Chemical feasibility Error  

Feasible flows of the network  

Figure 2: Representative diagram of the structure of the algorithm  
73 ​The remainder of this paper is organised as follows: In section 2 we per- ​74 ​form a 



literature review and analyse classical pooling problem formulations ​75 ​over a fixed 
network. In section 3 we develop a new model that considers ​76 ​specific requirements 
present in extraction of Lithium rich brines(represented ​77 ​in figure 2 as the Feasibility 
Problem box), and we establish an algorithm for ​78 ​local optimisation for a given 
arrangement of extraction pumps, where the to- ​79 ​tal cost of the operation is 
proportional to the amount of brine moved trough ​80 ​the network. This optimisation 
algorithm uses the feasibility problem and ​81 ​approximates the final concentrations 
adding cost constraints (represented in ​82 ​figure 2 as the Flow in fixed network box). In 
section 4 the network topology 4  

problem is considered and approached using genetic algorithm (GA) utilis- ​83           

ing the feasible flow algorithm defined before. The GA calls the algorithm ​84             

presented on section 3 to assess the feasibility of a proposed arrangement            
of ​85 ​pumps being evaluated (see figure 2). In section 5 numerical tests run              
over ​86 ​a simulated instance with 90 extraction wells, 8 mixing pools, 6             
evaporation ​87 ​pools and 10 components are presented. Finally, in section 6            
we conclude ​88 ​and present some possible extensions. ​89  

2. Related literature ​90  

Blending problems with cost minimization have been largely studied un- ​91 
der the distinctive name of pooling problems. In [18] pooling problems are ​92 
described as a mix between blending problem and classical network flow ​93 
problems. Three types of resources are distinguished in the network: source 
94 ​containing material with a known chemical specification, intermediate pools 
95 ​used for accumulation and mixing, and sinks where material is blended 
into ​96 ​a specific quality specification. The usual objective in pooling problems 
is to ​97 ​determine a minimum cost plan to flow material within the network 
such that ​98 ​final blend specifications are satisfied. The pooling problem is 
very important ​99 ​in the petrochemical industry context. Nevertheless, its 
general formulation ​100 ​can be adapted to other application areas such as 
waste-water treatment, ​101 ​paint industry or emissions control. More details 
about application areas ​102 ​for this problem can be found in [21]. In this paper, 
a novel application of ​103 ​pooling models has been proposed for Lithium 
industry. ​104 ​The first mathematical nonlinear formulations were introduced by 
[19], ​105 ​for this model which uses specification variables, corresponds to the 
most in- ​106 ​tuitive model and its know as p−formulation. Later, newer 



modelling options ​107 ​were proposed, for example the q−formulation was 
proposed in [7] and [27] ​108 ​replaced the specification variables by proportion 
variables which denote the ​109 ​fraction of incoming flow from sources to 
mixing pools. The pq−formulation ​110 ​proposed in [32], incorporates some 
extra and valid inequalities derived from ​111 ​a reformulation-linearisation 
technique into the q−formulation. Also, a hy- ​112 ​brid formulation that 
combines specification and proportion variables can ​113 ​be find in [4], where 
the proposed model extends the q−formulation. The ​114 ​same author defines 
generalized pooling problems where connections between ​115 ​pools are 
permitted. In [23], the model became more general and included ​116 ​the 
topology of the decision network. Pooling problems are known to be ​117 
NP-hard and all the models above are equivalent, a complete survey about 
118  

5  

different models can be found in [17]. Some points are common for all formu- 
119 ​lations: classical flow constraint are used to model material transport 
trough ​120 ​the network, objective function is linear and represents the cost of 
transport- ​121 ​ing material through the network, or can represent profit 
associated with the ​122 ​sale of products obtained in terminal sinks. Upper 
bounds are used to limit ​123 ​incoming flow into the network resources. Bilinear 
constraint are required ​124 ​to describe chemical specifications in pools and 
final blends, those last ones ​125 ​being also involved in range constraints. ​126 
Lithium applications requires some modifications with respect to the clas- ​127 
sical formulations of the pooling problem. In particular, in this paper we ​128 
consider demand constraints in final blends. Demand constraints force po- ​129 
tential solutions to the problem to bring flow in all the terminal sinks, and at 
130 ​the same time all the chemical specification constraints in the problem 
must ​131 ​be satisfied. This represent a departure with respect to the more 
classical ​132 ​pooling problem formulations, because in the standard pooling 
problem a ​133 ​flow equals to zero is always a feasible solution for which 
specification con- ​134 ​straint are trivially satisfied. As mentioned in [29], using 
demand constraints ​135 ​to find a feasible solution makes the problem harder, 
however, the feasibility ​136 ​domain for the problem gets smaller and it might 
be easier find an optimal ​137 ​solution using exact methods. ​138 ​Several 
approaches to solve pooling problems have been proposed using ​139 ​local 



and global optimization techniques. Some local optimization techniques ​140 
include successive linear programing (SLP) [31, 5], here bilinear constraints 
141 ​are linearised using Taylor’s expansion and a sequence of strategic linear 
142 ​programs (LPs) are solved. In [4], a branch-and-cut quadratic algorithm is 
143 ​proposed, also new variable neighborhood search heuristics (VNS) are 
de- ​144 ​veloped, and then a comparison of this method with the SLP method 
is ​145 ​provided. Methods that approximate bilinear constraints, such as the 
one ​146 ​found in [26] are also found in the literature, in this work the author 
discre- ​147 ​tises quality variables, whilst in [2] the discretisation is done in the 
domain of ​148 ​proportion variables. Global optimization efforts include: 
generalized Ben- ​149 ​der’s descomposition [12] and Lagrangian-based 
methods [3, 1]. Applications ​150 ​of general methods like global optimization 
algorithm (GOP) defined in [33], ​151 ​approximate a global solution through a 
series of primal and relaxed dual ​152 ​problems. Also, different 
branch-and-bound or branch-and-cut procedures ​153 ​have been proposed, 
see for example [27], where a relaxed LP is proposed ​154 ​and used in a 
spatial search. In [13], convex approximations of the bilinear ​155 ​terms are 
investigated. A more detailed and complete survey about tech- ​156  
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niques ​157 ​to solve pooling problems can be found in [18]. ​158 ​3. Flow in a fixed network ​159 
The transport network is modelled as a directed graph G = (V,A), defined ​160 ​by a set of 
nodes V = S ∪ I ∪ P, where S,I,P are disjoint sets which ​161 ​correspond to extraction 
wells, accumulation pools and evaporation terminals ​162 ​respectively. In the set A of 
edges for the graph, the only pairs that are found ​163 ​are those that connect nodes of S 
with nodes of I, and those that connect ​164 ​nodes in I with nodes in P, no direct arcs 
between sources and terminals are ​165 ​permitted. A = {(s, i) : s ∈ S, i ∈ I}∪{(i, p) : i ∈ I, 
p ∈ P} (1)  
166 ​For each accumulation pool it is considered that there is a minimum incoming ​167 ​flow 
(ε > 0), otherwise the existence of the pool would not be justified. The ​

