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Abstract

Background: Klebsiella pneumoniae is the most frequent KPC-producing bacteria. The blaKPC gene is frequently
embedded in Tn4401 transposon, and less frequently in non-Tn4401 elements (NTEKPC) variants I-III. The first case of
KPC in the UC-CHRISTUS Clinical Hospital was detected in Pseudomonas aeruginosa. Soon after this event, KPC was
detected in 2 additional Pseudomonas aeruginosa, 3 Escherichia coli, 3 Enterobacter cloacae, 3 Klebsiella pneumoniae,
and 1 Citrobacter freundii, isolated from 6 different patients. We aimed to elucidate the possible mechanisms of
genetic transfer and dissemination of the blaKPC gene among isolates of this multispecies outbreak. A molecular
epidemiology analysis of the above mentioned clinical isolates (n = 13) through Multi-Locus Sequence Typing,
plasmid analysis, Pulsed-Field Gel-Electrophoresis, and Whole-genome sequencing (WGS) was performed.

Results: High-risk sequence types were found: K. pneumoniae ST11, P. aeruginosa ST654, and E. cloacae ST114. All
enterobacterial isolates were not clonal except for 3 E. coli isolated from the same patient. WGS analysis in 6
enterobacterial isolates showed that 4 of them had blaKPC embedded in a novel variant of NTEKPC designated
NTEKPC-IIe. Upstream of blaKPC gene there was a 570 pb truncated blaTEM-1 gene followed by an insertion sequence
that was 84% similar to ISEc63, a 4473 bp element of the Tn3 family. Downstream the blaKPC gene there was a
truncated ISKpn6 gene, and the inverted repeat right sequence of Tn4401. The ISec63-like element together with
the blaKPC gene plus Tn4401 remnants were inserted in the Tra operon involved in conjugative transfer of the
plasmid. This NTE was carried in a broad host-range IncN plasmid. P. aeruginosa isolates carried blaKPC gene
embedded in a typical Tn4401b transposon in a different plasmid, suggesting that there was no plasmid transfer
between Enterobacteriaceae and P. aeruginosa as initially hypothesized.

Conclusions: Most enterobacterial isolates had blaKPC embedded in the same NTEKPC-IIe element, suggesting that
this multispecies KPC outbreak was due to horizontal gene transfer rather than clonal spread. This poses a greater
challenge to infection control measures often directed against containment of clonal spread.
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Background
Carbapenem-resistant bacteria are a serious public
health threat worldwide. Carbapenems are used as last
resort antibiotics in infections caused by multidrug-
resistant bacteria and carbapenemases are threatening
this valuable therapeutic agent [1]. KPC is the most clin-
ically significant class A carbapenemase because KPC-
producing bacteria are susceptible to only a few antibi-
otics (colistin, aminoglycosides, tigecycline, and ceftazi-
dime/avibactam) and patients infected with them have
poor outcomes [2]. KPC carbapenemase was first re-
ported in the United States in 1996 in a Klebsiella pneu-
moniae isolate [3] and a few years later it became
endemic in regions like United States, Italy, Israel and
Colombia [1]. To date, there are more than 30 KPC vari-
ants described, with KPC-2 and KPC-3 being the most
frequently encountered [4]. K. pneumoniae is by far the
most frequent species carrying blaKPC. However, it has
been described in several other species of Enterobacteri-
aceae [5]. Albeit less frequently, KPC-producing Pseudo-
monas aeruginosa has also been described [6, 7].
The worldwide dissemination of KPC-producing K.

