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Abstract

Polymorphism discovery is a routine application of next-generation sequencing technology where 

multiple samples are sent to a service provider for library preparation, subsequent sequencing, and 

bioinformatic analyses. The decreasing cost and advances in multiplexing approaches have made 

it possible to analyze hundreds of samples at a reasonable cost. However, because of the manual 

steps involved in the initial processing of samples and handling of sequencing equipment, cross-

contamination remains a significant challenge. It is especially problematic in cases where 

polymorphism frequencies do not adhere to diploid expectation, for example, heterogeneous tumor 

samples, organellar genomes, as well as during bacterial and viral sequencing. In these instances, 

low levels of contamination may be readily mistaken for polymorphisms, leading to false results. 

Here we describe practical steps designed to reliably detect contamination and uncover its origin, 

and also provide new, Galaxy-based, readily accessible computational tools and workflows for 

quality control. All results described in this report can be reproduced interactively on the web as 

described at http://usegalaxy.org/contamination.
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Very high depth of coverage can be achieved for a moderate cost using high-throughput 

sequencing technologies. This allows identification of very low frequency variants in re-

sequencing studies dealing with complex non-diploid mixtures represented by viral, 

bacterial, and organellar genomes, as well as genetically abnormal samples such as altered 

genomic DNA isolated from malignant lesions. However, the power to detect rare variants is 

also the Achilles’ heel of these approaches in that contamination and carryover among the 

sequenced samples cannot be easily distinguished from true genetic variants. This is 

especially relevant with multiplexing approaches where large numbers of highly similar 

samples are handled simultaneously. Here we illustrate how to detect warning signs of 

sample contamination, describe best practices for re-sequencing study design, and provide 

readily usable computational workf lows aimed at detecting these artifacts.

A typical re-sequencing experiment entails processing of multiple samples that are expected 

to differ at relatively few sites. These may include bacterial isolates, viral DNA samples, or, 

in this study, human mitochondrial DNA (mtDNA). Human cells contain various numbers 

of mitochondria, each harboring a number of circular genomes (1,2). The individual 

genomes often differ from each other at a few polymorphic sites that display the whole 

possible range of allele frequencies (a phenomenon called heteroplasmy). As the role of 

mtDNA in the etiology of human disease is now well established (i.e., mtDNA mutations 

contribute to over 200 known diseases) (3), the need to reliably identify heteroplasmic sites 

becomes more urgent with the realization that most disease-causing mtDNA mutations exist 

as heteroplasmies, and their clinical manifestations depend on the relative proportion of 

normal to mutant alleles (4–6). This proportion can change dramatically during oogenetic 

bottlenecks, frequently leading to the increase of disease-causing alleles in offspring (7–11). 

Thus detection of even low frequency variants becomes critical.

Historically, Sanger sequencing has the sensitivity to detect minor alleles at ~10%–20% 

frequency (12). Application of Illumina technology has driven the detection threshold down 

to ~1%–2% (13), and increases in sequencing depth combined with application of dynamic 

likelihood approaches for variant detection promise to drive the detection threshold below 

1%. At this detection level, it becomes critical to separate true signal from contamination, 

which can have multiple sources. For example, Illumina points out that insufficient flushing 

of HiSeq instruments between runs can lead to a sample carryover rate of 0.05%–0.1%. 

Additional contamination at this very low detection threshold is also highly likely due to 

sample handling, including pipetting, gel excision, and airborne droplets produced during 

opening and closing of PCR strips.
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Materials and methods

Ethical approval

This study was approved by the Human Subjects Protection Office of the Penn State College 

of Medicine.

DNA isolation

Blood was collected from the finger using a BD Microtainer contact-activated lancet 

(catalog # 366593 or 366594; BD, Franklin Lakes, NJ) and was preserved in a BD 

Microtainer Tubes with K2E (catalog # 365974) until DNA extraction. DNA was isolated 

using QIAGEN DNeasy Blood and Tissue Kit (QIAGEN, Hilden, Germany) in either the 

low-throughput microtube-based format (catalog # 69504 or 69506) or the 96-well plate 

format (catalog # 69581 or 69582). During high-throughput extractions, alternate columns 

on the plate were left empty to minimize the risk of cross-contamination from the use of 

multichannel pipettes. DNA was eluted using the kit buffer AE and stored at -20°C. DNA 

extraction from buccal cells was carried out according to the method detailed in Reference 