168 ​variable f​u,v 

denotes the flow being moved from node u to node v. The ​169 ​condition f​u,v ​≥ 0 ∀(u, v) ∈ 

A indicates that the flow is unidirectional. The ​170 ​following constraints are introduced into 

the model: • (C1) Flow conservation: ​∑​
s∈S​

f​
s,i ​− ​∑​

p∈P​171  

f​
i,p ​= 0 ∀i ∈ I • (C2) Available capacity in sources: ​∑​

i∈I ​172 ​f​s,i ​≤ F ​s ​max ​∀s ∈ S ​173  

• (C3) Minimum flow required in terminals: ​∑​f​i,p ​≥ F ​p ​min ​∀p ∈ P ​i∈I  

174  



• (C4) Minimum flow required in accumulation pools: ​∑f​
s,i ​≥ ε ∀i ∈ I ​s∈S​175 ​The set of 

feasible flows of the network is thus defined by the satisfaction 7  
of ​176  

these four constraints and parametrised by ε: Φ​ε ​=  

�​�������������​�​��������������������������  

∑f​s,i ​≤ F ​s ​max ​∀s ∈ S ∑​i∈I  

s∈S​������������� ​f​s,i ​− ​∑​p∈P​f​i,p ​= 0 ∀i ∈ I ​f ∈ R​|A|  

+ ​
: ​∑​i∈I  

(2)  
177 ​3.1. Feasibility flow ​178 ​The problem currently modelled in this first stage is a feasibility 
problem, ​179 ​i.e., our objective is to find a flow creating a mixture of chemical solutions ​180 
in the evaporation nodes, where the expected concentrations are obtained in ​181 ​those 
nodes. Some mathematical transformations and operations are intro- ​182 ​duced in order 
to model the feasibility problem as a conditioned least squares ​183 ​problem, and then use 
classical non-linear optimization techniques to solve ​184 ​it. ​185 ​In what follows, E denotes 
the set of chemical products present in the ​

186 ​mixture. On each node v ∈ V of the 

network, a variable z​v,e ​is defined which ​187 ​denotes the concentration of the component 
e present in that particular node. ​188 ​The initial concentrations in the source nodes can 
be measured and they will ​

189 ​be considered being data for the problem and denoted by 

ˆz​s,e​. A natural ​190 ​condition is then imposed: z​s,e ​= ˆz​s,e ​∀ s ∈ S, e ∈ E (3)  
191 ​The concentration of components in pools and terminals can be deter- ​192 ​mined 
uniquely from the flow and initial concentrations by means of a mass ​193  

balance (in absence of chemical reactions of the components) z​i,e ​= ​f​i,p ​≥ F ​p ​min ​∀p ∈ P 

∑​s∈S​f​s,i ​≥ ε ∀i ∈ I  

∑z​s,e​f​s,i ​∑​s∈S​∑​i∈I  

s∈S​f​s,i  

z​i,e​f​i,p ​∀i ∈ I,e ∈ E ∧ z​p,e ​=  
∑∀p ∈ P, e ∈ E (4)  

i∈I  

194 ​Defining Z = (z​v,e​) as the matrix that contains all the concentration va- ​195 ​riables, then 



the initial condition (3) and the equations (4) can be written 8  
f​i,p  
more ​196  
concisely (in matrix form) as: L(f)Z =  
]  
(5)  
197 ​where L is an operator that associates to each flow a square matrix (lower ​198  

triangular) whose elements are l​n,m​(f) =  

[ ​Z
�

 S  

0​(|V |−|S|)×|E|  

�​����������  

1 ​∑​if m = n, n ≤ |S| ​u∈V ​f​u,n ​if m = n, n > |S|  

−f​m,n ​if m<n ​0 otherwsise  
(6)  
Being L a lower triangular matrix, its determinant can easily be computed as the product               
of the elements on its diagonal. Using also constraints (C3) and (C4) we obtain the               
following expression for the determinant:  

det(L(f)) = ​∏  

v∈V −S  

(​∑​f​u,v​)  

≥ ε​|I| ​∏​
u∈V ​p∈P  

F ​P ​min ​> 0  

199 ​hence, the operator L is invertible (det(L(f)) = 0) and the concentration ​200 ​variables 
can be expressed uniquely in terms of flows and initial concentra- ​201  

tions Z(f) = L(f)​−1 ​[ ​
Z​̂ S  

0​(|V |−|S|)×|E|  

]​. (7)  
202 ​On each terminal it is expected that a final product with a pre-specified ​

203 ​chemical 

composition can be obtained. If we denote by ˆz​p,e ​the concentration ​204 ​of component e 

expected in terminal p, we are then interested in those flows ​205 ​f such that z​p,e​(f)=ˆz​p,e ​∀ 



p ∈ P e ∈ E (8)  
206  

The previous condition can be expressed in matrix form as Q​P​Z(f) = Z​ ​̂P​(f) (9)  

207 ​where Q​P ​= ​[​0​|P|×(|V |−|P |) ​Id​|P|​208 ​]​, then ​the concentration variables in the terminal ​Z​P​(f) 

nodes ​:= ​whilst ​Q​P​Z(f) ​Z​
​̂
P​(f) corresponds is the matrix to ​209  

|P|×|E| that groups the elements ˆz​p,e​. ​9  
It ​210 ​is proposed that the following non-linear optimisation problem is solved ​211  
to find flows satisfying the condition expressed by equation (9) min H(f) :=  

∥​∥∥Z​P​(f) − Z​ ​̂P​s.t.  