pneumoniae has been associated with the successful
spread of a specific genetic lineage designated clonal
group 258 (CG258). This CG contains 43 different se-
quence types (STs), with ST258, and ST512 being the
predominant ones. Indeed, ST258 is a high-risk clone re-
sponsible for 80% of KPC-producing K. pneumoniae out-
breaks in the United States [8]. However, other
mechanisms of KPC dissemination have been described,
for example horizontal transfer of mobile genetic ele-
ments [9]. The KPC-coding gene, blaKPC, is usually
found within a Tn4401 transposon, a mobile genetic
element derived from the Tn3 transposon family that fa-
cilitates its spread [8, 10]. However, the blaKPC gene has
also been found in non Tn4401 elements (NTE). The
first NTE was described in China in 2007 [11] and add-
itional NTEs with different structures were later de-
scribed in countries like Argentina [12], Colombia [9],
Chile [13], and Brazil [14–16]. The blaKPC gene is usu-
ally carried on plasmids of different incompatibility
groups (Inc). A recent meta-analysis made with 435
KPC-bearing plasmids, showed that the most frequent
incompatibilty group was IncN [4]. These elements have
contributed to the dissemination of KPC within K. pneu-
moniae and other bacterial species.
The first KPC-producing strain in Chile was detected

in 2012 in a K. pneumoniae isolated from a patient trav-
eling from Italy [17]. Since then, KPC has been found in
several species of Enterobacteriaceae throughout the
country [13]. Surprisingly, the first KPC-producing strain
in our University Hospital (Clinical Hospital of Red de
Salud UC-CHRISTUS) was detected in 2015 in a P. aer-
uginosa strain recovered from an adult patient at the

intensive care unit. Shortly after the detection of this
first KPC-producing P. aeruginosa, KPC was subse-
quently found in several species of Enterobacteriaceae in
various hospital units, in a relatively short period (2
months) [7]; the event fulfilled the classical outbreak def-
inition of The World Health Organization [18]. This ob-
servation led us to hypothesize that the blaKPC gene
might have been transferred from the index KPC-P. aer-
uginosa to Enterobacteriaceae through horizontal gene
transfer. Therefore, we aimed to elucidate the possible
mobile genetic elements harboring KPC and possible
mechanisms of genetic transfer and dissemination of the
blaKPC gene among bacterial isolates associated with this
multi-species outbreak.

Results
Isolates included in the outbreak analysis
A detailed molecular analysis of 3 P. aeruginosa and 10
Enterobacteriaceae associated with the outbreak, ob-
tained from six different patients was performed. The
index KPC-P. aeruginosa (Pae-1) was isolated from P1 in
the ICU (Table 1) and it was also found to carry blaVIM
(Table 2). The first KPC-producing K. pneumoniae
(Kpn-3) was isolated almost 20 days later from P3 in the
step-down unit. One month later, three KPC-producing
isolates were obtained from the same patient (P3) in the
same unit: K. pneumoniae (Kpn-4), E. coli (Eco-5) and E.
cloacae (Ecl-6). Eleven days later three additional KPC-
producing E. coli (Eco-7, Eco-8) and one E. cloacae (Ecl-
9) were again recovered from P3. At the same time of
isolation of the first KPC-producing K. pneumoniae, a
new KPC-producing K. pneumoniae (Kpn-10) was recov-
ered from P4 in the surgical unit, and two KPC-
producing isolates of C. freundii (Cfr-11) and one E. clo-
acae (Ecl-12) respectively, were recovered from P5 in
the pediatric ICU. Of note, the two isolates from the
pediatric care unit also carried the blaVIM gene (Table 2).
Two additional P. aeruginosa isolates were included: one
of them was the following consecutive VIM-positive P.
aeruginosa (Pae-2) isolated from P2 in the emergency de-
partment 24 days after the index case, and the second was
Pae-13, isolated more than 2 months after the index case
in the same ICU, but from a different patient (P6) (Ta-
bles 1 and 2). All isolates carried blaKPC-2, except for Pae-
2, that only harbored blaVIM. All P. aeruginosa isolates
carried the blaVIM-2 metallo-beta-lactamase. In contrast,
Cfr-11 and Ecl-12 carried blaVIM-1 (Table 2).

