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ABSTRACT 
 
An empirical analysis is developed that quantifies the impact of different types of traffic 
incidents on the speed and maximum flow averages of vehicles on a controlled-access 
highway. The incident types considered include damage to highway infrastructure, vehicle 
rollover, crashes (into stationary objects), collisions (with moving vehicles), rain, fog, vehicle  
breakdowns, pedestrians on roadway, etc. Using real-world data from Chile’s most heavily 
used urban motorway/freeway, estimates of incident impacts on speed are generated using a 
multiple linear regression model incorporating instrumental variables to correct for 
endogeneity. Flow results are then generated using the fundamental traffic equation relating 
speed, flow and density. A ranking of the impacts on highway traffic of the different incident 
types based on incident frequency as well as impact size demonstrates that for the real case 
studied, the incidents with the greatest cumulative effect are (in order of magnitude) vehicle 
breakdown, collisions and rain.  
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1. INTRODUCTION 
 
This article presents an empirical analysis for determining the impact of different types of 
traffic incidents on a highway’s average vehicle speeds and flows (the latter in some cases 
coinciding with highway capacity). The proposed analysis was applied to the real-world case 
of Chile’s Autopista Central, the country’s most heavily used controlled-access highway. 
 
The effects of the selected incident types are estimated using a multiple linear regression 
model that incorporates instrumental variables to correct for endogeneity. The results reveal 
the existence of an incident hierarchy reflecting the different magnitudes of the impact the 
incidents could have on the normal functioning of an urban highway in terms of traffic speed 
and volume of traffic flow. The estimates also show that some incident types are directly 
related to vehicle operation such as vehicle breakdowns or accidents while others are linked to 
(exogenous) weather conditions such as rain or fog. 
 
By analyzing each incident type individually, we estimate that the greatest impacts (that is, the 
greatest reductions in traffic speed and flow averages) are caused by the type denoted “load 
spill with structural damage”, which reduce average speed by almost 34 km/h and maximum 
capacity by more than 70%. The incident type with the second greatest impact is “vehicle 
rollover”, which cuts average speeds by about 13 km/h and maximum capacity by 26%. 
 
Upon multiplying these individual impacts by the frequency of each incident type (taken as the 
number of occurrences in a one-year period), we derive each type’s annual cumulative impact. 
The type with the greatest such effect is “vehicle breakdowns”, followed by “collision” (i.e., 
between moving vehicles) with “rain” in third place. This implies that the two main incident 
types found to negatively affect service levels on an urban highway are caused by human error 
whereas the third type is exogenous to both humans and highway operators. 
 
According to Giuliano (1989), estimates of incidents impacts by category are a valuable basis 
for evaluating alternative incident management and traffic management policies. A successful 
incident management policy minimizes delays and responds briefly to traffic incidents. In the 
design of traffic management techniques, Charles and Higgins (2002) emphasise the 
importance of acknowledging the effects of incidents on congestion, recognizing the nature of 
the incident. 
 
The Autopista Central is a motorway/freeway 39.5 kilometres long running north-south 
through Santiago, the nation’s capital and its most populous city. The first of its kind in Chile 
when it was inaugurated in 2004, the highway was built and continues to be run under a 
concession scheme in which users pay the operator through a free-flow automatic tolling 
system. Loop detector portals installed at various points along the route record the 
registration/licence plate number, speed, date and time for all vehicles using it, enabling the 
operator to bill the vehicle owners once a month for recorded use.  
 
Of particular interest for our purpose, however, is that this system can also generate 
measurements of the average speed, flow and density of all traffic at different points along a 
given section of the highway for a desired period any day of the year around the clock on a 
permanent basis. A database can thus be constructed with abundant high-frequency data (in our 
case, every half hour).  
 



The operator also has a system of television cameras monitoring the entire length of the 
highway 24 hours a day with no blind spots. There is thus a visual record complementing the 
vehicle data that allows virtually all traffic incidents occurring along the highway to be 
identified. Using this system we were able to identify 11 different types of traffic incidents, 
including those caused by weather conditions. 
 
