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A B S T R A C T   

Seismic site amplification and seismic hazard maps are crucial inputs for decision making and risk evaluation in 
places where seismicity imposes a significant risk to human life and infrastructure. In this work, we propose a 
novel machine learning (ML) based methodology to integrate qualitative and quantitative data to map the degree 
of seismic amplification in an area of Chile, one of the most seismically active countries on Earth. Our method 
uses measurements of surface shear wave velocities (Vs30) and predominant frequencies (f0) combined with 
gravity anomaly maps to update the geographic extension of seismic amplification classes. Additionally, we 
trained the predictive models to interpolate and extrapolate Vs30 and f0 to the unsampled sites. Applying this 
method to the Santiago basin resulted in (i) a refined seismic amplification map, and (ii) maps of Vs30 and f0 
estimated with improved accuracy. The best predictions, obtained by ML techniques and validated through cross- 
validation, are possibly due to the inclusion of spatial covariates for algorithm training, enhancing the ability of 
the model to capture the spatial correlations of geological, geophysical and geotechnical data. The estimation of 
predominant frequencies (f0) is improved considerably by including gravity as a covariant. The accuracy of the f0 
predictions apparently depends more on the choice of covariates than on the algorithm used, while the Vs30 
predictions are more sensitive to the chosen algorithm. These results illustrate the great potential of machine 
learning predictive algorithms in digital soil mapping, which surpass traditional geostatistical techniques. The 
major contribution of this work is to introduce a novel methodology, based on artificial intelligence models, to 
extend local measurements of site-specific dynamic properties. This information can be used to quantitatively 
estimate seismic hazard over a regional scale.   

1. Introduction 

Chile is one of the most seismically active countries in the world. The 
active continental margin where the oceanic (Nazca) plate subducts 
under the continental (South American) plate, extends between 18◦ and 
47◦ S. This active margin has generated some of the largest subduction 
earthquakes on record (e.g. 9.5 Mw Valdivia 1960 earthquake, 
Cifuentes, 1989). Observational data show that, along the country, the 
impact of seismic waves increases in the areas closest to the trench and 
decreases with distance from the seismogenic source (i.e. Leyton et al., 
2010). 

Estimations of the recurrence of large historical earthquakes (Mw >

8), adjacent to the Santiago Metropolitan Region (SMR), indicate 
occurrence approximately every 80 years (Fig. 1); the 8.0 Mw Algarrobo 
earthquake of 1985 being the last major event (Ruiz and Madariaga, 
2018). The SMR concentrates 41.6% of the population and 41.5% of the 
gross domestic product of Chile and so it is crucial to be able to accu-
rately estimate the ground shaking and minimize the damage caused by 
major seismic events in the region. 

The local geotechnical conditions of a site can induce important 
seismic amplifications (i.e. Aki, 1988), known as site effects. Site effects 
can be evaluated through the dynamic characterization of the subsoil, 
measuring dynamic parameters of the site's response to the pass of 
seismic waves. In this regard, two parameters appear key to achieve a 
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correct geotechnical characterization: 1) the shear wave velocity profile, 
which allows a primary evaluation of the dynamic response of a site 
(Tokimatsu, 1997), and 2) the predominant frequency of sites, f0, 
defined as the frequency associated with the impedance contrast that 
predominates in the site (Maringue et al., 2021). In Chile, the seismic 
code classifies a site based on the value of the harmonic average of the 
propagation velocity of shear waves in the first 30 m of depth, Vs30. 
Other parameters from in situ tests, such as drilling, standard penetra-
tion and laboratory tests, are also required for this classification. 
Geophysical techniques based on surface waves allow the determination 
of both Vs30 and f0 site parameters in a non-invasive, fast and low-cost 
manner (Becerra et al., 2015). Several studies have shown that surface 
wave methods are reliable techniques to evaluate site effects (e.g. Oli-
veira et al., 2020; Pegah and Liu, 2016). 

Seismic site amplification and seismic hazard maps are crucial inputs 
for decision making and risk evaluation in places where seismicity im-
poses a significant risk to human life and infrastructure. In the case of 
SMR, most of the available seismic zonation maps do not consider the 
dynamic characteristics of the subsoil and have been developed based on 
observations of seismic damage distribution. Only a few studies in Chile 
have directly incorporated site specific dynamic properties to generate 
seismic zonation maps (e.g., Leyton et al., 2011), however, the dynamic 
properties of sites have for long been routinely included in the genera-
tion of site class maps in other countries (e.g. Lee and Tsai, 2008). 

The ability of some geological and terrain-based proxies to anticipate 
Vs30 values and site class has been also studied (e.g. Forte et al., 2017; 
Forte et al., 2019; Mori et al., 2020; Stewart et al., 2014). Digital soil 
mapping (DSM) uses statistical models to generate digital representa-
tions of the spatial distribution of soil properties using point soil ob-
servations and spatially exhaustive environmental covariates (proxies or 
independent variables) (McBratney et al., 2003; Scull et al., 2003). In 
recent decades, DSM has proven successful in producing soil property 
maps, capturing the main patterns of soil spatial variation (e.g. 
McBratney et al., 2000; Molnar et al., 2020), however its use in seismic 
geotechnical engineering in Chile is hampered by limited dynamic site 
characterizations and data availability. 

Spatial interpolation of natural variables is important in many sci-
entific fields. In the 1980s, the kriging geostatistical interpolation 
technique was introduced, gaining popularity as it had the advantage - 
unlike previous techniques - of considering the spatial correlation of the 
data and being able to quantify the interpolation error (Matheron, 
1963). The statistical approach of data mining has proved useful in 
providing tools for DSM. This approach identifies patterns in datasets 

through statistical methods, transforming information into a perceptible 
structure for further use (Khaledian and Miller, 2020). 