Molecular epidemiology of the isolates
PFGE analysis determined that isolates Pae-1 and Pae-13
were clonal (Fig. 1). Of note, those isolates were recov-
ered from different patients and time points, but within
the same ICU. All E. coli isolates were recovered from
the same patient (P3), but only Eco-7 and Eco-8 were
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clonal. Eco-5, obtained 11 days before in a different hos-
pital unit was a different strain. Similar to the case with
Eco-5, E. cloacae isolates were not clonally related, des-
pite two of them were recovered from the same patient
(P3) within 11 days (Ecl-6 and Ecl-9), but in two differ-
ent units. K. pneumoniae isolates were not clonal despite
two of them, Kpn-3 and Kpn-4 were recovered from the
same patient (P3). The unprocessed gel photographs are
shown in Supplementary Fig. S1.
In terms of our MLST results, all three E. coli

belonged to the ST378. K. pneumoniae isolates were
ST11 (Kpn-3 and Kpn-4) and ST25 (Kpn-10). Both E.

cloacae recovered from P3 were ST45, whereas Ecl-12 was
ST114. The KPC-harboring P. aeruginosa isolates isolated
from the ICU were ST654 and Pae-2 was ST282 (Table 2).

Plasmid analysis
P. aeruginosa isolates (Pae-1, Pae-2 and Pae-13) did not
carry plasmids of any of the incompatibility groups most
frequently found among Pseudomonas species, that were
sought through PCR [19]. All but one (Ecl-12) entero-
bacterial isolates carried an IncN type plasmid (Table 2).
Also, all isolates recovered from P3 except for the first
K. pneumoniae isolate Kpn-3, carried a plasmid of the

Table 1 Isolates included in this study

Patient
N°

Isolate Date of
isolation

Hospital
Unit

Species Selection criteria for inclusion in the study

1 Pae-1 05-05-2015 ICU P. aeruginosa Index case: 1st blaKPC isolate in the hospital (KPC + VIM)

2 Pae-2 29-05-2015 Emergency P. aeruginosa 2nd consecutive case of VIM-positive P. aeruginosa

3 Kpn-3 01-06-2015 Step-down K.
pneumoniae

1st KPC-positive K. pneumoniae in the hospital

Kpn-4 09-07-2015 Step-down K.
pneumoniae

1st case of a patient colonized with 3 different bacterial species coding for
KPC

Eco-5 E. coli

Ecl-6 E. cloacae

Eco-7 20-07-2015 Coronary
care

E. coli 3rd Surveillance of the same patient again with KPC-positive bacteria

Eco-8 E. coli

Ecl-9 E. cloacae

4 Kpn-10 04-06-2015 Surgical K.
pneumoniae

2nd K. pneumoniae KPC-positive in the hospital

5 Cfr-11 04-06-2015 Pediatrics C. freundii 1st case of KPC in the Pediatric Unit

Ecl-12 E. cloacae

6 Pae-
13

18-07-2015 ICU P. aeruginosa Similar to index case

Isolates analyzed through WGS are shown in boldface letters

Table 2 Sequence types, plasmids, and pulsotypes determined in this study

Patient N° Isolate Carbapenemase Pulsotype (PFGE) MLST Plasmid incompatibility group Genetic environment of blaKPC