14. Buccal cells were collected by scraping the inside of the mouth with ten cotton swabs on 

plastic sticks. These swabs were placed in Slagboom buffer (0.1 M NaCl, 10 mM Tris-HCl 

pH 8.0, 10 mM EDTA, 0.5% SDS) with Proteinase K (0.2 mg/ mL). After storage at room 

temperature, samples were sorted into a pseudo-random order (separating family members) 

before DNA extraction was carried out. Proteins were removed using an organic de-

proteinization reagent (ORPR), and DNA was precipitated with isopropyl alcohol. The DNA 

was re-suspended in 250 μl of TE buffer and stored at -20°C or below.

mtDNA amplification

Whole mitochondrial DNA was amplified with two sets of primers: L* 2 8 1 7 ( 5′- 

GCGACCTCG-GAGCAGA AC-3′) and H*11570 (5′-GTAGGCAG ATGG AGCT 

TGTTAT-3′); L10796 (5′-CCACTGACATGACTTTCCA A-3′) and H3370 (5′-

AGAATTTTTCGTTCGGTA AG-3′). This produced 2 overlapping products, each ~9 kb in 

size. These primers are based on those described in our previous publication (13) and also 

by Tanaka et al. (15) except that L*2817 and H*11570 have been modified to improve 

amplification success. The PCR amplification was performed in 50 μl with 10 μl (blood-

derived) or 2 μl (cheek-derived) DNA, 0.2 mM dNTPs (PCR grade; Roche Applied Science, 

Pleasanton, CA), 0.84 units Expand High Fidelity PCR Enzyme mix (Roche Applied 

Science), 1 × buffer including 1.5 mM Mg2+, and 0.2 μM each forward and reverse primer 

(Integrated DNA Technologies, Inc., Coralville, IA). PCR reactions were carried out in 8-

well strips.

Thermal cycling conditions consisted of a progression of two cycles. After an initial 

denaturation step of 94°C for 2 min, the first cycle was 94°C for 15 s, 62.3°C for 30 s, and 

68°C for 8 min for 10 repeats. The second cycle was 94°C for 15 s, 62.3°C for 30 s, and 

72°C for 8 min (plus 5 s per cycle) for 20 repeats. The terminal extension step consisted of 

72°C for 8 min. After visualizing aliquots by gel electrophoresis, two overlapping amplicons 

from each individual were mixed in approximately equimolar proportions (based on 2-D 

densitometry estimates). Mixed amplicons for each individual were cleaned up using 
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column purification (QIAGEN's QIAquick). The Qubit dsDNA BR assay (Invitrogen, 

Carlsbad, CA) was used to quantitate samples after mixing using a Qubit 2.0 fluorometer 

(Invitrogen).

Galaxy pipeline

Our intention was not only to develop a computational methodology for contamination 

detection but to also make it readily accessible to anyone wishing to test it or apply it to their 

own studies. To achieve this, we have implemented a number of components described 

below and incorporated them into our widely used Galaxy platform (http://usegalaxy.org) as 

described at the following URL: http://usegalaxy.org/contamination.

Naive Variant Caller tool

The Naive Variant Caller tool processes aligned sequencing reads from the BAM format and 

produces a VCF file containing per position variant calls. This tool allows multiple BAM 

files to be provided as input and utilizes read group information to make calls for individual 

samples. User configurable options allow filtering reads that do not pass mapping or base 

quality thresholds and minimum per base read depth; users can also specify the ploidy and 

whether to consider each strand separately. In addition to calling alternate alleles based upon 

simple ratios of nucleotides at a position, per base nucleotide counts are also provided. A 

custom tag, NC, is used within the Genotype fields. The NC field is a comma-separated 

listing of nucleotide counts in the form of <nucleotide> = <count>, where a plus (+) or 

minus (-) character is prepended to indicate strand if the strandedness option was specified.

Variant Annotator tool

The Variant Annotator tool processes the raw variant count data from the Naive Variant 

Caller tool. SNV counts and allele statistics are reported for each site in a simple tabular 

format. Data from multiple samples are supported, via sample columns in the input VCF. 