Machine learning (ML) has been increasingly used for spatial inter-
polation in fields such as soil science and geology (e.g. Li and Heap, 
2014; Marzan et al., 2021). ML is highly dependent on the relationship 
between the target variable and its associated covariates and can pro-
duce remarkably accurate results if this correlation is strong (Sekulić 
et al., 2020). A great advantage of ML over traditional techniques is their 
ability to capture non-linear associations within the data without having 
to assume explicit functional forms for these relations (Kohestani et al., 
2015). Nevertheless, for many practical applications, it is hard to obtain 
the large data sets required to train these models. To address this 
problem, some authors have generated a high number of experimental 
(laboratory) results representing the real problem to train their models 
(e.g. Huang et al., 2021) or tested specific machine learning algorithms 
that use fewer samples to generate predictions (e.g. Huang and Zhao, 
2018). 

There have been few attempts to use these techniques in the area of 
seismic geotechnical engineering (e.g. Kim et al., 2021; Yaghmaei- 
Sabegh and Rupakhety, 2020), and none in Chile to spatially predict 
dynamic site properties (Vs30 and f0). Zhao and Wang (2020) did use ML 
tools to infer the subsurface stratification and characterize soil property 
profiles. Kohestani et al. (2015) used ML tools to predict liquefaction 
potential in soils based on cone penetration tests. Thomson et al. 
(Thompson et al., 2010; Thompson et al., 2014) used variants of kriging 
to estimate Vs30 in Kobe and California. Though there have been several 
attempts to predict Vs30 using geostatistical methods, until now - at least 
in Chile - no tested techniques of ML have been usedto spatially predict 
dynamic site properties (Vs30 and f0). We posit that ML techniques can 
reasonably predict Vs30 and f0 values and improve the accuracy of 
quantitative seismic hazard assessments in the Santiago basin. 

This paper aims to improve the quality and accuracy of seismic 
zonation maps in the Santiago Metropolitan Region (SMR). We present 
two results: (i) an updated seismic microzoning of the SMR based on 
recent measurements of dynamic properties of sites through the basin, 
and (ii) a methodology which integrates the geology, geophysical data 
and seismic geotechnical engineering concepts, to predict Vs30 and f0 
accurately using ML. We compared six predictive algorithms to estimate 
Vs30 and f0: simple kriging, linear regression, elastic net, random forests, 
artificial neural networks and decision trees. The best predictions ob-
tained were used to generate seismic hazard maps in the study area, 
through a state-of-the-art software that uses ground motion prediction 
equations (GMPE), seismicity models and seismic scenarios to assess the 

Fig. 1. Historical recurrence of large earthquakes in central Chile. The length of the bars indicates the approximate extent of the rupture that generated each event, 
while their widths are proportional to the registered magnitudes. The map to the right indicates the location of the Santiago Metropolitan Region (SMR). (Modified 
from Bravo et al., 2019). 
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seismic hazard due to both subduction related earthquakes and crustal 
earthquakes. The major contribution of this work is to introduce a novel 
estimation method, based on ML, to extend local measurements of a 
site's dynamic properties in an area of interest. Additionally, the work 
introduces a data augmentation methodology for enhancing the dataset 
so that the statistical and machine learning models learn to predict in 
situations where the dataset is excessive sparse. This information can be 
used to quantitatively estimate the seismic hazard over a regional scale. 

2. Methodology 

2.1. Santiago basin and available seismic zonation maps 

The Santiago basin is located in the center of the SMR (see Fig. 2) and 
contains an alluvial sedimentary infill which has accumulated between 
the Main Cordillera and the Coastal Cordillera, reaching maximum 
depths in the range of 350–500 m (Yáñez et al., 2015). There were two 
seismic zonation maps developed after the earthquakes of 1985 and 
2010 which define seismic classes within the basin representing a 
seismic microzonation:  

1) The 2004 seismic zonation map of the Santiago Metropolitan Region 
(von Igel et al., 2004) displays the degree of seismic amplification 
related to the relevant geological classes in the area. The seismic 
amplification is qualitatively determined based on seismic intensities 
collected after the March 3rd earthquake of 1985 (Ms 7.8) and 
available geological information. This map does not incorporate 
quantitative information related to the dynamic characteristics of 
sites and was developed predominantly from observations of damage 
to buildings and infrastructure.  

2) The 2011 seismic zoning of the SMR, Chile (Leyton et al., 2011) was a 
seismic zoning of the Santiago basin carried out based on the surface 
geology, available measurements of the predominant seismic period 
(Bonnefoy-Claudet et al., 2009) and the distribution of damage 
observed following the 2010 Maule earthquake. 

2.2. Collected Vs30 and f0 measurements 

Surface wave geophysical methods were used to measure Vs30 and f0 
at 312 sites in the Santiago basin (Fig. 2a). In cases in which more than 
one measurement of Vs30 and f0 was available, the uncertainly in the 

values of these parameters was evaluated to report the level of accuracy 
of the field measurements. 

Vs30 measurements were obtained through an inversion process of 
the empirical dispersion curve of each site. These curves were obtained 
using a method that combines active sources (hammer) with passive 
sources (ambient noise), with a multichannel analysis approach (Humire 
et al., 2015). The objective of the surveys was generally to describe the 
dispersion curve between a wavelength of 10 m and 90 m using a 
combination of both active and passive methods. The methods used in 
this study were the f-k (frequency-wave number) method (Kvaerna and 
Ringdahl, 1986; Lacoss et al., 1969) for active 1D and passive 2D arrays, 
the SPAC (spatial autocorrelation) method (Aki, 1957) for passive 2D 
arrays, and the ESPAC (extended spatial autocorrelation) method 
(Hayashi, 2008) for passive 1D arrays. In sites with more than one es-
timate of Vs30, measurements showed coefficients of variation (CV) be-
tween 0% and 35.8%. Furthermore, in 50% of the cases the CV was 
<2.6%. 

To obtain f0, the horizontal-to-vertical spectral ratio (HVSR) or 
Nakamura's technique (Nakamura, 1989) was used. This technique es-
timates the ratio of the Fourier amplitude spectrum between horizontal 
components and vertical component produced by environmental vi-
brations. Then, the predominant period (T0 = 1/f0) is defined by the 
peak of the HVSR curve (Pastén, 2007), and the amplitude of this peak is 
defined as A0. This study used a variation of the Nakamura method 
(Leyton et al., 2012) which considers fixed windows of 60 s, applying the 
Stockwell Transform (S-transform) in each of these windows. For f0, CV 
between 0% and 46.4% were obtained, and in 50% of the cases this 
value was lower than 5.6%. For A0, a CV between 0% and 50.8% were 
obtained, and in 50% of the cases this value was <12%. 