∥​∥∥​2​F ​f ∈ Φ​ε  

(10)  

212 ​here · ​F ​represents the Frobenius matrix norm, with the flows of inte- ​213 ​rest being 
those such that H(f) = 0. The objective function, being non ​214 ​convex, could result in 
local solutions to the optimisation problem for which ​215 ​H(f) = 0, in these cases only an 
approximation to the desired concentrations ​216 ​is obtained. ​

217 ​The function H(f) is 

differentiable for all f ∈ Φ​ε ​and its partial deriva- ​218  
tives are given by the formula: ∂H(f)  

∂f​u,v ​= tr​(​(​Z
�

 P ​− Z​P​(f)​) ​
(​Q​P​L(f)​−1​

∂L(f)  

∂f​u,v ​
))  

Z(f)(11)  
219  

220  

where tr(.) represents the trace of a matrix derivatives of the components of L(f), more 

and precisely ​∂L(f)  

∂f​u,v ​is the matrix of the ∂L(f) ∂f​u,v ​=  

(​∂l​m,n  

)f​u,v  

N×N ​∧ ​∂l​
m,n  

f​u,v ​�​�​= ​�  
1 , is n = v,m = v −1 ,if m = u, n = v  



0 , otherwise  
(12)  
221 ​The calculation of the gradient of the objective function allows the use ​222  
223  

224  

of which ​f​̂ m ​classical ​is obtained ​is a method non-linear ​as the ​of directions ​solution 

optimisation ​of ​f​
m+1 ​

the ​techniques ​following ​= f ​m ​+αsuch ​m​(linear f ​̂ m ​as ​−fproblem: 

Frank-Wolfe ​m​) where the ​method, ​vector ​min ∇H(f​m​) f  
s.t.  
f ∈ Φ​ε  
(13)  

225 ​On each iteration, the size of the step α​m ​can be chosen using an Armijo ​226 ​rule. Of 
course, different direction methods and step size rules can be used ​227  
to solve the problem, see for example [8] and [6]. 10  
3.2. ​228 ​Incorporating Cost ​229 ​The movement of flows through the network requires an 
important ex- ​230 ​penditure of energy, which directly translates into economic costs for 
the ​231 ​company exploiting the salt flat. This cost is a variable one because it de- ​232 
pends on the flow being moved. We must point out that obtaining a flow that ​233 ​satisfies 
the demand constraint and chemical specifications - in evaporation ​234 ​nodes - is 
important but not enough, because a solution having an excessive ​235 ​cost to it, is not 
deemed practical alternative. ​236 ​It has been natural to model the cost function 
components for the problem ​237 ​as linear ones [17]. Under this modelling paradigm, the 
total cost of the ​238 ​operation will be proportional to the amount of brine moved trough 
each ​239 ​element of the network. There are elements that are costlier than others ​240 
(depending on distances, altitude with respect to the sea level, etc.). Let us ​

241 ​denote 

c​u,v ​> 0 as the cost coefficients that indicate the cost of moving one ​242 ​flow unit using the 
arc (u, v) ∈ A in the network, hence the total cost is given ​243  

and noted as C f = ​∑  

(u,v)∈A​
c​

u,v​f​u,v ​(14)  
244  

In an ideal situation, the problem that we would like to solve is: min C f s.t.  
f ∈ Φ​ε ​H(f)=0  

(15)  
245 ​which is simply cost minimisation subject to flow feasibility constraints. Ho- ​246 ​wever, 
constraint H(f) = 0 is a difficult one to achieve due to the non-convex ​247 ​nature of the 



function H. To search for solutions that approximate product ​248 ​requirements and have a 
minimal cost, we propose a method that exploits the ​249 ​linearity of the objective function 
and use the idea developed in the previous ​250 ​section to obtain feasible flows. The 
proposed method is iterative and works ​251 ​in the following way: ​252 ​1. On iteration k = 0 a 
minimum cost flow is obtained f​(0) ​that solves ​253  
the following linear problem LP min C f  
s.t.  
f ∈ Φ​ε  
, (16)  
11  
let ​254 ​σ​∗ ​denotes the value of the minimum cost C f​(0)​. ​255 ​2. For iteration k, the flow f​(k−1) 

of the previous iteration is used as a ​256  
starting point for the Frank-Wolfe algorithm to solve the problem min H(f)  
s.t.  

f ∈ Φ​ε ​C f ≤ (1 + α​k​)σ​∗  
(17)  

257 ​3. If C f ​(k) ​< σ​∗​(1 + α​k​) or H(f​(k)​) is small enough, then the method ​258 ​finishes providing 

f​(k) ​as a solution. Otherwise, we return to point 2 ​259 ​for iteration k + 1. ​
260 ​The sequence 

of positive parameters α​k ​is chosen to be increasing, in a ​261 ​way such that lim​k→∞ ​α​k ​= 

+∞, however the growth rate for the parameter ​262 ​should decrease from one step to the 
other. One possible option is to build ​263  

the parameters as α​k ​=  

∑​k​j=1  

a​j ​(18)  

264 ​where (a​j​)​j∈N ​is a sequence converging to zero but whose series diverge, for ​265 

example a​j ​= 1/j. ​266 ​The intuitive idea of the method is to approximate the final 
concentrations ​267 ​on sets for which the cost is bounded. On each iteration the cost 
increases ​268 ​allowing obtaining a better approximation of the required concentrations on 
269 ​the final product. Also, the growth of the cost bound is smaller on each step ​270 
allowing for a finer search. The method stops when an acceptable approx- ​271 ​imation is 
obtained, this is when H(f​(k)​) is small, or when the cost bound ​272 ​is not active in problem 
given by equation (17). In this last case, we are in ​273 ​presence of a local minimum for 



the problem and there are no directions for ​274 ​which the search process could continue. 
The previous statement and some ​275 ​properties are justified in the following theorem. ​276 
Theorem 1. Let {f ​(k)​} the sequence generated by the iterative method, then ​

277 ​i. If f ​(k) 

does not activates the cost constraint C f ≤ (1 + α​k​)σ​∗​, then it ​278 ​is a local minimum of H 

over whole space Φ​ε​. ​279 ​ii. The iterative algorithm finishes. Also, if k is the first value for 

which ​
280 ​H(f​(k)​) ≤ H​tol​, then the cost of f​(k) ​is at most (α​k ​− α​k−1​)σ​∗ ​units ​12  

bigger ​281  
f a local optima for the 
ise C f  

subject 

to  
H(f) ≤ H
∈ Φ​ε  

(19
)  

282 ​Proof. ​
283 ​i. This part is clear since φ​ε ​is convex and constraint C f ≤ (1 + 