The remainder of this paper is divided into five sections. Section 2 is a literature survey of 
previous studies into urban controlled-access and other highways, which provided a set of 
baseline data for comparison and contrast with our empirical results; Section 3 gives a brief 
statistical description of our data; Section 4 introduces our methodology, specifying the 
econometric model we designed and its explanatory, instrumental and control variables; 
Section 5 sets out and discusses our main findings; and finally, Section 6 presents our principal 
conclusions. 
 
2. LITERATURE REVIEW 
 
Congestion caused by traffic incidents has had a growing relevance for traffic managers. 
Tavassoli-Hojati et al. (2013a) report that traffic incidents account for 25% of delays on urban 
highways in the U.S. On the other hand, Ikhrata and Michell (1997) calculated that incidents 
are the cause of approximately 50% of additional delay (what the authors call “non-recurring 
congestion”). 
 
The impact of incidents on highway congestion is frequently analyzed in spatio-temporal 
contexts (Kerner et al., 2004). Li and Bertini (2010) compares the most commonly used 
methods to describe the influence of traffic disturbances in freeways through space and time. 
Secondary incidents, or incidents related to an existing primary incident, have also been a 
focus of attention, because secondary incidents have a clearer dependence of traffic 
management than primary incidents. Charles and Higgins (2002) address the issue of incident 
management on congested highways. Lindberg (2001) and Parry (2004) examined incentives 
for better highway driving in order to reduce accidents. Nolan and Quddus (2005) analyzed the 
relationship between vehicle flows and accident severity. Zhang and Khattak (2010) study the 
probability of having secondary incidents depending on the characteristics of the primary 
incident and the road. Crashes, long durations, multiple-vehicle involvement, lane blockage 
and incidents occurring in short segments were associated with more secondary incidents. 
 
The definition of an incident as secondary has also been a matter of discussion. A simple 
approach is to define a fixed temporal or spatial region of influence of the primary incident. 
For instance, Raub (1997) considers incidents occurring within 15 minutes and less than 1 mile 
(1,609 m) upstream the primary incident. Sun and Chilukuri (2010) and Imprialou (2014) 
introduce more sophisticated criteria to define secondary incidents. 
  
We are interested in determining how various incident types differ in their highway speed and 
flow impacts. These incidents may be classified by three types of causal factors: weather 
conditions, seasonality and the vehicles themselves (i.e., accidents). In the articles surveyed, 
data is usually collected using loop detectors. 
 



Regarding weather conditions, Pisano et al. (2008) examined accidents in the United States 
due to adverse weather conditions. They concluded that bad weather reduces highway capacity 
for two reasons: first, a greater number of accidents, and second, drivers tend to reduce speed. 
The authors report data compiled from various studies showing that on U.S. freeways, light 
rain or snow reduces flow volumes by 5% to 10% and average speed by 3% to 13%. The 
corresponding figures for heavy rain are 14% and 3% to 16% while for heavy snow they are 
30% to 44% and 5% to 40%. A study by Chung (2012) concluded that the behaviour of 
freeway traffic varies depending on weather conditions and the days of the week (i.e., seasonal 
factors) and that these characteristics should therefore be included in analyses of freeway 
incidents and their effects on non-recurring congestion. Similar analyses of the effect of 
weather and seasonal factors on accident occurrence and severity are found in articles by 
Massie et al. (1995), Hijar et al. (2000), Valent et al. (2002) and Lam et al. (2003). 
 
In an evaluation of both weather and seasonal factors on accidents along California state 
highways, Satterthwaite (1976) found that weather factors were the most important. On very 
wet days, the number of accidents was often double that of dry days. Andrey and Yagar (1993), 
on the other hand, estimated that on rainy days the probability of an accident was 70% higher. 
Similarly, Khattak and Knapp (2000) concluded using data for interstate highways in Iowa 
(U.S.) that during snow events, driver capabilities were reduced by about 30%. They also 
reported that accident frequencies on days with snow were higher than on rainy or dry days. 
Using data for the United States and Israel, Brodsky and Hakkert (1988) analyzed accident risk 
in rainy weather. They estimated that the risk of injury in such an accident was 2 to 3 times 
higher than in dry conditions. The authors further concluded that accident risk was even 
greater when rains follow a dry spell. 
 