1 Pae-1 KPC-2 / VIM-2 P1 ST654 NF Tn4401b

2 Pae-2 VIM-2 P2 ST282 NF NA

3 Kpn-3 KPC-2 K1 ST11 IncN NTEKPC-IIe

Kpn-4 KPC-2 K2 ST11 IncN; IncA/C ND

Eco-5 KPC-2 E1 ST378 IncN; IncA/C NTEKPC-IIe

Ecl-6 KPC-2 L1 ST45 IncN; IncFIA; IncFIB; IncA/C NTEKPC-IIe

Eco-7 KPC-2 E2 ST378 IncN; IncA/C NTEKPC-IIe

Eco-8 KPC-2 E2 ST378 IncN; IncA/C NTEKPC-IIe

Ecl-9 KPC-2 L2 ST45 IncN; IncA/C NTEKPC-IIe

4 Kpn-10 KPC-2 K3 ST25 IncN ND

5 Cfr-11 KPC-2 / VIM-1 NA ST130 IncN ND

Ecl-12 KPC-2 / VIM-1 L3 ST114 NF ND

6 Pae-13 KPC-2 / VIM-2 P1 ST654 NF Tn4401b

NTEKPC-IIe Non Tn4401 element variant IId, NA Not applicable, ND Not determined, NF Not found
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IncA/C type. The E. cloacae isolate Ecl-6 recovered
from this patient additionally carried plasmids of
the IncF1A and IncF1B types. Plasmids were ex-
tracted and visualized in a 0.75% agarose gel (Fig. 2).
Typical patterns of relaxed, supercoiled and linear
plasmid forms were observed in most isolates. Iso-
late Ecl-6 carried several plasmids, in accordance to
PCR results. Although no plasmids were amplified
in isolate Ecl-12 through PCR using a set of
primers directed to the plasmids usually found in
Enterobacteriaceae, it exhibited a band of less than
4 Kb (Fig. 2).

Genetic environment of blaKPC gene and plasmid
WGS was performed in 7/13 isolates, including KPC-P.
aeruginosa Pae-13 and 6 isolates from P3: Kpn-3, Ecl-9,
Eco-8, Eco-5, Eco-7, and Ecl-6.
The blaKPC-containing contig of Pae-13 was 35,034 bp

long (Genbank accession N° MT949191) and it aligned
to a 43,660 bp plasmid (pPA2047) isolated in Argentina
(Genbank accession N° MN082782, November 2019).
Contigs were then assembled using plasmid pPA2047 as
the reference sequence and the plasmid depicted in
Fig. 3a was obtained. Analysis of the genetic environ-
ment showed that Pae-13 harbored blaKPC embedded in

Fig. 1 Dendrograms obtained from the analysis of PFGE patterns. Panels correspond to E. coli (a), E. cloacae (b), K. pneumoniae (c), and P.
aeruginosa (d) isolates. Dendrograms were constructed using the Dice coefficient and unweighted pair group method with arithmetic mean
(UPGMA). The 95% similarity cut-off is indicated with a dashed line. A standard ATCC strain of each species was included in every analysis.
Pulsotypes for each isolate are indicated in the right column. Lanes that were non-adjacent in the original gel were cropped to be positioned
according to dendrogram order. The unprocessed gel photographs are shown in Supplementary Fig. S1
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an intact Tn4401 transposon of the b isoform (Fig. 3a).
This plasmid did not amplify any of the replicons corre-
sponding to incompatibility groups of Pseudomonas spe-
cies [19] or Enterobacteriaceae [20]. Moreover, it was
non-typeable according to PlasmidFinder software [21].
The size of the blaKPC gene-containing contigs in en-

terobacterial genomes ranged from 18,252 bp to 42,936

bp (Genbank accession N°: MT949189 for Kpn-3;
MT949193 for Ecl-6, Ecl-9 and Eco-5; MT949190 for
Eco-8; MT949192 for Eco-7). All of them aligned to a
59,373 bp long plasmid of the IncN type named
pEC881_KPC recovered in 2013 from a carbapenem-
resistant E. coli in Colombia (Genbank accession N°
CP019026.1). Contigs were then assembled using

Fig. 2 Agarose gel (0,75%) electrophoresis of plasmids extracted through alkaline lysis from the 13 isolates analyzed. Std: Molecular weight
marker; the weight of the 10 kb and 4 kb bands are shown as a reference. The red box indicates the band corresponding to residual
genomic DNA