α​k​)σ​∗ ​284 ​is a cut. If f​(k) ​is a local minimum of problem (17) and the constraint ​
285 

is not active, then no feasible descend directions of H over φ​ε ​can be ​286 

found, and therefore is a local minimum of H over whole space Φ​ε​. ​287 ​ii. For 

the second item, we know Φ​ε ​is compact due to the capacity con- ​288 ​straints 

in the wells, then max{C f : f ∈ Φ​ε​} exists. As α​k ​→ ∞, ​289 ​at some point the 
cost constraint is irrelevant and it wont be activate, ​290 ​which is one of our 
stopping criteria. ​291 ​Finally, if k is the first non-negative integer for which H(f 
(k)​) ≤ H​tol ​292 ​we have C f​(k−1) ​= (1+α​k−1​)σ​∗ ​because the algorithm does not stop 

in ​293 ​k − 1, and C f ​(k−1) ​< C f ​(k) ​because f ​(k) ​is not attainable at iteration ​294 ​k − 

1. Denote by f​∗ ​a local optimum of (19), then clearly H(f​∗​) ≤ ​
295 ​H​tol ​< H(f​(k−1)​), 

and ​C f​(k−1) ​< C f​∗ ​≤ C f​(k) ​(20)  

because f ​∗ ​is not attainable at iteration k−1. Join the results we 



have  

(1 + α​k−1​)σ​∗ ​≤ C f​∗ ​≤ C f​(k) ​≤ (1 + α​k​)σ​∗  

from where it is easily obtained 
that  

C f​(k) ​≤ C f ​∗ ​+ (α​k ​− α​k−1​)σ​∗  

296 ​D ​297 ​4. Choosing the Network: Genetic Algorithms ​298 ​The problem of 
choosing the extraction wells consists in determining ​299 ​which wells (out of 
all the possible set of wells) will be selected to build ​300 ​the definitive network 
flow. Given that there are more wells than pumps 13  

available to operate simultaneously, the problem is of a combinatorial nature 
301 ​and we will use heuristic techniques to solve it. ​302 ​Between two different 
wells the main two differences are: extraction cost ​303 ​and chemical 
properties of the brine that can be extracted from them. In the ​304 ​previous 
section, a method was proposed to determine flows that provide final ​305 
products satisfying chemical requirements at minimum cost. In this section, 
306 ​we will combine the method described previously with a genetic algorithm 
307 ​(GA) to evaluate different network flow configurations and approximate an 
308 ​optimal selection of the network configuration​1​. ​309 ​Let S be the set of all 
the available wells with |S| = N and the whole ​310 ​network G = (S ∪ I ∪ P, A). 
Let M be the quantity of extraction pumps ​311 ​that can be operated 
simultaneously, we want to determine a subset S of S ​312 ​such that |S| = M 

and the network G(S)=(S ∪ I ∪ P, A|​S​), which is the ​313 ​sub-network using 
only the wells provided in S, be capable of providing a ​314 ​feasible flow at 
minimum cost. ​315 ​Each time a subset S from S is fixed, a sub-network is 
obtained for which a ​316 ​minimum cost flow can be sought that approximate 
the desired requirements ​317 ​for the final product using the iterative method 
presented in section 3.2. ​318 ​This mechanism provides an evaluation system 
for any choice of wells and ​319 ​potentially allows the use of other heuristic 
optimisation methods. ​320 ​Genetic Algorithms, originally proposed by J. 
Holland [20], are methods ​321 ​that are able adapt to different problems in 



search and optimisation. They ​322 ​are inspired in the Darwinian evolutionary 
process for live organisms, in ​323 ​particular, natural selection and survival of 
the fittest. ​324 ​GAs use the natural selection process as the key driver for an 
adaptive ​325 ​search of good solutions to a given problem. It starts with a 
selection of ​326 ​a representation of potential solutions to a problem (encoding) 
and from ​327 ​there an initial population is generated (where each individual is 
a potential ​328 ​solution to a given problem), those individuals are evaluated by 
means of a ​329 ​fitness function (or objective function) and submitted to a 
selection process ​330 ​that will define whose individuals will pair to produce 
descendants (crossover ​331 ​and mutation). ​332  

1​It is important to mention here that GAs do not provide a certificate of optimality but ​they are                  

generally used as an alternative in the context of difficult combinatorial problems, which             
motivates our choice.  

1
4  

4.1. ​333 ​Proposed Encoding ​334 ​Encoding is a fundamental block in GAs. Each possible 
solution to the ​335 ​problem needs to be encoded as an array of genes (data) and, ideally, 
each ​336 ​chain of genes should correspond to a possible solution. For the wells selection 
337 ​problem the feasible solutions are subsets of S with M elements, so we need ​338 ​an 
encoding that represents such subsets. Lam [22], proposed an encoding ​339 ​with 
pigeon-hole coding scheme for solving sequencing problems which is ​340 ​suitable for 
being applied in our context of pump allocation. ​

341  

342 ​Let S = N). To represent {s​i​1​, ..., the s​i​M​} subset a subset of of S selected = {s​1​, ..., s​N​} 

with M elements (M ​wells S through the pigeon-hole ​< ​343 ​encoding we use an array of M 

entries. The array components [p​1​, ..., p​M​] ​344  

are chosen according to the following rule: p​1 ​= i​1  

p​k ​= i​k ​−  

∑​k−1​j=1  

φ​k​(i​j​) k > 1 (21)  
345  



where φ​k ​is such that ​φ​k​(i​j​) =  

{ ​1, if i​j ​< i​k  

0, otherwise ​(22)  

To better illustrate this coding scheme, a toy example will be considered. Suppose we              

want to encode the selection S = {s​2​,s​3​,s​6​,s​8​}, i.e. the wells 2, ​3, 6 and 8 are selected                  
from a total of N = 9 possible allocations for pump installation. We start with a complete                 
list  

s​1 ​− s​2 ​− s​3 ​− s​4 ​− s​5 ​− s​6 ​− s​7 ​− s​8 ​− s​9  

The first element in the set S is s​2​, which is in the second position in the ​list. We set p​1 ​= 