The first (major) and second (minor) most abundant alleles are reported, along with the 

frequency of the latter. The user can set a coverage threshold, which is applied to each 

strand individually. An allele count is computed based on the number of alleles passing a 

user-supplied frequency threshold. A basic filter for strand bias is applied at this stage, 

excluding sites where the threshold-passing alleles differ between the strands. At these sites, 

neither allele count is used, and the tool will instead mark the count as zero.

Get FASTA from Variants Table tool

Provided a table defining the major and minor alleles per position and the length (L) of the 

target sequence, the Get FASTA from Variants Table tool generates a string of length L 

where every position is an N nucleotide. Then, position by position in the alleles table, every 

N is replaced by the inferred major allele nucleotide (or the minor allele at heteroplasmic 

positions when generating the minor allele sequence). Positions that are not described in the 

alleles table will remain as N.

Since all sequences share the same length, all the major allele sequences are included into a 

single file (with proper headers per sample) to create a multiple sequence alignment in 

FASTA format that can be used for downstream phylo-genetic analyses. In contrast, the 
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minor allele sequences are recorded as single FASTA files per sample to ease their 

downstream manipulation. For our purposes, L was set to the length of the Revised 

Cambridge Reference Sequence (NC_012920), 16,569 nucleotides.

Phylorelatives tool

The Phylorelatives tool takes as input the set of sequences generated by the Get FASTA 

from Variants Table tool, and reports the closest relatives of the test minor allele sequence in 

a Neighbor-Joining (NJ) tree (16), along with a picture of the tree, and the resulting NJ tree 

in Newick format. In addition, the set of sequences used during the analysis is returned as a 

single multiple sequence alignment FASTA file. This tool uses a combination of R and 

Python libraries implemented in a Python script. The R package Analysis of Phylogenetics 

and Evolution (ape)(24) is used to generate the NJ tree. The pairwise distance between the 

sequences is calculated using the raw model, which is simply the proportion of different 

sites between the two sequences. Sites with missing information are excluded by default 

(complete deletion), but this option can be set to pairwise deletion at run time. Also, by 

default the tool runs 1000 bootstrap replicas and does not root the tree. Options can be set to 

include a rooting sequence, suppress bootstrap, or change the number of replications. Next, 

the Python library Dendropy (25) is used to process the resulting tree topology and infer the 

relatives of the samples. Starting from the leaf node representing the minor allele sequence 

in question, the tool travels up the tree looking for the closest node whose descendants 

include at least one major allele sequence. The list of descendants of this node is informed as 

the relatives of the sample in question (i.e., the closest related samples in the NJ tree). Input 

minor allele sequences are required by default. However, the tool can disregard the absence 

of minor allele sequences by setting the option major-alleles-only at run time.

MAF Boxplot tool

The MAF Boxplot tool takes a table listing heteroplasmic sites per sample and their 

corresponding minor allele frequency (MAF) values. It generates a boxplot of the MAFs per 

sample by default. Optionally, it can generate a report including the total number of 

heteroplasmic sites and the median and median absolute deviation (MAD) of the MAFs per 

sample. Sites with a maximum of 2 alleles and an MAF ≥2% were selected from the table 

generated by the Variant Annotator tool. This table was used as an input to the MAF 

Boxplot tool to generate the graph and text report.

Results and discussion

The first warning sign of sample carryover is an unexpectedly high number of apparent 

variants. In a recent study utilizing a sequencing service provider, we analyzed a total of 56 

mitochondrial DNA samples, representing blood and buccal cells. Normally, we expect a 

relatively small number of heteroplasmic sites per sample, with maternal transmission 

evidence and varying MAFs across sites (13,17). The sequencing reads were processed 

using a previously published workflow (13), which identifies heteroplasmies above a 2% 

frequency threshold. For example, a site may have 2.5% reads supporting an A allele and 

97.5% reads supporting a G allele; in this case, A is the minor allele with frequency 2.5%. 

After identifying heteroplasmies, we have calculated the distribution of MAFs for each 
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individual and represented them as box plots in Figure 1. The immediately striking 

observation was the large number of heteroplasmic sites in many individuals (indicated 

along the x-axis). The situation in Figure 1 is rather extreme; based on previous studies 

(13,17) we expect ~0–3 heteroplasmies per individual. The boxplots highlight the fact that 

individuals with a high number of heteroplasmic sites have a narrow distribution of MAFs. 