Fig. 3 Genetic environment of blaKPC gene in plasmids from P. aeruginosa (a) and enterobacterial isolates (b) obtained through WGS analysis.
Plasmid from P. aeruginosa Pae-13 was obtained through assembly against plasmid pPA2047 and the blaKPC gene embedded in Tn4401 is shown
in yellow (a). Plasmids from enterobacterial isolates were obtained through assembly against plasmid pEC881_KPC and the blaKPC gene is
embedded in a NTEKPC-IIe element (b)
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plasmid pEC881_KPC as the reference sequence. The as-
sembly retrieved the plasmid sequence with different
identity and completeness levels for all six enterobacte-
rial isolates analyzed (Fig. 3b). The blaKPC gene was not
embedded in transposon Tn4401 in any of the analyzed
enterobacterial genomes (Fig. 3b). In 4 of the 6 isolates,
blaKPC was harbored in a variant of NTEKPC designated
NTEKPC-IIe. Upstream of blaKPC gene there was a 570
pb truncated blaTEM-1 gene (deletion of 291 pb) followed
by an insertion sequence that was 84% similar to ISEc63,
a 4473 bp element that belongs to the Tn3 family. This
IS contains, a Tn3 family resolvase, a DDE-transposase
(contains 3 acidic amino acids, DDE) and a 50 bp
inverted repeat left of ISec63 (IRL, Fig. 3b). The DDE-
transposase gene had a single nucleotide deletion of
G384 that resulted in a frameshift from amino acid 128,
producing a truncated protein in the 4 isolates. Down-
stream the blaKPC gene there was the remnant of an
ISKpn6 gene (ΔISKpn6, Fig. 3b), and the inverted repeat
right of Tn4401 (IRR, Fig. 3b), traits that are common
among most NTEKPC sequences [10]. The ISec63-like
element together with the blaKPC gene plus Tn4401
remnants were inserted in the operon containing the
genes required for conjugative transfer of the plasmid
(TraI, TraD, VirB11, VirB9, VirB8, VirB5, and VirB4)
(pink arrows, Fig. 3b). The region located upstream the
ISec63-like element was highly variable among the 6 iso-
lates analyzed: Eco-5, Eco-7, and Ecl-6 lack some genes
respective to isolates Kpn-3, Ecl-9, and Eco-8. It could
also be stated that Ecl-9 and Eco-8 are different from
Kpn-3 (Fig. 3b).
No other IS or transposon structure was found in the

plasmid. The plasmid contained other genes coding for
proteins involved in antibiotic resistance, eg: Sul1 (sul-
phonamides), QnrB (quinolones), QacEΔ1 (quaternary
ammonium compounds), AadA16 and AacA4 (amino-
glycosides) (Fig. 3b). Additionally, it harbored genes in-
volved in DNA repair and metabolism (UmuCD operon,
DNA-cytosine methyltransferase, antirestriction protein
KlcA and EcoRII).

Discussion
Our results show that KPC-producing P. aeruginosa pos-
sessed the blaKPC gene in a different plasmid and trans-
poson structure from that found in Enterobacteriaceae,
suggesting that there was no plasmid transfer between
them as initially hypothesized.
The multispecies outbreak described herein was most

likely driven by horizontal plasmid transfer among En-
terobacteriaceae species. Indeed, all enterobacterial iso-
lates studied with WGS harbored essentially the same
blaKPC-bearing IncN plasmid. Importantly, this genetic
element has been described as a conjugative free mobil-
ity plasmid between different species [22]. The fact that

most enterobacterial isolates of the same species carry-
ing the IncN plasmid were not clonal further supports
the horizontal transfer mechanism.
NTEs have been classified based on the genes adjacent

to blaKPC gene: type NTE-I has no insertions respective
to the first variant found in China, NTE-II has a partial
blaTEM gene upstream blaKPC, and NTE-III has an inser-
tion of tnpR (Tn5563)/IS6100 [10]. The Argentinian and
previous Chilean NTEKPC variants were of the type
NTEKPC-Ia and were identical to that firstly reported in
China. A novel NTEKPC-IId element has been recently
described in Brazil, in which there is a truncated blaTEM
gene upstream the blaKPC gene, and a truncated ISKpn6
gene followed by relE/parE toxin-antitoxin system
downstream the blaKPC gene [16]. The NTEKPC-IIe de-
scribed here is a novel variant based on the presence of
an array of vir genes downstream the blaKPC gene, a re-
gion that is usually less variable than the upstream re-
gion. A detailed genomic analysis done in Colombia
with isolates obtained during KPC emergence showed
that the first events responsible for KPC dissemination
were horizontal transfer of mobile genetic elements car-
rying blaKPC-2 in the typical Tn4401 transposon and also
in NTEKPC elements, followed by introduction of K.
pneumoniae ST258 carrying blaKPC-3 exclusively in
Tn4401 and its subsequent clonal dissemination [9]. The
events described in Argentina illustrate a similar picture:
the first KPC-producing bacteria were of different en-
terobacterial species and non-ST258 K. pneumoniae car-
rying blaKPC in NTEs, followed by introduction and
clonal dissemination of K. pneumoniae ST258 carrying
blaKPC-3 in a typical Tn4401 element [12]. The events
described in this work are similar to the beginning of
the Colombian and Argentinian KPC epidemics: the
blaKPC-2 gene embedded in NTEs disseminates among
various enterobacterial species and non-ST258 K. pneu-
moniae. It would be very interesting to analyze recent
Chilean isolates to determine if the switch to the pre-
dominant ST258 carrying blaKPC-3 in Tn4401 has
occurred.
One of the most remarkable limitations of this work is