2 and we eliminate s​2 ​from the list:  

s​1 ​−​  ​s​2 ​− s​3 ​− s​4 ​− s​5 ​− s​6 ​− s​7 ​− s​8 ​− s​9  

The second element in S is s​3​, which is the second element in the remaining ​list, then 

we set p​2 ​= 2 and we eliminate s​3 ​from the list:  

s​1 ​−​  ​s​2 ​−​  ​s​3 ​− s​4 ​− s​5 ​− s​6 ​− s​7 ​− s​8 ​− s​9  

15  

The ​
346 ​process continues with s​6 ​that is in position 4, and then with s​8 ​that is in ​347 

position 5 after the elimination of s​6​. The resulting chromosome is [2,2,4,5]. ​348 ​This 
encoding rule allows to obtain chromosomic representations for which ​349 ​each entry k = 
1, ..., M of the array is allowed to take values in a fixed range ​350 ​[1,M −k+1]. This 
encoding allows the construction of feasibility preserving ​351 ​operators as they eliminate 
the possibility of creating infeasible solutions ​352 ​after crossover and mutation operators 
are applied to the individuals. This ​353 ​means that all chromosomes obtained represent 
subsets with exactly M wells ​354 ​selected. This is an advantage of the pigeon-hole coding 
with respect to ​355 ​others, more details and examples of this encoding can be found in 
[22], where ​356 ​a similar idea is used in permutation problems. This same work shows 
that ​357 ​the phenotype expression of these solutions can be obtained in O(M logM) ​358 
time. ​359 ​4.2. Proposed Fitness Function ​360 ​The fitness function will be defined mainly as 
the cost. However, combi- ​361 ​nations of wells for which there is no feasible flow can 
exist. In the literature ​362 ​many techniques to deal with constraints in genetic algorithms 
have been ​363 ​proposed, see for example [9, 24, 28]. In this paper infeasible networks 



are ​364 ​penalised to avoid them propagating into future generations. The form of ​365  

the fitness function is given by equation (23). F(S) = C ​S​f​S ​∗​
max{​1,1 + ​H(f​

S​∗​H​) ​tol  

− H​
tol  

}  
(23)  

366 ​Here, H​tol ​is the maximum error that should exist between the desired and ​
367  

368  

369 ​obtained network formed concentrations, by the wells f​S ​∗​in ​is ​S, ​the ​whilst ​flow ​in the 

same network. ​vector obtained in section 2 for the ​C ​S​f ​S ​∗​
represents the cost of this flow 

370 ​This fitness function takes the cost value if there is a feasible flow. In ​
371  

372 ​the the opposite value of the case, objective the term function (H(f ​S​∗​)−H​will 

tol​)/Hincrease ​tol ​is ​in ​positive ​relation ​and ​to the ​consequently ​cost. The ​373  

374 ​last expression is and H​tol ​the bigger ​a ​will ​relative ​be the ​error, ​penalty ​the ​and ​bigger 

thus ​the ​there ​difference ​will be ​between ​an incentive ​H(f ​S​to ​
∗​) ​

375 ​descend to 
combinations that provide feasible flows [28]. ​376 ​4.3. Proposed Crossover and Mutation 
377 ​Crossover consists in the combination of genetic material from at least two ​378 
individuals (parents) in order to produce offspring. This is usually done by 16  

splitting the chromosomic representation at a chosen point and exchanging 
379 ​material from both genes in order to produce two individuals (offspring). ​380 
Alternatively, there have been more complex crossover operations that have 
381 ​been defined, for example multi-point crossover proposed by [14]. We 
used a ​382 ​variant of a multi-point crossover which allows to preserve feasible 
individuals ​383 ​after the application of the operator and not losing information 
in the process. ​384 ​In this crossover variant, the chromosomes of the parents 
are reordered by ​385 ​using a permutation π chosen at random, the permuted 
chromosomes are ​386 ​then split in a randomly selected point to then 
exchange the genetic material ​387 ​based on this point following the classical 
crossover operator mechanism. ​388 ​Finally, the two new chromosomes 
representing the offspring are reordered ​389 ​using the inverse permutation 



π​−1​. This variant was tried in [22] showing ​390 ​being more effective than 
regular multi-point crossover functions. ​391 ​The mutation process is very 
important to avoid the accelerated conver- ​392 ​gence and provide chances of 
completely exploring the feasible space. In our ​393 ​case, the mutation 
operator works by selecting an individual gene from a ​394 ​chromosomic 
representation for an individual. The selected gene is changed ​395 ​for other 
gene feasible for the current encoding, i.e., if the gene k is selected ​396 ​then 

the value at position k (denoted by p​k​) is changed to any value in the ​397 
range [1,M −k+1] which is the set of feasible values for the gene in position 
398 ​k. ​399 ​It also important to say that crossover and mutation are applied only 
400 ​to a fraction of the individuals in the current population, that fraction is a ​401 
parameter of the GA and is usually defined before the algorithm is executed. 
402 ​There are possible ways of creating an evolving mutation pressure [11], 
but ​403 ​that is out of the scope of the present work. ​404  

5. Numerical Results ​405  

To evaluate the efficiency of the proposed methods, an instance of the ​406             

problem with 90 extraction wells, 8 mixing pools, 6 evaporation pools and ​407             

10 components was simulated. The chemical qualities of the brine on each            

408 ​well were simulated using a normal distribution with mean μ​e ​and variance             

409 ​σ​2​e ​
specific for each component, these distributions were taken from a

 
 

          

real-life ​
410 ​dataset which cannot be revealed due to confidentiality 

         
restrictions. In table ​411 ​1 the values for each one of the nine components of               
the brine are shown, also ​412 ​explicit on the table are three ranges of              
variability for each component (Low, ​413 ​Medium and High). Let us recall here             
that the tenth component of the brine ​414  

1
7  

is water, and that this component is fixed after the remaining nine compo- ​415              

nents are determined in order to accomplish the desired chemical balance           
for ​416 ​the brine. Following a similar technique, the concentrations required for            



the ​417 ​product were simulated at the evaporation pools. ​418  

K​+ ​Na​+ ​Mg​++ ​Ca​++ ​SO​−− ​4 ​
Li​+ ​Cs​+ ​Rb​+ ​Cl​− ​μ​e ​4 6 1.5 0.05 1.6 0.2 0.002 0.002 15 σ​e ​(Low) 1.2 1.8 

0.45 0.015 0.48 0.06 0.0006 0.0006 4.5 ​σ​e ​(Medium) 1.6 2.4 0.6 0.02 0.64 0.08 0.0008 0.0008 
6 σ​e ​(High) 2 3 0.75 0.025 0.8 0.1 0.001 0.001 7.5  

Table 1: Values used to generate 
concentrations  

The maximum flows in the wells, minimum flows in the sinks and costs ​419 ​for               
every arc of the system were obtained from uniform distributions that ​420 ​were             
defined based on real-life examples. In table 2, the bounds for each ​421             

uniform distribution used later in numerical simulations are shown. ​422  

F ​max ​s ​
F ​min ​p ​

c​
i,p ​c​s,i ​(Low) c​s,i ​(Medium) c​s,i ​(High) ​Uniform[a, b] [100,500] [500,1500] [50,300] 