Fig. 2a shows the distribution of the Vs30 values, while Fig. 3a shows 
simultaneously the distribution of f0 and A0. These sites concentrate near 
the urban areas of the study area and were selected to improve the 
definition of transitions between seismic classes. Figs. 2b and 3b show 
the histograms of the data distribution of Vs30 and f0, respectively. 

2.3. Degree of seismic amplification index 

Chile is currently in the process of improving its seismic classification 
system for residential buildings. The new classification simultaneously 
uses the value of Vs30 and the estimate of the predominant period T0, 
which were used as a degree of seismic amplification index in this work. 

Fig. 2. a) Distribution of Vs30 in the study area, and b) Distribution histogram of Vs30.  
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Five indices were defined: A, B, C, D and E, according to the criteria 
shown in Table 1 (modified from Verdugo et al., 2019). 

2.4. Seismic classes update 

The current seismic zonation maps were compared against the dis-
tribution of the degree of seismic amplification indices from Table 1, to 
solve the limits of the classes. Five seismic classes were defined in this 
study, following the degree of seismic amplification indices (A, B, C, D 
and E), where a seismic class classified as A is the one with the best 
seismic response (i.e. rock) and a class classified as E is the one with the 
worst response in terms of seismic amplification expected due to site 
effects (i.e. very soft and/or deep site). 

Additionally, gravity models of the Santiago basin published by 
Yáñez et al. (2015) were incorporated to fill information gaps in areas 
where there was insufficient data from Vs30 and f0 measurements to 
update the limits between seismic classes determined by geologic 
criteria. The direct gravimetric residual is also expected to have a good 
correlation with f0 because it provides an idea of depth to a significant 
change in density or gravimetric contrast (Maringue et al., 2021). Then, 
classes with a considerable gravimetric anomaly (deep sites), fine 
granulometries and/or presence of surface volcanic ash were classified 
as with low seismic response (D or E). 

2.5. Prediction of Vs30 and f0 

This section describes the procedures and considerations used to 
generate a predictive model of Vs30 and f0 in the Santiago basin. First, 
the database and the covariates used to train the predictive models for 
each explored algorithm are presented; secondly, the algorithms used 

are briefly described. Additionally, the methods for validating and 
evaluating the predictive performance of the models are detailed. 

2.5.1. Data and choice of covariates 
Proper choice of training covariates for ML predictive models is key 

to obtaining reasonable and accurate estimates in DSM. In this work, we 
chose the covariates shown in Table 2. Punctual covariates such as 
terrain slope, topographic elevation, and geological typology are 
included, based on previous work, that showed an improvement in the 

Fig. 3. a) Distribution of f0 in the study area, and b) Distribution histogram of f0. 
Among the 312 sites considered, 101 sites reported flat HVSR curves. 

Table 1 
Definition of the degree of seismic amplification index.  

Index category First criterion: 
Vs30 (m/s) 

Second criterion: 
T0 (s) 

A ≥ 900 < 0.15 or flat HVSR 
B ≥ 500 < 0.30 or flat HVSR 
C ≥ 350 < 0.40 or flat HVSR 
D ≥ 180 < 1.00 or flat HVSR 
E < 180   

Table 2 
Description of the covariates used to train the models and predict the values of 
Vs30 and f0 in Santiago basin.  

Covariate Definition Unit 

Slope Maximum rate of elevation change between 
each pixel. 

◦

Elevation Elevation above sea level according to the 
DEM. 

M 

Seismic class Seismic class of the Degree of Seismic 
Amplification Map that contains the 
evaluation point. 

– 

Gravity* Residual Bouguer anomaly measured at site. mGal 
External seismic class Seismic class of the Degree of Seismic 

Amplification Map that does not contain the 
evaluation point but is the closest to it. 

– 

Edge distance Inverse of the minimum distance between the 
evaluation point and the seismic class that 
contains it. 

1 / km 

Distance to closest 
observation** 

Inverse of the minimum distance between the 
evaluation point and the observation closest 
to it. 

1 / km 

Vs30 closest to 
observation** 

Value of Vs30 in the closest observation to the 
evaluation point. 

m / s 

HVSR peak in the closest 
observation** 

Closest observation to the evaluation point 
has a peak in the HVSR curve (1) or does not 
present a peak (0). 

Binary 

Nearest predominant 
frequency** 

Predominant frequency (f0) measured at the 
closest observation to the evaluation point. 

Hz 

HVSR amplitude** Amplitude of the HVSR curve (A0) at the 
closest observation to the evaluation point. 

–  

* Covariate was used only in the Santiago basin area where the gravimetric 
study was carried out. 

** Covariates were calculated for the 6 closest observations to each evaluation 
point. 
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performance of predictive models in predicting Vs30 (Wills and Clahan, 
2006; Wald and Allen, 2007). Slope and elevation were obtained from a 
digital elevation model (DEM) of 12.5 m resolution available from 
public satellite data (https://asf.alaska.edu), while the surface geology 
covariate was obtained directly from the geological maps. 

Despite the success of ML predictive models in DSM, most of these 
approaches do not consider the possible spatial correlation between the 
observed data and focus mostly on punctual covariates, thus they do not 
fully exploit the available spatial information. Several recent in-
vestigations have shown that the inclusion of spatial covariates (in 
addition to punctual ones), such as distance and inverse of distance to 
neighboring observations, considerably improve predictions of ML 
models in DSM (Beguin et al., 2017; Deng et al., 2020). Therefore, we 
used a combination of punctual and spatial covariates to train the 
models, as indicated in Table 2. Fig. 4 describes the spatial covariates 
chosen in this work. Note that since gravimetry did not cover the entire 
study area, we worked in two independent areas: a zone with gravi-
metric information and a separate zone without gravimetric informa-
tion. The predictive models for both areas differed only in the inclusion 
of the gravimetric covariate in their training. 