the lack of experimental evidence about the transferabil-
ity of the IncN plasmid intra and interspecies. Addition-
ally, the WGS method used provided short reads which
make it difficult to obtain a circular complete sequence.
This could explain the incomplete sequences obtained
for some strains like Eco-5 and Ecl-6. Of note, entero-
bacterial isolates from patients P4 and P5 lost their KPC
genes and were not sequenced. These isolates could have
lost their KPC-bearing plasmids, maybe because these
plasmids were different and less stable than those of iso-
lates from patient P3, that were stably maintained. In
fact, the band of less than 4 Kb of isolate Ecl-12 could
correspond to a plasmid belonging to a different
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incompatibility group. It is possible that interspecies
plasmid transfer occurred only in patient P3.
Based on our clonality analysis, only one case of intra-

hospital transmission could have occurred: Pae-1 and
Pae-13, isolated from P1 and P6 respectively; both iso-
lates were clonal and both patients were hospitalized in
the same service, although 2 months apart. Infection
control measures such as hand-washing, sterilization of
medical devices and contact isolation precautions might
have failed in this particular case.
Isolates Pae-1 and Pae-13 were ST654, that is a high-

risk clone and has been previously reported in Argentina
[23] associated with production of KPC carbapenemase.
Sequence types determined for E. coli and C. freundii
isolates are not high-risk clones and no previous results
were found about these STs associated with carbapene-
mase production. E. cloacae isolates were of the types
ST45 and ST114, that have been previously described in
other studies associated with the production of ESBLs
and carbapenemases, with ST114 being a high-risk clone
[24]. None of the K. pneumoniae isolates recovered
belonged to the globally disseminated high-risk clone
ST258; two of the isolates were ST11 and one was ST25.
However, ST11 is also a clinically relevant genetic
lineage, being closely related to ST258 [25]. Although
ST25 is less frequent, it is associated with KPC produc-
tion and it has been previously reported in Chile by the
Institute of Public Health (unpublished data). Moreover,
ST25 has been described as an hypervirulent clone asso-
ciated with mucoid phenotype [26].

Conclusions
We describe here a multispecies outbreak of KPC-
producing bacteria driven by horizontal gene transfer of
blaKPC gene embedded in a novel NTE element, named
NTEKPC-IIe. This type of transmission poses a greater
challenge to infection control measures often directed
against containment of clonal dissemination.

Methods
Clinical isolates
We selected 13 carbapenemase-producing clinical iso-
lates obtained between May and July, 2015, from 6 dif-
ferent patients (P1 – P6) (Table 1). Patients had been
admitted to the intensive care unit (ICU), step-down
unit, cardiology, surgical and pediatric care units at the
Clinical Hospital of Red de Salud UC-CHRISTUS. Iso-
lates species corresponded to K. pneumoniae (Kpn-3,
Kpn-4, and Kpn-10), Enterobacter cloacae (Ecl-6, Ecl-9,
and Ecl-12), Escherichia coli (Eco-5, Eco-7, and Eco-8),
Citrobacter freundii (Cfr-11) and P. aeruginosa (Pae-1,
Pae-2, and Pae-13). All included isolates were obtained
from surveillance cultures (rectal swabs), as part of an
institutional protocol designed to actively screen for