[50,250] [250,750] [750,1000]  

Table 2: Range of values to generate capacities and 
demands  

Finally, the 90 extraction wells were grouped in 9 categories depending ​423 ​on             
the range of variation of the cost of their connections and the variability ​424 ​σ​e               

with which they were simulated, see table 3. ​425  

Wells Cost Deviation σ​e  

1-10 Low Low 11-20 Medium Low 21-30 High Low 31-40 Low Medium 41-50 
Medium Medium 51-60 High 
Medium 61-70 Low High 71-80 
Medium High 81-90 High High  

Table 3: Cost level and deviation associated to each well of the 
instance  

The rationale for this categorisation was to try the efficiency of the GA to ​426               

determine the low cost wells over the rest. Also, different deviations allow for             
427 ​heterogeneous wells and thus provide more chances to obtain feasible           
flows. ​428  

1
8  



Once a set of parameters were fixed, a representative instance of a real ​429              

operation was simulated, this instance being used for all the subsequent nu-            
430 ​merical experiments. All the numerical experiments were implemented in          
431 ​Matlab 2015b ​R ​and run over a two-cores Intel ​R ​Xeon ​R ​2.10 GHz proces-                
432 ​sor with 120 GB RAM. ​433  

5.1. Results of the Algorithm on a Fixed Network ​434 ​In this subsection the 
results for the iterative algorithm proposed in sec- ​435 ​tion 3.2 are shown. In 
the first experiment the algorithm was run in a network ​436 ​formed by the first 
30 wells, the first 6 mixing pools and the first 4 terminals. ​437 ​The ε parameter 

was set to 150 on each pool and the bound for the flow was ​438 ​set at H​tol ​= 

0.005. ​439 ​Table 4 shows the detail associated with the execution of the 
algorithm ​440 ​on each iteration. It can be seen that the cost increments on 
each iteration ​441 ​in exchange for an improvement in the error H. Also, on 
each iteration the ​442 ​upper bound for cost is activated by flow, this indicates 
that the algorithm ​443 ​hasn’t yet reached a local minimum for the error 
function H. The algorithm ​444 ​finally stops because the feasibility condition is 

satisfied on the tenth iter- ​445 ​ation because H(f​(10)​) ≈ 0.0048 < H​tol ​= 0.005, 

which corresponds to the ​446 ​tolerance for the tolerance parameter used. ​447  

Cost Chemical Feasibility Number of Linear Step Upper Bound Iteration C f​(k) ​Error Problems Solved Time (s) 
Size for Cost  

k 10​6​× H(f​(k)​) α​k ​(1 + α​k​)σ​
∗  

0 1.28006 0.0387624 1 0.06792 1 1.33824 0.0249418 5 0.33961 0.0454545 1.33824 2 1.3939 
0.0202474 8 0.54338 0.0889328 1.3939 3 1.44723 0.0171903 3 0.20377 0.130599 1.44723 4 1.49843 
0.014379 8 0.54336 0.170599 1.49843 5 1.54767 0.0122924 5 0.33958 0.209061 1.54767 6 1.59508 
0.0103324 4 0.27168 0.246098 1.59508 7 1.64079 0.00868291 4 0.27172 0.281812 1.64079 8 1.68493 
0.00770056 13 0.88299 0.316295 1.68493 9 1.7276 0.00593553 12 0.81506 0.349628 1.7276 10 
1.76889 0.00484909 14 0.95091 0.381886 1.76889  

Table 4: Detail of the first 10 iterations of the algorithm  

The relationship between the required concentrations and the ones ob- ​448 
tained by the algorithm solution can be observed in Table 5. ​449  
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Final Concentrations Obtained by the Solution p​i ​K​+ ​Na​+ ​Mg​++ ​Ca​++ 

SO​−− ​4 ​1 4.21571 6.95081 0.985001 0.278726 1.68288 ​2 3.90522 
5.78063 1.48044 0.0824016 1.59547 3 3.70371 5.59635 1.48876 

0.0439441 1.55669 4 3.59542 6.24282 1.49284 0.0656936 1.5741  

Li​+ ​Cs​+ ​Rb​+ ​Cl​− ​H​2​O ​1 0.1935 0.00958781 0.0100856 17.6296 68.0441 2 0.243044 
0.0039782 0.00737257 16.9589 69.9426 3 0.214274 0.00273388 
0.00321942 15.8596 71.5307 4 0.215697 0.00280991 0.00258133 
14.2589 72.5492  

Expected Concentrations in Terminals p​i ​K​
+ ​Na​+ ​Mg​++ ​Ca​++ ​SO​−− ​4 ​1 

4.16501 7.23714 0.908952 0.345733 1.70645 ​2 3.93163 5.75791 
1.46414 0.0658964 1.62662 3 3.63805 5.57221 1.57454 0.0503128 

1.64443 4 3.52376 6.33129 1.68021 0.0522424 1.56423  

Li​+ ​Cs​+ ​Rb​+ ​Cl​− ​H​2​O ​1 0.184971 0.0069297 0.00826535 17.7987 67.6378 2 0.240016 
0.0049896 0.00553624 16.7229 70.1803 3 0.180214 0.00210902 
0.00167513 15.4334 71.9031 4 0.203566 0.00196312 0.00227591 
12.867 73.7735  

Table 5: Comparison between concentrations obtained and expected in for ten 
compounds  

The next experiment performed was designed to answer the following ​450 
question: What would happen if we change the 30 wells initially chosen?, ​451 
i.e., if we chose a different set of 30 wells leaving all the other parameters ​452 
equal. On the first column of Table 6 the wells chosen are individualised (out 
453 ​of a list of 90 wells of our previously simulated instance), the second 
column ​454 ​is the cost for the flow that is obtained in the step k = 0 of the 
algorithm, ​455 ​i.e., when the flow is minimised without considering the 
chemical feasibility ​456 ​constraint (see problem (16)). The third column of the 
table just shown the ​457 ​chemical feasibility error of the initial (unconstrained) 
solution. The remain- ​458 ​ing columns are concerned with the application of 
the iterative algorithm ​459 ​and show the cost, the error, number of iterations 
and time respectively of ​460 ​the application of the iterative algorithm. ​461 ​It is 
important to note the great behavioural difference that exists between ​462 



problems of the same size, but for whom the only difference are the initial ​463 
chemical compositions for the brines on the extraction wells. In particular, it 
464 ​can be seen that for the second set (wells from 11 to 40), it was not 
possible ​465 ​to attain a feasible solution, the algorithm stopped on the third 
iteration ​466 ​without finding a chemically feasible flow, i.e., the algorithm 
stopped because ​467  