Also related to seasonality, Kwon et al. (2006) investigated freeway delays during morning and 
afternoon peak periods as compared to free-flow conditions in San Francisco, California. The 
authors designed a linear regression model with explanatory variables for various incident 
types, special events, weather conditions and other factors, but were not able to isolate their 
individual effects on normal and non-recurring congestion levels. Nor did their modelling 
address the possible effects of endogenous variables. Laapotti and Keskinen (1998) also found 
that accidents were more frequent at night.  
 
Tavassoli-Hojati et al. (2013b) use parametric models to predict traffic incident duration. Their 
findings were that the duration of different incident types, including accidents and stationary 
vehicle incidents, varied greatly. In another paper Tavassoli-Hojati et al. (2014) develop a 
complementary analysis demonstrating that the factors determining incident duration include 
incident severity, whether or not injuries occurred, whether or not medical treatment was 
required, etc. Other relevant incident characteristics were infrastructure, time of day and traffic 
conditions. Abdel-Aty and Radwan (2000) reported that accidents were more likely to occur in 
the presence of heavy traffic volumes. Skabardonis et al. (1999) studied the impact of traffic 
incidents on frequency, duration and delay along freeways in Los Angeles, California. They 
used longitudinal data collected by loop detectors on flow volumes and speeds. 
 
 
 
 
 
 



 
Other works such as Newbery (1988), Jansson (1994) Dickerson et al. (2000) and Edlin and 
Karaca-Mandic (2006) have focussed on the relationship between accidents and traffic 
volumes. Zhang et al. (2013) studied the link between traffic violations and accident severity, 
correcting for human factors, type of vehicle, type of road and environmental factors. 
 
Our approach is based on the estimation of an empirical version of macroscopic traffic models, 
expressing the average speed as a linear function of traffic density, the occurrence of incidents 
and control variables. We use two stages least squares to control for potential endogeneity in 
the regression model, as density may be related to shocks in speed (the dependent variable). 
With these estimates we make predictions of the effects that different incidents have on 
highway capacity. Macroscopic traffic models consider a non-linear relationship between flow 
and speed, but a linear relationship between speed and density, which is our base econometric 
model. Wang et al. (2009) conclude that stochastic speed-density models are suitable 
describing empirical observations, while Lu and Meng (2013) analyse traffic in China using 
speed-density regression models. 
 
3. DATA 
 
As explained in the introduction, the data for our model were collected and supplied by the 
loop detector and camera monitoring systems run by the Santiago Autopista Central operator. 
For every vehicle using the highway the loop detectors generate automatic measurements on a 
permanent basis from which average traffic speed (kilometres per hour), total flow volume 
(vehicles per hour) and flow density (the ratio of the previous two calculations, in vehicles per 
kilometre) were calculated for various points along each highway segment. The incidents 
captured by the monitoring systems provided the necessary data for their classification into 11 
main incident types defined as follows: 
 
i) Load spill with infrastructure damage: load falling from a vehicle and causing damage 

requiring structural repairs to the highway 
 
ii)  Load spill without infrastructure damage: load falling from a vehicle without causing 

damage to the highway; spilled load must be removed. 
 
iii)  Vehicle rollover 
 
iv) Crash: vehicle colliding with stationary object (e.g., retaining walls, barriers)  
 
v) Collision: vehicle colliding with other moving vehicle(s) 
 
vi) Rain 
 
vii)  Fog 
 
viii)  Roadway debris (pieces of wood, tires, parts of vehicles, etc.)  
 
ix) Pedestrian on the roadway 
 
x) Stationary vehicle 



 
xi) Vehicle breakdown (due to dead battery, running out of gas, engine overheating, 

electrical or mechanical fault, flat tire, etc. In all cases, vehicles were towed away) 
 
In 2012, the year chosen for our study, there were 102,010 occurrences of these 11 incident 
types along the entire highway, accounting for 96% of all incidents recorded by the operator 
over the 12-month period. The remaining 4% were distributed among 13 other incident types 
of minor importance. A breakdown by type is given in Table 1 (percentages shown are 
adjusted to add up to 100 after excluding minor incidents). 
 