This is indicative of carryover from another sample that differs from the one being analyzed 

at a number of fixed sites. For instance, if 2 samples differ at 10 non-polymorphic positions 

(i.e., they belong to 2 different mtDNA haplogroups) and there is carryover between them, 

the sites will appear as 10 heteroplasmies with identical MAFs. While Figure 1 clearly 

suggests such a problem, it does not identify the source of the putative contamination.

To understand the direction of carryover, we employed a phylogenetic approach. For each 

sample, we created an mtDNA sequence in which nucleotides at all detected heteroplasmic 

sites have been set to the major allele at that site. Applying the NJ phylogenetic tree 

reconstruction approach (16) to these sequences recapitulated family stratification of the 

samples as shown in Figure 2. Next, for each suspected instance of contamination such as 

samples F41M52 and F41M52C1, which have the narrowest distribution of MAFs as per 

Figure 1, we created another version of the mitochondrial genome by setting each 

heteroplasmic site to its minor allele nucleotide (termed F41M52_MINOR and 

F41M52C1_MINOR in Figure 2). Adding these sequences to the phylogenetic 

reconstruction showed that minor allele sequences for individuals F41M52 and F41M52C1, 

who belong to family F41, cluster with family F46 instead of F41, suggesting that these 

samples are contaminated by DNA originating from family F46 individuals (also see 

Supplementary Figure S1). In the case of this particular re-sequencing experiment, we have 

tracked the order of samples as they were sent to the sequencing facility. This allowed us to 

determine that these particular samples were located in adjacent cells on a 96-well plate. 

(Supplementary Figure S1 demonstrates the analysis of two additional samples with the 

number of minor alleles falling into a gray zone where one of the samples appears to be 

contaminated while the other is not.)

While the approaches described above seem to work well for controlling the data quality in 

re-sequencing experiments, we wanted to integrate them into a workflow that can be 

reproduced and re-used by others. Reproducibility is particularly important, as even with the 

latest advances in high-throughput sequencing studies such as those described here remain 

costly (18). Because the sequencing is often performed outside of the laboratory by an 

institutional core facility or a commercial sequencing provider, it is necessary to show where 

the problem occurred. Therefore, being able to run the contamination analysis in a 

transparent way such that all steps of the process can be reviewed and shared among 

involved parties becomes critical. The Galaxy platform (www.galaxy-project.org), 

developed and maintained by our group, is an ideal solution for implementing such a 

workflow. A Galaxy page at http://usegalaxy.org/contamination provides detailed 

description of a workflow that performs contamination analysis as described in this paper. 

This online document also provides original sequencing data that can be used to reproduce 

the results shown in Figures 1 and 2. By providing a turnkey solution to the detection of 

contamination and making suggestions for best practices in experiments, we hope to 

encourage reproducible and accurate studies that fully leverage these novel capabilities.
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To supplement our ability to reliably detect contamination with an independent approach, 

we now routinely employ DNA spike-ins in our experiments. For this purpose, we chose 

DNA from the high copy number plasmid pUC18, a standard, readily available cloning 

vector, and double-stranded genomic DNA from bacteriophage φX174. These spike-ins lack 

extensive homology with human mtDNA or with each other and are added prior to the 

preparation of barcoded libraries in an alternating fashion. Spike-ins allow for 

straightforward detection of contamination by mapping all reads generated in an experiment 

against reference sequences, in this case from pUC18 and φX174.

Our experience with sequencing at external facilities indicates that contamination is a 

significant threat affecting outcome in a research study. We have adopted the following set 

of procedures for performing re-sequencing for rare variant detection in a large number of 

samples:

1. Utilize two types of spike-ins in a striped layout by adding spike-ins in a sequence 

(i) spike-in 1, (ii) spike-in 2, (iii) no spike-in. Make every effort to keep samples 

with the same spike-in from being in physical proximity to each other, such as 

adjacent wells within a 96-well plate or adjacent tubes in a PCR strip.

2. Physically separate samples expected to have a high degree of sequence homology. 

For example, in the case of mitochondrial DNA we determine haplogroups for our 

samples using Sanger sequencing prior to beginning the re-sequencing experiment. 