2
0  

Selected Minimum cost, Problem (16) Iterative Algorithm  
wells C f​(0) ​(10​6​×) H(f​(0)​) C f​∗ ​(10​6​×) H(f​∗​) Iter. time (s) 1–30 1.2801 0.0388 1.7689 0.0048 11 5.23 11–40 1.3885 0.0727 1.3339 
0.0674 3 0.38 21–50 1.1606 0.1056 1.2639 0.0050 3 8.30 31–60 1.1606 0.1056 1.3120 0.0033 4 8.14 41–70 1.0314 0.2386 1.2074 
0.0048 5 35.47 51–80 1.0157 0.2192 1.1483 0.0036 4 24.87 61–90 1.0157 0.2192 1.1483 0.0038 5 25.23  
Table 6: Variation of the thirty extraction wells  

C f​(3) ​< Cf​(0)​(1 + α​3​) (see step 3 of the algorithm in section 3.2). The fact ​468 ​that there are 
some sets of wells for which there is no chemically feasible ​469 ​flow justifies the choice of 
fitness function for the genetic algorithm (see ​470 ​23). Also, it can be seen that the total 
cost associated to the feasible flow ​471 ​changes greatly depending on which 30 wells are 
used in the brines extraction ​472 ​operation; in the next section the numerical results 
relating to finding which ​473 ​30 wells to use by means of a genetic algorithm will be 
discussed. ​474 ​Table 7 compares the performance of the proposed algorithm in relation 
475 ​to other established algorithms. The summary of the average obtained for ​476 ​the 6 
problems that were run previously for which there was a chemically ​477 ​feasible solution 
is reported. For the analysis, the problem instance for which ​478 ​there was not chemically 

feasible flow, according to the tolerance parameter ​479 ​H​tol ​= 0.005, was excluded from 

the reported results. ​480  
Minimum Cost Iterative Algorithm MINOS BARON  
(CPLEX)  

Cost C f​∗ ​(multiplied by 10​6 ​) ​
1.11068 1.3081 2.127 2.048  

Chemical Feasibility  

Error H(f​∗​) ​0.1545 0.0042 0.005 0.005  

Solver Iterations ​1 6 1413 1874  

Computational  

Time (s) ​0.48 17.87 268.24 > 300  

Table 7: Comparison between minimum cost flow, iterative algorithm, MINOS and Baron  
21  



In Table 7, the first column corresponds to the solution of minimum ​481 ​cost 
without chemical specification constraints (16). The last three columns ​482 
present a comparison between the solution obtained by the iterative algo- ​483 
rithm developed in this work and the solutions obtained by commercial soft- 
484 ​ware such as MINOS [25] and BARON [30]. In all cases, the problem that 

485 ​was solved was (19) with prefixed tolerance of H​tol ​= 0.005, none of the 

two ​486 ​software shown results in reasonable time for the second case where 
the wells ​487 ​used were from 11 to 40. ​488 ​It can be observed that the minimum 
cost solution is far from the other ​489 ​solutions from a chemical concentration 
of the final product point of view, ​490 ​thus not representing a real solution to 
the problem. It also needs to be ​491 ​highlighted that each iteration of the 
proposed algorithm requires solving a ​492 ​non-linear problem, which is solved 
using the Frank-Wolfe method which in ​493 ​turn performs several iterations 
(see problem (10). This helps to explain the ​494 ​big difference that exists 
between the number of iterations and the computa- ​495 ​tional time required to 
solve the problem. We are specially concerned about ​496 ​computational times 
due to the need of using the solution method as a sub- ​497 ​routine in the 
genetic algorithm, the iterative algorithm is shown to be better ​498 ​than 
commercial software in both aspects, time and quality of solution. ​499 ​The last 
experiment was performed on the same instance created arti- ​500 ​ficially and 
consisted on incrementing the network size. For this purpose, ​501 ​six 
evaporation pools and eight mixing pools were used and the number of ​502 
extraction wells were incremented by 10 on each problem. The results of this 
503 ​experiment are shown in table 8. ​504  

Amount Minimum cost, Problem (16) Iterative Algorithm of wells C f​(0) ​(10​6​×) H(f​(0)​) C f​∗ 

(10​6​×) H(f​∗​) Iter. time (s)  
30 1.6194 0.1334 2.7764 0.0386 25 31.93 40 1.0833 0.1392 1.7678 0.0350 21 35.83 
50 1.0833 0.1392 1.6995 0.0188 19 109.39 60 1.0833 0.1392 1.7896 0.0160 22 
184.06 70 0.1000 0.2485 1.5631 0.0083 19 205.19 80 0.1000 0.2485 1.5586 0.0081 
19 229.57 90 0.1000 0.2485 1.4418 0.0046 13 212.56  

Table 8: Sensitivity to size for the proposed algorithm  

The results shown in Table 8 should not be surprising as they prove ​505 ​that               
increasing the number of evaporation pools (from 4 to 6), and hence ​506             



increasing the number of chemical constraints, makes it more difficult for the            
507 ​algorithm to find a solution. With few wells it becomes harder to satisfy ​508  

2
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all the chemical constraints on the evaporation pools. The reader can note ​509             

that as more wells are added, there are more degrees of freedom on the ​510               

mixing pools and the values for the chemical error H(f​∗​) diminishes. This ​511             

observed behaviour allows to justify the operational design considerations in          
512 ​the mining of Lithium rich brines. ​513  

5.2. Results of the Genetic Algorithm ​514 ​In this subsection the results 
obtained after implementing the genetic ​515 ​algorithm are shown. Three 
different tests were run iterating 20 genera- ​516 ​tions with 100 individuals. In 
the experiments some parameters such as ​517 ​crossover and mutation 
probabilities were changed, also the number of ex- ​518 ​traction pumps and the 
initial population chosen. On the first execution ​519 ​of the GA, M = 20 wells 
was considered to be the size of the wells subset ​520 ​and a random initial 
population. In the second run, the number of extrac- ​521 ​tion pumps was 
increased to M = 30 and the initial population is chosen ​522 ​at random again. 
On the third run 30 pumps were considered but the ini- ​523 ​tial population was 
built using only wells with high and medium cost, the ​524 ​rationale behind this 
choice was to see the capabilities of the GA to elimi- ​525 ​nate costly wells and 
obtain individuals with good cost. Table 9 shows the ​526 ​probabilities used on 
each case. ​527  