Table 1 
Number of recorded incidents by type (Autopista Central, 2012) 

Incident type Number  % 

Vehicle breakdown 62,715 61.5% 

Rain 10,697 10.5% 

Fog 8,530 8.4% 

Crash 7,892 7.7% 

Roadway debris 4,764 4.7% 

Collision 2,996 2.9% 

Stationary vehicle 2,686 2.6% 

Load spill without infrastructure 
damage  899 0.9% 

Vehicle rollover 482 0.5% 

Pedestrian on the roadway 293 0.3% 

Load spill with infrastructure damage 56 0.1% 

Total 102,010 100.0% 

 
 
The data we used for our estimates related to a specific section of the Autopista Central 
selected to be representative of its status as an urban motorway/freeway. The two  selection 
criteria were a high level of incidents and high daily traffic demand, given that on segments 
where congestion is infrequent (e.g., the city outskirts), incident impacts will likely be 
relatively insignificant or very heterogeneous.  
 
The selected section was the one with both the highest number of incidents and the highest 
demand. Measuring 5.9 kilometres in length, it is located within a stretch of highway that 
passes through the centre of the city, competing with the Autopista General Velázquez (see 
Figure 1). The section has 8 loop detector points that supplied average speed and flow 
measurements for every half hour period, the experimental unit employed in our analysis. The 
corresponding density values were derived from these calculations. The monitoring systems 
also indicated for each period and incident type whether or not an incident occurred. Together 
these measurements forms a set of panel data with a small cross-sectional dimension N and a 
large longitudinal dimension T.  
 



Figure 1 
Geographical location of Autopista Central highway and selected section  

  
(a) Autopista Central (Santiago, Chile) (b) Section studied 

 
 

Table 2 
Number of incidents recorded by type (Autopista Central, selected section, 2012) 

Incident type Number  % 

Vehicle breakdown 7,128 68.2% 

Rain 1,082 10.3% 

Fog 320 3.1% 

Crash 673 6.4% 

Roadway debris 366 3.5% 

Collision 175 1.7% 

Stationary vehicle 246 2.4% 

Load spill without infrastructure 
damage  

283 
2.7% 

Vehicle rollover 98 0.9% 

Pedestrian on the roadway 45 0.4% 

Load spill with infrastructure damage 40 0.4% 

Total 10,456 100.0% 

 
 
The number of incidents recorded in 2012 on the selected section are set out in Table 2. 
Interestingly, the type distribution is similar to that for the entire highway as given in Table 1. 
 
Note that previous to estimating our model, the data were filtered to eliminate inconsistent 
observations due to loop detector system errors caused by temporary technical faults. This left 
128,729 observations for the selected section on which to base our estimates, or 92% of the 
original total in the database; the other 8% were discarded.  
 

Tramo Considerado (5.9 km) 



4. METHOD 
 
The fundamental traffic equation for a section or arc a of the highway relates the volume of 
traffic flow (fa) to its density (da) and speed (va) as follows (Greenshields, 1935; May, 1990): 
 

a a af v d    ,   a= ⋅ ∀                        (1) 

 
The relationship between speed and density is thus decreasing so that as density increases, 
speed decreases (Greenshields, 1935; May, 1990). In light of this, we propose the following 
functional form for the decreasing linear relationship between speed and density:  
 

,0 ,a a a d av d    ,   aβ β= + ⋅ ∀                      (2) 

 
where βa,0 is a parameter equal to the free-flow speed of our selected highway section a and 
must be positive, while βa,d is a parameter representing the marginal effect on speed of an 
increase in density and must be negative.  
 