carbapenemase-producing bacteria. Such protocol was
instituted in 2013 and consisted of monthly rectal swabs
performed to all patients hospitalized for more than 5
days in any of the intensive care units of the hospital
[27]. Importantly, despite finding many carbapenem-
resistant organisms, no carbapenemase-producing bac-
teria had been recovered before the outbreak described
herein [27]. Swabs were plated in chromogenic medium
ChromID CARBA (bioMèrieux). Colonies were trans-
ferred to Mueller-Hinton agar plates and bacterial spe-
cies was determined with Matrix-Assisted Laser
Desorption/Ionization - Time of Flight (MALDI-TOF)
(Bruker-Daltonics, Germany). Carbapenemase produc-
tion was assessed through the Carba-NP test performed
according to CLSI instructions [28].

Detection of carbapenemases genes
Total DNA extraction was performed using the Magna
Pure Compact Nucleic acid isolation kit I kit (Roche).
The presence of blaKPC and blaVIM genes was deter-
mined through PCR using primers listed in Table 3 as
previously described [29]. PCR products were purified
and sequenced bi-directionally (Macrogen Inc., Korea).
The primers used to sequence blaKPC and blaVIM genes
are provided in Table 3 [11, 30]. All sequences were cor-
rected and analyzed using Chromas Lite and Clustal
Omega online software. To determine the type of KPC
and VIM carbapenemases, sequences were compared to
the GenBank online database using BLAST software
(Basic Local Alignement Search Tool).

Pulsed Field Gel Electrophoresis (PFGE)
Pulsed-field gel electrophoresis (PFGE) of genomic DNA
macrorestricted with SpeI or XbaI enzymes was per-
formed to establish a clonal relationship between isolates
of the same species, according to the PulseNet protocol
of CDC [31]. PFGE conditions were as follows: pulse
times ranged from 2 s to 40s for 18 h at 6.0 V/cm at
14 °C. The PFGE profiles obtained were analyzed with
GelJ 2.0 software [32] and a dendrogram was con-
structed using the Dice coefficient (Tolerance 2%) and
unweighted pair group method with arithmetic mean
(UPGMA). The similarity between band patterns was
interpreted according to Tenover criteria [33] setting
95% similarity cut-off values for identifying pulsotypes.

Multi Locus Sequence Typing (MLST)
Amplification and sequencing of 7 housekeeping genes
were performed according to Pasteur Institute [34] or
PubMLST [35] protocols, and PCR products were se-
quenced bidirectionally (Macrogen Inc., Korea). Subse-
quently, the sequences were analyzed using ClustalW
Omega online software. The electropherograms were an-
alyzed using Chromas Lite software. Corrected
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sequences were uploaded to the MLST database to ob-
tain sequence types based on allele combinations.

Plasmid analysis
Identification of plasmid incompatibility groups was per-
formed by multiplex PCR, recognizing incompatibility
groups from Enterobacteriaceae and P. aeruginosa as
previously described [19, 20].
For plasmid extraction, a single colony of an overnight cul-

ture in blood agar plates was resuspended in 2ml microcen-
trifuge tubes containing 500 μL distilled water and
centrifuged at 3100 g for 10min. Bacterial pellets were resus-
pended in 400 μL of cold solution I containing 2mg/mL
lysozyme, 50mM glucose, 10mM EDTA, 25mM Tris-HCl
and 0.2mg/mL RNAse. Samples were stirred vigorously and
left at room temperature for 5min. Eight hundred μL of so-
lution II containing Sodium Hydroxide / Sodium dodecyl
sulfate was added, mixed 3 times by inversion, and incubated
in ice for 20min. Six hundred μL of solution III (3M So-
dium Acetate, pH 5.2) was added, vortexed vigorously and
incubated for 5min in ice and then centrifuged at 12,400 g
for 15min. The supernatant (500 μL approx.) was transferred
to another tube and mixed with an equal volume of Phenol:
Chloroform: Isoamyl alcohol (25: 24: 1), the mixture was
centrifuged at 12,400 g for 10min. Supernatants (500 μL
approx.) were transferred to another tube and 2 volumes of
cold absolute ethanol were added; it was gently stirred for 2
min and incubated for 35min at room temperature and cen-
trifuged at 12,400 g for 20min. Absolute ethanol was re-
moved and 1 volume of cold 70% ethanol was added,
subsequently, it was incubated for 5min and centrifuged for
another 5min at 12,400 g. Finally, ethanol was removed, and
the DNA pellet allowed to dry at room temperature. DNA
was resuspended in TE (Tris-EDTA) buffer pH 8.0 and
stored at − 20 °C. Plasmid DNA was separated on a 0.75%
agarose gel electrophoresis for 5 h at 50V.