Although several measurements were available at some sites, which 
made it possible to generate uncertainly indicators, this information was 
available for only 35% of sites. To simplify the training of the models, 
the pair Vs30 and f0 leading to the most conservative classification ac-
cording to the criteria in Table 1, was selected for training. 

2.5.2. Predictive methods 
There are numerous methods for predicting soil properties from a 

sample data set; in this paper, geostatistical and ML predictive methods 
are compared. The geostatistical method tested was Simple Kriging (SK), 
while the ML methods were Linear Regression (LR), Elastic-Net (EN), 
Random Forests (RF), Artificial Neural Networks (ANN) and Decision 
Trees (DT). Hyperparameters (tuning parameters) were used to setting 
the algorithms. These variables can be adjusted by trial and error until a 
minimum amount of error is obtained when the predictions are vali-
dated. The way in which the predictive algorithms used in this article are 
described in Table 3. 

To predict Vs30 and f0, a total of 47 models were tested. The models 
and their hyperparameter settings are shown in Table 4. 

2.5.3. Predictive performance evaluation 
All models were programmed in Python. The first treatment to the 

original database was the application of the Data Augmentation 

Fig. 4. Example of the spatial covariates associated with a point P in the study 
area. In this case, point P is in seismic class A, xg is the shortest distance from P 
to the boundaries of this seismic class. Seismic class C is the closest class to 
point P. On the other hand, x2 and x3 are the two shortest distances to P of 
S1and S2, where Vs30 and f0 are known and are considered spatial covariates 
associated with the point P. 

Table 3 
Description of predictive algorithms used in this research.  

Algorithm Description 

SK 

A generalized least-squares regression algorithm that assigns weights 
for the surrounding measured values to derive a prediction for each 
location. These weights, in addition to being based on the distance 
between the measured points and the prediction site, are based on the 
general spatial arrangement of the measured points (Filho et al., 2017). 
This method considers that the spatial fluctuation of the mean of the 
observations is unknown, but constant (Thompson et al., 2010). 

LR 
Fits a linear model with coefficients to minimize the sum of the squares 
in the difference between the observed and predicted values by the 
linear approximation (Hutcheson and Sofroniou, 1999). 

EN 

Combines two linear models: (i) the Ridge method, that addresses some 
of the problems of Linear Regression by imposing a penalty on the size 
of the coefficients; and (ii) the Lasso method, that estimates sparse 
coefficients. EN learns from its shortcomings to improve the 
regularization of statistical models and is useful when there are multiple 
features which are correlated with one another (Friedman et al., 2010). 

RF 

Randomly selects a group of observations from the larger set to build a 
decision tree that is associated with this group. The process is repeated 
to build multiple decision trees based on different observation sets. 
Typically, two-thirds of the observations are used for algorithm 
training, and the rest are used to test model error. RF randomly 
permutes the arrangement of the covariates in the selection of the 
observation groups, considering all the possibilities of arrangement of 
covariates. Finally, the predictions are based on the average of the 
results produced from thousands of decision trees. It is currently the 
most widely used ML algorithm in DSM, and it often shows excellent 
potential when it comes to spatial data (Boulesteix et al., 2012; Deng 
et al., 2020). 

ANN 

These mimic biological neural networks, building a set of nodes called 
artificial neurons, forming a network. Through multiple layers of the 
network, information is transmitted from one neuron to another. The 
connection between neurons consists of weights that define the network 
architecture, organize the layers, and adjust the parameters to learn 
from the data. Training the network consists of comparing the input to 
the output and calculating a residual, then the algorithm goes back 
through the layers to fit the equation of the network and recalculate the 
residual. This process is repeated until a minimum residual is reached. It 
is a common and longstanding algorithm used in DSM (Behrens et al., 
2005; Were et al., 2015). 

DT 

These models divide the data space and fit a simple prediction model 
within each partition. A decision tree is the graphical result of each 
partition. DT are intended for dependent variables that take continuous 
or ordered discrete values (Breiman et al., 2017)  

Table 4 
Tested models and hyperparameter settings.  

Algorithm Number of tested 
models 

Hyperparameter Settings 

SK 1 Power of the inverted 
distances 

1 

LR 1 – – 
EN 2 Total penalty value (α) 1, 2 

Penalty ratio (ρ) 0.5 
RF 25 Number of trees 20, 40, 50, 80, 

100 
Proportion of variables 
considered (%) 

10, 20, 40, 60, 
80 

ANN 17 Number of neurons per layer 10, 20, 30, 50, 
75, 100 

Maximum number of layers 5 
Maximum number of 
neurons 

100 

Trigger function tanh* 
Training method lbfgs* 

DT 1 – –  

* ‘tanh’ refers to the hyperbolic tangent function; ‘lbfgs’ refers to an imple-
mentation of the BFGS quasi-Newton method for nonlinear optimization. For 
more information about the hyperparameters of the ML models used in this 
paper visit https://scikit-learn.org/stable/. 
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technique by artificially increasing the initial number of observations, as 
well as their covariates, to obtain a larger training dataset, while pre-
serving the associations present in the original data (Padarian et al., 
2019). Data Augmentation has been shown to reduce variance and 
overfitting, improve robustness, and mitigate bias of ML models 
(Roudier et al., 2020; Shorten and Khoshgoftaar, 2019; Zhong et al., 
2020). This technique is especially beneficial for ANN models, because 
they are particularly sensitive to small sample sizes (Khaledian and 
Miller, 2020). Additionally, this technique is expected to allow training 
of predictor models under difficult prediction scenarios, such as sites 
with few or no measurements in their proximity. 