To estimate the effect of a given incident on the average speed of section a we use the 
following multiple linear regression model, based on (2) and similar to formulations proposed 
elsewhere (Garib et al., 1997; Abdel-Aty and Radwan, 2000; Wirtz et al., 2005;  Kau, 2007; 
Boyles et al., 2007): 
 

, , ,0 , , , , , , , ,a i t a a d a i t k a k i t a i t
k

v d Iβ β δ ε= + ⋅ + ⋅ +                (3) 

 
where δk represents the effect of an incident of type k on average speed over section a at 
measurement point i in period t, and εa,i,t is the modelling error. Ιk,i,t is a set of dichotomous 
variables that are equal to 1 when a type k incident is recorded at measurement point i in 
period t, and 0 otherwise. Each observation or experimental unit is represented by an i, t pair 
corresponding to a half hour of traffic flow at a measurement point. Since speed is expressed 
in kilometres per hour and density in vehicles per kilometre, flow (4) is then vehicles per hour.  
 
A similar approach is proposed by Nam and Mannering (2000) except that the authors use a 
logistic regression formulation. Other works base their models on Poisson or negative 
binomial regression (Jovanis and Chang, 1987; Miaou and Lum, 1993; Joshua and Garber, 
1990; Kockelman and Ma, 2007). Since for present purposes we are interested in statistical 
inference rather than prediction, however, the use of linear regression should be adequate. 
 
It is well established that in the presence of congestion, the density of highway traffic flows 
may be affected by the speed of the flows and vice versa. This implies that da,i,t is an 
endogenous variable. To address this we use lagged density variables as instruments (i.e., 
instrumental variables) representing lags of 1 hour, 24 hours and 1 week. These variables are 
exogenous but are also correlated with the endogenous variable, thus making good 
instruments. Using alternative sets of recent lags does not have a relevant incidence on the 
magnitudes or significance of the estimates. Applications of lagged variables as valid 
instruments are discussed in Chowdhury (1987) and Oxley and Greasley (1998); a good 
example from the field of transport is offered in Andrikopoulos and Loisides (1998).  
 



To complete our econometric model, we add a number of seasonal dichotomous variables to 
the speed-density relationship (3) in order to control for time of day, day of the week and 
month of the year. The definitive specification of the formulation for estimating the impact of 
an incident on average speed recorded by a loop detector i on highway section a may then be 
stated as follows: 
 

, , ,0 , , , , , , , , , ,
ˆ

a i t a a d a i t a k a k i t a j a j a i
k j

v d I Cβ β δ θ ε= + ⋅ + ⋅ + ⋅ +             (5) 

 

where ,
ˆ

a id  is the instrumentalized density, generated using the following auxiliary regression: 

 

, ,0 ,1 1 , ,1 1 , ,1 1 , , , , , , , ,a i a a h a h i a d a d i a w a w i a k a k i a j a j i a i
k j

d d d d I C eγ φ φ φ δ θ− − −= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ +    (6) 

The estimator ,
ˆ

a id  obtained upon estimating the parameters of model (6) can then be 

substituted into (5). The estimation method is therefore just the classical two-stage least 
squares (2SLS). To test the model’s robustness we also derive estimates with fixed effects 
(FE) and random effects (RE) models, using instrumental variables for the panel data 
structures (on panel data models, see Baltagi, 2013). 
 

The { },a kδ  parameters in (5) can be directly interpreted as the average speed reduction--the 

impact on speed--caused ceteris paribus by incident type k on highway section a. The 
incident’s impact on flow can then be indirectly derived simply by evaluating the fundamental 
traffic equation (1) with our estimate of ˆav obtained from (5) and its corresponding density 
ˆ

ad in the presence of a type k incident ( ), 1a kI = , and comparing the resulting value with the 

case where no incident is detected ( ), 0a kI = . If we use the density associated with the 

maximum flow on section a, the result is an estimate of the impact of a type k incident on the 
section’s capacity. 
 