Library preparation and DNA sequencing
Unfortunately, when isolates were regrown for genomic
DNA extraction and whole-genome sequencing (WGS)
isolates from P4 and P5 had lost the plasmid harboring

the blaKPC gene (Kpn-10, Cfr-11, and Ecl-12). Isolate
Kpn-4 did not lose its KPC gene but its WGS data were
low quality, thus it was not included. For this reason,
only WGS data of 7 of the 13 original isolates were ob-
tained, and it was performed by Novogene (California,
US). A 350 bp insert DNA library was prepared and se-
quencing was performed in an Illumina Platform PE150.
The Q30 obtained was > 90% for all 7 isolates.

Read processing, de novo assembly and annotation of
plasmid genomes
Reads were adapter trimmed using Trimmomatic 0.30
with a sliding window quality cutoff of Q15. De novo as-
sembly was performed on samples using plasmidSPAdes
as part of the core SPADES version 3.7 package [36].
Genomic annotation of the recovered draft genomes was
performed with Prokka tool 1.11 [37]. Annotations were
manually reviewed using BLASTP+ against the non-
redundant protein NCBI database. Contigs were further
aligned against plasmid pEC881_KPC (accession number
#CP019026.1) for Enterobacteriaceae and plasmid
pPA2047 (accession number MN082782) for P. aerugi-
nosa. Contigs were scaffolded using the MeDuSa open
software [38].

Synteny and comparative genomic analyses
Comparisons between individual genomes were per-
formed using BLASTn. Identification of insertions, dele-
tions, and variations in syntenic regions was performed
using Easyfig v2.1 [39] using the BLASTn comparison
file and gbk files as inputs and calibrating the tBLASTx
identity values to a minimum 99% ID for the reference
plasmids used. Final visualization and annotations of the
aligned contigs ORFs (Open Reading Frames) were made
using Geneious vR.10.

Abbreviations
ATCC: American Type Culture Collection; CG: Clonal group; CLSI: Clinical and
Laboratory Standards Institute; EDTA: Ethylenediaminetetraacetic acid;
ICU: Intensive Care Unit; IRL: Inverrted Repeat Left; IRR: Inverted Repeat Right;
MALDI-TOF: Matrix Assisted Laser Desorption - Time of Flight Mass
Spectrometry; MLST: Multi-Locus Sequence Typing; NTE: Non-Tn4401
Element; ORF: Open Reading Frame; PFGE: Pulsed-field gel electrophoresis;

Table 3 Primers used in this study

Gene Primers Sequence PCR product size (bp)

blaKPC KPC-F
KPC-R

5′-TGTCACTGTATCGCCGTC-3′
5′-CTCAGTGCTCTACAGAAAACC-3′

1010

blaVIM VIM-F
VIM-R

5′-CCGATGGTGTTTGGTCGCAT-3′
5′-GAATGCGCAGCACCAGGAT-3`

391

blaKPC KPC-Up
KPC-Dw

5′-GCTACACCTAGCTCCACCTTC-3′
5′-ACAGTGGTTGGTAATCCATGC-3’

968

blaVIM VIM-Up
VIM-Dw

5’-ATTGGTCTATTTGACCGCGTC-3′
5′-TGCTACTCAACGACTGAGCG-3’

780

Primers KPC and VIM -F and -R were used for PCR gene detection
Primers KPC and VIM -Up and -Dw were used for gene sequencing
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ST: Strain Type; UPGMA: Unweighted Pair Group Method with Arithmetic
mean; WGS: Whole Genome Sequencing; WT: Wild type
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