After testing with data augmentations of 10, 20, 30, 40 and 50 times 
the size of the database, the largest increase was applied because 
marginally better results were consistently obtained for both Vs30 and f0. 
All models were trained with 90% of the augmented database (training 
sets) by cross-validation and validated with the remaining 10% (testing 
sets). To ensure that the comparisons between the models were valid, 
the same set of covariates was kept for the training of all predictive 
models (see Table 2). For all models, the root mean squared error 
(RMSE) and the root relative mean squared error (RRMSE) were calcu-
lated. Additionally, the predictive models of f0 permitted an evaluation 
of the probability of a peak in the HVSR curve. For those obtained 
probabilities <60%, a flat HVSR curve was assumed. The error rate in 

the prediction of this probability (ErrRate) was also quantified. These 
errors were calculated as 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑

(y′i − yi)
2

√

(1)  

RRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑

(
y′i − yi

yi

)2
√

(2)  

ErrRate =

∑
|b′

i − bi|

n
(3)  

where i = 1. n is the i-th iteration and n is the total number of tests, yi
′ is 

the i-th predicted value and yi is the i-th observed value. bi
′ is a binary 

value equal to 1 if the i-th prediction has a peak in the HVSR curve and 
equal to 0 otherwise, while bi is also a binary value equal to 1 if the i-th 
observation has a peak in the HVSR curve and equal to 0 otherwise. 
Fig. 5 shows the main steps in the training of the predictive models of 
Vs30 and f0. 

2.5.4. Probabilistic hazard assessment 
A PGA map consistent with a return period of 475 years was devel-

oped in the Seismic-Hazard software (Candia et al., 2019) which 

Fig. 5. Flowchart showing the main steps of the modeling process of Vs30 and f0 used in this study. *ErrRate is only calculated in the estimation of f0.  
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computes hazard-consistent ground motion parameters (e.g., PGA, PSA) 
at a single site or distributed over a large region, using state-of-art 
seismicity models and rigorous account of scientific uncertainties. We 
adopted the Poulos et al. (2019) source model for subduction earth-
quakes, which uses the Slab 1.0 model (Hayes et al., 2012) to account for 
the contact surface between the Nazca and South American plates. 
Additionally, the seismicity model includes four crustal faults reported 
in the GEM global Active Faults catalog (Styron and Pagani, 2020) 
located within a 200 km radius of the study area and the Diablo Fault 
(also known as Baños Morales Fault) located towards the east boundary 
of the basin. A logic tree of 3 ground motion models was defined, giving 
greater weight to the Montalva et al. (2017) model, as it collects local 
knowledge and incorporates large earthquakes (Mw > 8.0) that 
occurred in Chile in the period 2010–2017, and uses Vs30 to estimate 
PGA. The seismicity from crustal sources was modeled with the PCEnga 
attenuation law (Macedo and Candia, 2020) which considers magni-
tudes between 4 and 8, closest distance to the rupture plane of <200 km 
and Vs30 values between 300 m/s and 1000 m/s. Three PGA maps are 
presented to illustrate the influence of different Vs30 realizations in the 
PGA distribution. Finally, to discuss PGA changes due to uncertainty of 
the predictive models, a sensitivity analysis is performed on 30 observed 
and estimated Vs30 values not used for training. 

3. Results 

3.1. Geophysical survey 

This section presents the results of the dynamic characterization and 
seismic classification of the sites within the Santiago basin. The com-
bination of the parameters Vs30 and f0 in the sampled sites allows us to 
assign an index of the degree of seismic amplification to each site, as 
indicated in Table 1. The seismically classified sites are shown in Fig. 6. 
Sites rated A are generally rock outcrops, with very high Vs30 (> 900 m/ 
s) and flat HVSR curves (without a clear peak). The A0 value can be 

considered as an indicator of the predominant impedance contrast of the 
site (Pilz et al., 2010; Leyton et al., 2013). It should be noted that there 
were only a few measurements performed in sites rated A. This is 
because of the challenges involved in accessing remote areas with flat 
rock outcrops, required to deploy large arrays of sensors (~100 m long). 
Sites rated B show high values of Vs30 (exceeding 500 m/s), where the 
soils correspond mainly to alluvial fans and fluvial gravels. These sites 
also have mostly flat HVSR curves. C sites correspond typically to allu-
vial fans composed by gravels with a higher content of fines and sandy 
sites. These sites are located mainly nearby the Main Cordillera and the 
Mapocho river, to the east and southwest of Santiago, respectively. In 
these sectors, the HVSR curves are also mostly flat, showing that in 
general there are no predominant frequencies or clearly defined 
impedance contrasts. The sites D and E, composed by fine-grained, 
sedimentary deposits, are more prone to seismic amplification where 
Vs30 tends to be <350 m/s, f0 show low values (< 1 Hz), and large values 
of A0 are observed. 

3.2. Seismic class zoning map 

The joint analysis of the site classification with the collected maps of 
seismic response and gravity model, resulted in an updated seismic 
microzoning of the Santiago basin (Fig. 6A). 

The seismic classes and site amplification indexes show good corre-
lation with specific geologic units present in the area (Fig. 6B). For 
instance, the class with the best seismic response (A) encompasses the 
Mesozoic-Cenozoic igneous basement, along the Coastal Cordillera and 
the high Andes Mountain front, flanking the western and eastern sides of 
the Santiago basin, respectively. The sites of classes B and C are mostly 
constrained to the basin infill in the central and southern parts of the 
map. The sediments filling up the basin are composed by a thick (>500 
m) sequence of well compacted alluvial and fluvial strata from mass 
removal of the two mountain fronts and long-lived deposition of the 
main rivers traversing the basin (Yáñez et al., 2015). The sites and 

Fig. 6. A. Map of the degree of seismic amplification indexes in measured sites (colored circles) and microzoning of the Santiago de Chile basin, the latter adapted 
from the maps by Von Igel et al. (2004) and Leyton et al. (2011). B. Geologic map of the study area compiled and reclassified from the works by Wall et al. (1999), 
Sellés and Gana (2001), and Espinoza et al. (2019). Geologic time abbreviations are: Jurassic (J), Cretaceous (K), Cenozoic (Cz), Eocene (Eo), Miocene (Mi), Pliocene 
(Pli), Pleistocene (Ple), Quaternary (Qt) and Holocene (Ho). For both maps the coordinates are projected to the UTM zone 19S (cartesian in meters), using the 
parameters of the WGS84 geoid. 
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classes with the worst seismic response (D and E) are in general 
restricted to the northern side of the basin and to the recent fluvial de-
posits along the path and floodplains of lowland rivers (Fig. 6). The 
fluvial/alluvial deposits in the northern side, which make up most of 
class E, are made of poorly consolidated fine-grain silt and clay, inter-
bedded with gravel, sand, and ash (Leyton et al., 2011). This could 
explain their much higher seismic amplification compared to the rest of 
the basin infill, characterized by coarser, well compacted gravels. Of 
special attention is the Pliocene-Pleistocene Pudahuel ignimbrite, a 20 m 
thick layer of volcanic ash with lithics and pumice categorized as class E, 
which blankets part of the relief of the mountains and hills flanking the 
western, and partially the eastern, side of the basin. The poorly 
consolidated tuff and ash layers of this unit can be also found inter-
bedded with the basin sedimentary infill (Leyton et al., 2011) (Fig. 6B). 