 
5. RESULTS 
 
The estimates generated by the model (5) using the three different above-mentioned regression 
methods (two-stage least squares, fixed effects and random effects) and instrumental variables 
for the panel data are given in ¡Error! No se encuentra el origen de la referencia. for the 

density parameter βa,d and the incident type parameters { },a kδ . To simplify the presentation, 

the estimates for the seasonal control variable parameters and the intercept are not shown. 
 



¡Error! No se encuentra el origen de la referencia.  
Parameter estimates for model (5) 

Dependent variable: Speed (Km/h) 2SLS FE RE 

Density 
-0.939*** -0.97*** -0.939*** 

(0.003) (0.003) (0.004) 

Load spill with infrastructure damage 
-34.18*** -33.882*** -34.172*** 

(1.031) (0.992) (1.251) 

Vehicle rollover 
-12.474*** -12.603*** -12.472*** 

(0.658) (0.633) (0.799) 

Load spill without infrastructure damage 
-9.946*** -10.124*** -9.944*** 

(0.391) (0.377) (0.475) 

Crash 
-7.858*** -7.781*** -7.855*** 

(0.264) (0.254) (0.32) 

Pedestrian on the roadway 
-5.545*** -5.655*** -5.548*** 

(0.97) (0.934) (1.178) 

Stationary vehicle 
-5.107*** -4.963*** -5.103*** 

(0.419) (0.403) (0.508) 

Rain 
-3.543*** -3.565*** -3.541*** 

(0.201) (0.194) (0.244) 

Vehicle breakdown 
-2.621*** -2.569*** -2.618*** 

(0.082) (0.079) (0.099) 

Collision 
-2.241*** -2.39*** -2.239*** 

(0.492) (0.473) (0.597) 

Fog 
-1.321*** -1.317*** -1.318*** 

(0.367) (0.353) (0.446) 

Roadway debris 
-0.787** -0.809** -0.883** 

(0.342) (0.329) (0.415) 

R2 0.717 0.7179 0.5831 

No. of observations 128,729 128,729 128,729 

Standard errors in parentheses. ** Significant at the 5% level. *** Significant at the 1% level. 

 
The following results in ¡Error! No se encuentra el origen de la referencia. are of particular 
interest: 
 
a) The parameters for all of the explanatory variables representing incident types have the 

expected sign (negative) and have satisfactory statistical significance (all significant with 
a 95% confidence interval and almost all at 99%). 

 
b) Ordering the incident types from greatest to smallest (absolute) parameter value reveals 

that the type with the biggest impact on highway speed is “load spill with infrastructure 
damage,” whose parameter was estimated at -34.18. In line with what was developed in 
Section 4, this can be interpreted as a reduction in average speed of 34k/hr.  

 



c) The second most influential incident type on average speed is “vehicle rollover,” as 
indicated by its parameter estimate of -12.47. 

 
d) The parameter estimate for the “collision” incident type (between vehicles in motion) 

was significantly higher (in absolute value) at -8 than a “crash” (colliding with a 
stationary object). 

 
e) Weather variables such “rain” and “fog” impact to a lesser degree, though still 

significantly, on average highway speed. The same applies to “vehicle breakdown.” 
 
To calculate the impact on flow, we must first obtain a value for density. The value 
corresponding to the maximum flow capacity of section a can be derived by substituting the 
parameters in (5) into (1), then differentiating with respect to density and setting the derivative 

to 0. The result is a maximum flow density of 98 vehicles per kilometre ( )* 98d  veh k= . At 

this level, the average maximum flow is 4,718 veh/h.  
 
If we utilize this density level as a baseline value, we can then directly estimate the impact of 
each incident type on the average maximum flow. The results of this estimation are given in 
Figure 2. As can be seen, they show that “load spill with infrastructure damage” reduces 
average maximum flow by just over 70%. Next in order of magnitude is “vehicle rollover” 
with a reduction of 26%. 
 