Run 1 Run 2 Run 3 Crossover Probability ​0.8 0.8 0.9  

Mutation Probability ​0.1 0.1 0.2  

Table 9: Crossover and Mutation Probabilities  

The graph of figure 3 shows the evolution of the fitness function through ​528 
20 iterations. The dashed line represents the average fitness of all 
generations ​529 ​while the solid line shows the fitness evolution for the best 
individual. The ​530 ​horizontal line corresponds to an estimate of the best 



fitness, this value has ​531 ​been calculated evaluating the fitness of the 
individual possessing the 30 ​532 ​lowest cost simulated wells. ​533 ​In Table 10 
the wells that are used on the GA solution for each run are ​534 ​presented. On 
each case, the solution given by the GA corresponds to the ​535 ​individual with 
better fitness found in 20 generations. Additionally, the wells ​536 ​in the 
solution are classified according to their costs (see Table 3). The row ​537 
corresponding to Run 0, represents the best fitness approximation. ​538  

2
3  

Figure 3: Average (segmented) and Best Fitness (continuous) for the 3 runs of the GA  

It can be observed in Table 10 that the solutions are composed, mostly, ​539 
by the use of low cost sources. This points out to a good performance of ​540 
the genetic algorithm. Also, the fitness value for the best individual on each 
541 ​run are all of them relatively close to the referential cost, with the 
exception ​542 ​of the third run that obtained a higher cost. The increase in the 
number of ​543 ​wells from the first to the second run does not translates into a 
growth in ​544 ​cost, this is because the costs considered are a unit cost and 
the flows remain ​545 ​the same. ​546 ​On Figure 3 it can be seen that the average 



curve for Run 1 starts over ​547 ​its analogue of Run 2. The increase of the 
average is due to the penalty ​548 ​factor used in the fitness function, because 
by using 20 wells instead of 30 ​549 ​it becomes more difficult to achieve the 
desired concentrations and several ​550 ​individuals end up being infeasible 
ones. The average curve for Run 3 falls ​551 ​too quickly when compared to the 
other two runs, this indicates the quick ​552 ​elimination of the high/medium cost 
wells from the solution and the impact ​553 ​this has on the fitness function. It 
needs to be noted that in this last run ​554 ​the average curve also starts below 
the curve of the first run, this due to ​555 ​the higher number of wells and 
absence of penalty for the fitness. This last ​556  
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Solution Low Cost Medium Cost High Cost Individual’s for Run Wells Wells Wells Fitness ×10​5  

Run 0 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 31, 32 8.7358  
33, 34, 35, 36, 37, 38, 39, 40, 61, 62, 63 64, 

65, 66, 67, 68, 69, 70  

Run 1 3, 4, 8, 31, 32, 34, 35, 36, 40, 11, 79 59, 60 8.7771  
61, 62, 63, 64, 67, 68, 70  

Run 2 2, 3, 4, 6, 7, 31, 33, 34, 35, 36, 37, 47, 73, 74, 80 21, 29, 86, 88 8.7464  
38, 40, 60, 61, 62, 63, 64, 65, 66, 67, 68  

Run 3 3, 4, 6, 31, 32, 34, 35, 36, 15, 41, 75, 76 22, 23, 26 8.8533 40, 61, 62, 63, 64, 65, 67, 68, 69 77, 79, 80 59, 81, 
84  

Table 10: Obtained solutions and their 
classifications  

shows that the penalty scheme used is good enough to differentiate from the 
557 ​expensive solutions to the problem. ​558 ​Finally, a comparison between the 
fitness results of runs two and three ​559 ​with the results shown in the fourth 
column of Table 6, show the need to ​560 ​find a strategy that allows the 
planner to appropriately select the 30 wells to ​561 ​be used in the extraction of 
the brines. For example, in run two where the ​562 ​initial population was taken 
at random, the cost was 8.7464×10​5​, whilst the ​563 ​best combination of wells 



in table 6 was combination 51–80 with a cost of ​564 ​1.1483 × 10​6​. ​565  

6. Conclusions ​566  

This paper studied a problem which is associated to the location of ex- ​567              

traction pumps for the mining of Lithium, product that is more utilised ​568             

nowadays. To approximate the solution for the general problem, the work ​569            

was divided into two stages. On the first stage the feasibility problem with ​570              

minimum cost for a fixed network was solved by using an iterative scheme ​571              

based on non-linear optimisation techniques, this stage provides a solution          
572 ​that is able to provide a final product within specification of its chemical ​573               

properties. On the second stage, the location of the best places to extract ​574              

brine as to produce a product within specification requirements and minimum           
575 ​cost was sought, this stage utilises the methods of the first stage to              
evaluate ​576 ​the appropriateness of a given candidate solution and uses this            
information ​577 ​in the search of an optimal solution to the general problem. ​578  
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The problem over a fixed network seeks a solution over bounded sections ​579 
of the feasibility set. The pump location problem was modelled as a combi- 
580 ​natorial problem and solved using a genetic algorithm to find approximate 
581 ​solutions to the problem. Both problems were solved on a simulated 
instance ​582 ​to show the correctness of the proposed approach and due to 
confidentiality ​583 ​issues with the real world data. It needs to be said that all 
problems obtained ​584 ​from the simulated instance are representative of a 
real operation. ​585 ​The iterative method proposed in this work has shown 
better feasible ​586 ​solutions to the problem than the one that can be obtained 
by commercial ​587 ​software such as MINOS and BARON. In addition, the 
computational re- ​588 ​quired by the iterative method also showed a better 
behavior, which allowed ​589 ​us to use this method to define the fitness 
function of the Genetic Algorithm, ​590 ​even though a chemically feasible flow 
could not be found for some configu- ​591 ​rations of fixed networks. The 
Genetic Algorithm has shown to be useful in ​592 ​finding solutions that use 
wells that provide flows with the expected quality ​593 ​and with a good cost. On 



the Table 10, it can be seen that the GA is able ​594 ​to identify and maintain in 
the population pool those solutions the low cost ​595 ​sources included in the 
instance which suggests a correct implementation and ​596 ​performance. The 
difficulty of this method lie on the higher computational ​597 ​requirement as for 
each individual of population (network) the fitness func- ​598 ​tion requires the 
resolution of a problem over a fixed network. Despite this ​599 ​increase in 
computational time, the proposed GA is appropriate to solve the ​600 ​extraction 
planning problem for Lithium deposits as this problem does not ​601 ​need to be 
solved too frequently. ​602  
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