3.3. Predictive models comparison and resulting maps 

This section shows the prediction performances of the 6 predictive 
algorithms of Vs30 and f0, shown in Tables 5 and 6. These results were 
obtained from the test sets defined for cross-validation, as explained in 
Section 2.5.3. 

In the prediction of Vs30, LR is the best performing algorithm in those 
sites where the gravimetric covariant is available, with an RMSE of 68.4 
m/s and an RRMSE of 17.6%, followed by RF and DT. Similarly, when 
the gravimetric covariant is not available, the best performing algorithm 
was LR, with an RMSE of 70.5 m/s and an RRMSE of 17.8%, followed by 
RF and DT. The spatial distribution of RMSE across the study area is 
provided as supplementary material. 

In the prediction of f0, RF is the best performing algorithm in those 
sites where the gravimetric covariant is available, with an RRMSE of 
45.6%, an RMSE of 0.13 Hz and an ErrRate of 21.3%, followed by EN 
and LR (ANN is discarded as having too large an ErrRate). On the other 
hand, when the gravimetric covariant was unknown, the best perform-
ing algorithm was LR, with an RRMSE of 164.8%, an RMSE of 2.43 Hz 
and an ErrRate of 22.3%, followed by RF and SK. It can be noted that 
when the gravimetry covariant was available, the estimation error 
reduced considerably. 

Figs. 7 and 8 show the distribution of Vs30 and f0 predicted by the 
best resulting models. In the case of the f0 prediction, only the area 
where gravity modeling is available is shown because the error outside 
of this zone was too high. The distribution of the values of both pa-
rameters are consistent with the observations shown in Section 2.2. 
Once the dynamic characterization of sites for the entire Santiago basin 
were available, it was possible to proceed with the Seismic Hazard 
assessment to obtain the PGA map. Fig. 9 shows the estimate of PGA in 
the study area for the settings described in Section 2.5.4. This map was 
developed using a uniform 350 m square grid across the Santiago basin. 

3.4. PGA sensitivity 

To measure the uncertainty associated with the prediction of Vs30 
with the three best predictive algorithms, we randomly chose 30 sites 
where this parameter was measured (Fig. 10). None of them were used 

in the training of the models. In general, the predictions of Vs30 show a 
good fit for Vs30 <500 m/s. Above these values, the three models tend to 
underestimate Vs30. This underestimation of Vs30 for stiff sites is re-
flected in an overestimation of PGA for a design scenario when PGA is 
calculated with the predictive algorithms. This overestimation grows 
when the sites become more stiff, reaching PGA values of about 15% 
higher than those calculated from the measured Vs30. The main reason is 
that the number of sites used to train the model under 500 m/s is much 
larger (96% of the database) than the data available over this value of 
Vs30. 

4. Discussion 

4.1. Seismic microzoning 

The results shown in Section 3.2 were obtained from an integrated 
approach that uses geology, geophysics, and earthquake geotechnical 
engineering information, combining geophysical characterization of 
sites with seismic response maps. The result was a refined seismic 
microzoning that considers site effects on the seismic response of the 
soils in the Santiago basin (Fig. 6). 

Some differences are observed in the seismic classes with respect to 
prior maps, mainly in the central zone of the study area (see Von Igel 
et al., 2004; Leyton et al., 2011). Nevertheless, despite the seismic class 
updates, the refined seismic microzoning shows consistency with pre-
vious maps. The main explanation for the zoning differences relates to 
the new combination of qualitative (i.e. geology) with substantial 
quantitative information obtained using the geophysical techniques 
(Fig. 5). 

4.2. Prediction of Vs30 and f0 

Regarding the prediction of Vs30, for the sites where the gravimetric 
covariant is available, the three best models had similar performance. 
The best performance was obtained with LR, followed by RF and DT. 
Between the first (LR) and third (DT) best model, the difference of RMSE 
and RRMSE is only about 30 m/s and 5%, respectively. The rest of the 
models show larger errors. When gravity data were not available, the 
models exhibited more dispersion. Between the first and third best 
model, the difference of RMSE and RRMSE is about 46 m/s and 8.9%, 
respectively. Apparently, the Vs30 predictions are sensitive to the chosen 
algorithm, however ML algorithms continue to outperform traditional 
SK. 

These results show that the use of ML algorithms to predict Vs30 
provide reliable approximations with reasonable uncertainty, improving 
the capabilities of the SK geostatistical algorithm. 

Regarding the prediction of f0, for those sites within the boundaries 
of the gravity model, the algorithms provide quite stable results. Be-
tween the best (EN) and worst (DT) model in terms of RMSE, the dif-
ference of RMSE and RRMSE is only about 0.05 Hz and 12%, 
respectively. Similar to the Vs30 estimations, ML algorithms outperform 

Table 5 
Cross-validation of the best models for each algorithm for the Vs30 predictions.   

Gravimetric covariant included Gravimetric covariant not included 

Algorithm RMSE (m/s) RRMSE (%) RMSE (m/s) RRMSE (%) 

SK 185.6 37.5 233.4 41.1 
LR 68.4 17.6 70.5 17.8 
EN 124.6 27.5 141.9 30.0 
RF 79.6 19.4 86.3 20.4 
ANN 208.7 39.7 234.5 46.5 
DT 98.4 22.9 116.7 26.7 

Note: The bolds show the best performances obtained among the algorithms. 