 
 
 

Figure 2 
Average maximum flow reduction by incident type (%) 
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Observe, however, that according to Table 2 the number of times a “load spill with 
infrastructure damage” occur is very low, amounting to only 0.4% of all incidents. By contrast, 
a “vehicle breakdown” accounts for 68.2% of cases. Thus, we have one incident that is high 
impact but low occurrence and another that is low impact but high occurrence. The flow 
reduction and frequency variables are shown in Figure 3 for the 11 incident types. Note that 
since the results for 2SLS, FE and RE were similar, only the estimates obtained with 2SLS are 
shown.  
 
 

Figure 3 
Relation between reduction of average maximum flow and occurrences by incident 

type (2SLS parameter estimates) 

 
 
Finally, if we multiply the incidents’ individual average maximum flow reductions by their 
frequency as measured by the number of occurrences, we obtain a particularly important result, 
which is the potential maximum flow loss for the incident types over the course of a year. This 
is an indicator of their respective annual cumulative impacts. Using our flow reduction 
estimates and the occurrence figures given in Table 2, the 11 incident types can then be ranked 
by cumulative impact as is done in Figure 4.  
 
As can be seen, the incident type responsible for the greatest loss is “vehicle breakdown,” 
followed by “collision”. In third place, surprisingly enough, is “rain.” These annual impacts 
represent not only a loss of vehicle flow for the highway operator but also a potential reduction 
in use of the infrastructure by travellers.  



 
 

Figure 4 
Annual potential flow loss or cumulative impact, by incident type (2SLS parameter 

estimates) 
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6. CONCLUSIONS 
 
This article presented an empirical analysis to determine the impact of different types of 
incident types on the speed and volume of traffic flows on an urban controlled-access highway. 
The case study focussed on a section of the main urban motorway/freeway in Santiago, Chile, 
that registered the highest demand and the greatest number of incidents.  
 
Incident data recorded by the highway’s monitoring systems were classified into 11 main 
incident types: i) load spill with infrastructure damage; ii) load spill without infrastructure 
damage; iii) vehicle rollover; iv) crash; v) collision; vi) rain; vii) fog; viii) roadway debris; 
ix) pedestrian on the roadway; x) stationary vehicle; and xi) vehicle breakdown. Together 
these types accounted for 96% of all recorded incidents, with vehicle breakdown being the 
most numerous at 60% of the total and collision the next most numerous at 8.4%. Load 
spill with infrastructure damage was the most infrequently recorded incident type at 0.1%. 
 
The methodology employed consisted in formulating a multiple linear regression model 
between speed and the different incident types, controlling for traffic density and seasonal 
factors. Since density is known to be an endogenous variable, density lags of various 
dimensions were incorporated as instrumental variables. The model was estimated using the 
method of two-stage least squares. 
 



Analyzing each incident occurrence in isolation, it was found that the greatest impacts, if 
measured in terms of average speed and average maximum flow reductions, was caused by the 
“load spill with infrastructure damage” incident type, which reduced speed by about 34 km/h 
and flow by more than 70%. The next greatest impact was due to “vehicle rollover”, which cut 
speed by about 13 km/h and flow by around 26%. 
 
If, however, we take the incidents’ respective frequencies into account by multiplying these 
impact estimates by their corresponding numbers of cases, the incident with the greatest annual 
cumulative impact turned out to be “vehicle breakdown”, followed by “collision” and then by 
“rain”. This suggests that the two main incidents negatively impacting highway service levels 
were attributable to some sort of human error. 
 
These results are highly interesting for the light they shed on the relative importance of 
different incidents on the highway section in our study. Vehicle breakdown is enormously 
disruptive of the its normal operation, causing a potential reduction in traffic flows of more 
than 1.8 million vehicles per year whose drivers are either prevented from taking the highway 
or are forced to change or delay their trips. Collisions diminish annual flows by the equivalent 
of 0.53 million vehicles while rain (exogenous to the road network) reduces volumes by an 
amount equivalent to 0.39 million vehicles.  
 
Finally, our results point to the existence of a clearly defined hierarchy of incident impacts on 
urban motorway/freeway functioning, some of which are directly related to vehicle operation 
and others to outside factors such as weather conditions. Estimates of the effects of incidents 
on congestion are a valuable input for the design of traffic management policies.  
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