Table 6 
Cross-validation of the best models for each algorithm for the f0 predictions.   

Gravimetric covariant included Gravimetric covariant not 
included 

Algorithm RMSE 
(Hz) 

RRMSE 
(%) 

ErrRate 
(%) 

RMSE 
(Hz) 

RRMSE 
(%) 

ErrRate 
(%) 

SK 0.155 54.8 28.7 2.917 217.9 29.1 
LR 0.132 50.8 20.8 2.432 164.8 22.3 
EN 0.111 47.2 32.1 2.938 224.1 32.2 
RF 0.130 45.6 21.3 2.502 183.1 20.9 
ANN 0.135 48.7 41.3 3.716 214.3 45.5 
DT 0.162 58.0 27.0 3.976 423.0 31.3 

Note: Figures in bold show the best performances obtained among the tested 
algorithms. 
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SK. The best performance was obtained with RF, followed by EN and LR. 
Nevertheless, the RRMSE values are high (about 46% in the best case). 
This can be explained by the previous step of prediction of the peak of 
the HVSR curve. This previous step inherently increases the errors in the 
final prediction of f0, since there are sites where the real HVSR curve is 
flat, but the algorithm is not able to identify this situation and, errone-
ously, provides a numeric estimate of f0. The predictions of f0 were 
highly influenced by this initial step since it was made using regression 
algorithms and not classification algorithms, which discriminate be-
tween finite categories or classes. The use of classification algorithms is 
outside the scope of this article, but it could be a good opportunity to 
improve predictions in future work. Unlike the case of Vs30, for those 
sites where gravity information is not available, the predictions of f0 fail, 
displaying RRMSE values higher than 100% in all models. Thus, these 
results are not reliable and are considered unacceptable. 

The good performance of the ML algorithm can be explained by the 
following reasons: 1) a good density of samples in the study area, which 
allowed an accurate characterization of most of the types of sites; 2) a 
correct choice of the covariates used for training, because original 

covariates were developed focused on including information on the 
spatial distribution of the data, capturing correlations between geolog-
ical, geophysical and geotechnical information. The use of the Data 
Augmentation technique allowed original database to be expanded, 
avoiding overfitting the models and training them to achieve reasonable 
predictions in complex scenarios. Another possible reason is that some 
ML models (e.g. RF and DT) are not limited to using only linear com-
binations of the observations, and can model the nonlinearity between 
the target variable and the covariates (Appelhans et al., 2015), i.e. in-
verse distances used in training probably play a non-linear role. Unex-
pectedly, it was observed that the LR model performed slightly better 
than the rest, probably because a large number of covariates were used 
for the training (44 and 45), which would facilitate the prediction as a 
linear combination of the covariates. 

It is also interesting to note that the improvement in predictions, 
when including the gravimetric covariant, is substantially greater when 
predicting f0 than when predicting Vs30, even though the predictions 
with and without gravity were not made in the same sites. In the best 
models for predicting Vs30, RMSE and RRMSE decreased from 70.5 m/s 

Fig. 7. Vs30 prediction maps using a) LR model, b) best RF and c) DT model. Circles show the observed Vs30 in the same color scale.  

Fig. 8. f0 prediction maps using a) best RF model, b) best EN model and c) LR model. Circles show the observed f0 in the same color scale and their sizes are 
proportional to A0. 
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to 68.4 m/s and from 17.8% to 17.6%, respectively. While, when pre-
dicting f0, RMSE and RRMSE decreased from 2.5 Hz to 0.13 Hz and from 
183.1% to 45.6%, respectively. This would be explained because 
gravimetric residual has a much closer correlation with f0 than with Vs30 
since it provides an indicator of sediment thickness which often co-
incides with the depth at which the predominant impedance contrast is 
located (Maringue et al., 2021). These results suggest that for the same 
area of interest, including a gravimetric covariate considerably improves 
the predictions of f0, and that the predictive capacity of f0 depends more 
on the considered covariates than on the algorithms used. 

Fig. 7 shows the fit of the predictions to the Vs30 observations. Quite 
similar predictions are observed among the best three predictive models. 
All three models were able to correctly distinguish the rock classes and 
predict Vs30 within the basin. In the northwest area, LR is the least 
conservative predictor, followed by RF, while DT exhibits the lowest 
values of Vs30. In the central and southern sector of the basin, LR is also 
less conservative than RF and DT. These differences are reflected in the 
PGA maps (Fig. 9), where the highest expected PGA values are located 
within the Santiago sedimentary basin and are associated with the most 
conservative prediction of Vs30 values (DT model), and the lowest ex-
pected PGA values are associated with the model that predicted the 
highest Vs30 values (LR model). The rock classes present the lowest ex-
pected PGA values, which is consistent with the Vs30 values observed in 
these classes. In general, the rock classes to the east of the study area 
show higher expected PGA values than those located to the east, because 

they are closer to the main seismogenic source (subduction zone). 
The predicted f0 maps are quite similar. They differ mainly in their 

ability to predict where the HVSR curve is flat and in the values of f0 
when the HVSR curve has a clear peak. RF is the most accurate, since it 
identifies the rock classes and the most rigid soils in the study area 
reasonably well, assigning a flat HVSR curve. It is also the one that best 
fits the f0 values observed in rigid and soft soils. EN adequately identifies 
rock classes but was only able to predict a narrow range of f0, resulting in 
an almost bimodal map. LR also identifies rock classes correctly and fits 
the observations well but is more conservative in the southwestern zone 
of the study area, delivering low predominant frequencies (deep sites) 
where soils are known to be rigid. Among the models, RF is the one that 
best fits the sites with non-flat HVSR curves, correctly identifying the 
sites classified as D and E, delivering the lowest observed values of f0 and 
therefore more prone to seismic amplifications. In general, all models 
were only able to predict a narrow range of f0 (0.2 to 0.40 Hz). This is 
likely due to the previous step that defines the shape of the HVSR curve 
and to the observed range of f0 values, which is mostly at frequencies <2 
Hz (see Fig. 3b). 

The sensitivity analysis performed in Section 3.4 shows that the es-
timates of Vs30 are better for values of Vs30 <500 m/s, and they get worse 
when this limit is exceeded. This is because the database contains less 
information on stiffer sites compared to softer sites, making it difficult 
for algorithms to predict the Vs30 value of the most rigid sites. Despite 
this, the error in the PGA calculation associated with the estimation 

Fig. 9. Expected PGA map for events with Tm = 475 years, based on the estimates of Vs30 resulting from the a) LR model, b) best RF model, and c) DT model.  

Fig. 10. Uncertainty associated with the predictive models of Vs30. Results based on measured Vs30 are shown in blue. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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error of Vs30 is small for rigid sites, reaching maximum values of only 
15%. 

Finally, the results of our work show that: (i) it is possible to generate 
a refined seismic microzoning in the Santiago basin incorporating 
quantitative and qualitative information that allows evaluating site ef-
fects on soils, and (ii) it is possible to obtain a reasonably good predic-
tion of the dynamic properties of the sites of the Santiago basin using ML 
predictive algorithms, surpassing the capabilities of traditional geo-
statistical predictive models. 

4.3. Extensions and improvements 

The main limitation in the generation of the refined seismic micro-
zoning is related to a very heterogeneous distribution of data from 
geophysical techniques. This limitation occurred because there were 
large areas in which only the geological information was known, losing 
the opportunity to combine qualitative with quantitative information. 
This situation was mainly observed away from urban areas. Therefore, 
for future stages of this research, performing dynamic characterizations 
in the poorly sampled areas, where the uncertainty of dynamic site 
properties is greater, is recommended,. 

The satisfactory results obtained suggest that this methodology could 
be replicated in other regions of Chile or the world, combining the dy-
namic properties of sites with information from surface geology, other 
geophysical techniques and digital elevation models to improve the 
accuracy of qualitative seismic response maps. 

Regarding the predictions of Vs30 and f0, the main limitations were: 
(i) the few measurements available in rock, which made it difficult to 
train the models in this type of sites, (ii) the limited spatial extend of 
gravimetric data, and (iii) the difficulty of predicting the existence or not 
of a peak in the HVSR curve, increasing the errors in the prediction of f0. 
The best estimate of f0 is available as a tool to classify the unsampled 
sites of the study area, and the methodology to obtain these estimates 
remains available to be used in future GMPE that include f0 in their 
seismic hazard estimates. 

Therefore, for future research it is recommended to have more 
measurements in rock, at least in an amount comparable to observations 
in other types of soil. It will also be very useful to design a gravimetric 
experiment that covers the entire area of interest, since it has been 
shown that it correlates very well with f0. It would also be useful to study 
the performance of ML classification algorithms to decide whether the 
HVSR curves are flat or not, since better results will probably be ob-
tained than using only regression algorithms. 

It is important to mention that there should be other combinations of 
covariates that further improve the estimates of Vs30 or f0. This implies 
the possibility of removing or adding new covariates to the training 
database of the predictive models. Exploring new combinations of 
covariates may be necessary for geological contexts, other than the 
sedimentary basins of Santiago, for example, to generate a predictive 
model on a much larger spatial scale. 

Finally, the distribution of f0, presented in this article, was not 
directly used to assess the seismic hazard in the study area, because 
there is not a sufficiently validated GMPE applicable to Chile that in-
cludes this parameter in its calculations. However, GMPE that include f0 
have already been developed (e.g. Kwak and Seyhan, 2020), using a 
two-stage nonlinear site amplification model derived empirically from 
records of strong earthquakes in Japan. Those models show that the 
residual, associated with GMPE that only include Vs30 as a site param-
eter, decreases considerably when including the observed values of f0 at 
the sites, mainly for spectral periods >0.1 s. In this way, the use of f0 
could strengthen seismic hazard estimates. 

5. Conclusions 

This work presents two results: (i) a refined seismic microzoning that 
provides a qualitative estimate of the seismic hazard in the Santiago 

basin, and (ii) a methodology that uses ML computational tools to esti-
mate dynamic soil properties in areas of the Santiago basin that were not 
sampled. These results permit the assessment of site effects and the 
quantitative estimation of local seismic hazard in terms of PGA. A 
rationale was presented to generate these local seismic hazard estimates 
for both Vs30 and the predominant period f0. 

The integration of qualitative information with quantitative data 
based on geophysical exploration has made it possible to update existing 
seismic microzoning maps for the Santiago basin and generate more 
complete predictive models of site specific dynamic properties. 

Regarding the predictive algorithms of Vs30 and f0, the following can 
be concluded:  

• Five ML algorithms (LR, EN, RF and DT) were compared with a 
traditional geostatistical algorithm (SK). For predicting Vs30, the 
most robust algorithm was LR, followed by RF and DT. For predicting 
f0, the best algorithm was RF, followed by EN and LR.  

• The results of all models were verified by cross-validation, obtaining 
a RMSE in the best prediction of Vs30 and f0 of 68.4. m/s and 0.13 Hz, 
respectively, and a RRMSE in the best prediction of Vs30 and f0 of 
17.6% and 45.6%, respectively. The spatial distribution of estimated 
Vs30 and f0 is consistent with the available observations.  

• The improvement in the estimates of Vs30 and f0 by ML algorithms 
are explained by the inclusion of spatial covariates for algorithm 
training, helping the techniques capture the spatial correlations of 
geological, geophysical and geotechnical data. Similar results are 
well documented in related literature.  

• By including the gravimetric residual covariate in the training of the 
predictive models, a significant improvement was observed in the 
prediction of f0, which suggests that both parameters have a strong 
correlation in sedimentary contexts.  

• The predictive capacity of f0 apparently depends more on the choice 
of covariates than on the algorithm used, while the Vs30 predictions 
are more sensitive to the chosen algorithm. 

Machine learning algorithms have shown to be promising tools in the 
prediction of site-specific dynamic properties. Future work should focus 
on increasing the database, exploring which combination of covariates 
gives better predictions in more general geological contexts, testing ML 
classification tools to reduce uncertainty when estimating f0, and 
including f0 in the estimation of the seismic hazard by utilizing GMPE 
that include this parameter. 
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