We use this information while handling the samples to make sure that samples 

belonging to similar haplogroups are not adjacent to each other. It is also advisable 

to sequence the mtDNA of the investigator performing the experiments in order to 

rule out an additional potential source of contamination.

3. Perform spike-in detection with a sensitive assay prior to sequencing but after 

library construction. This would avoid additional sequencing costs if contamination 

is detected.

4. After sequencing, map the reads against the reference genome, as well as sequences 

of spike-ins, and perform the analysis of distribution of MAFs. Identify suspicious 

samples with unusually high minor allele counts (≥10).

5. Perform the phylogenetic distribution analysis on suspicious samples to determine 

the source of contamination.

Our approach relies on the assumption that heteroplasmic sites are rare and exhibit over-

dispersed MAFs. Our first method (Figure 1) identifies contamination by visualizing 

mutation frequency and MAF variation. Contamination is manifested by multiple 

polymorphic sites with a tight MAF distribution. This approach rapidly identifies the 

existence of contamination, but not the source. In contrast, previously deployed methods by 

Li et al. (17) and Avital et al. (19) identify contamination by assigning samples to Phylotree 

(20)-derived haplogroups (with Avital et al. utilizing Haplogrep) (21). While these methods 

offer the advantage that contamination can be identified from any source, they are of limited 

utility when an exhaustive list of haplotypes is unavailable (as might be expected for most 

heterogenous samples and certainly from samples drawn from recombining populations). 

Even if relevant databases are established, integrated with an analysis platform, and suitably 
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maintained, it would be relatively costly to implement a search across a large panel of 

samples. Furthermore, as the number of possible haplotypes and samples increases, 

interpretation would become challenging. Our simple approach is therefore more 

generalizable and scalable.

To determine the source of contamination in a sample flagged by our first method, our 

second method employs a phylogenetic approach. On the principle that the source and sink 

of contamination should cluster, we identify the most likely source of contamination for the 

focal sample. This contrasts with the above-mentioned methods based on haplogroup 

comparison in that our detection method does not depend on intervening data sets or 

structures. Li and Stoneking (22) likewise adopted a direct approach by searching all 

samples to identify those that explained a significant proportion (≥3) of apparent minor 

allele identities in potentially contaminated samples. Our approach is better suited to large 

data sets for two reasons. First, Li and Stoneking flag all samples with >5 polymorphic sites 

(verified using their bias statistics); this fixed threshold might lead to an unsustainable 

number of comparisons in a large data set (although this could be mitigated if our first 

method were used to select candidates based on MAF variation). Second, their approach 

entails repeated pairwise comparisons whereas ours jointly considers all intra-experiment 

hypotheses regarding the origins of contamination and displays the result in a single graphic.

While our methods cannot substitute for careful experimental controls and evaluation of raw 

data, we do believe they provide a broadly applicable two-step approach. Our first filter 

encourages the experimenter to consider both the numbers of polymorphic sites and the 

amount of MAF variation at these sites. By visualizing both sources of information, all 

suspicious samples can be identified together in a manner that is sensitive to the 

experimenter's expectations regarding polymorphism in the data set. (Although MAF 

variation is the more important of these two measures, we feel that a single summarizing 

statistic would be misleading and prefer a visual approach). Our second method can be 

selectively deployed by the researcher to identify sources of contamination in particular 

samples. This method also yields a visualization that represents the relative likelihood of 

contamination from other samples in the data set. Due to their ease of use, we hope that our 

computational tools, which are based on these methods, will become useful additions to the 

quality control toolkit that investigators use to examine next-generation sequencing data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Method summary

Cross-contamination among samples in experiments involving next generation 

sequencing can readily masquerade as low level polymorphisms. In this manuscript we 

present a robust approach for identifying this type of contamination and tracking down its 

source. In addition, we provide a ready-to-use web platform for performing the analyses 

described here.
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Figure 1. Boxplot summarizing the distribution of allele frequencies across samples in a 
contaminated mitochondrial re-sequencing study
The x-axis represents individual samples, with the numbers above each sample name 

indicating the number of detected heteroplasmies. The y-axis represents minor allele 

frequency.
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Figure 2. Phylogenetic analysis of minor allele consensus sequences for samples F41M52 and 
F41M52C1
Minor allele consensus sequences are shown in red on the background of major allele 

consensus sequences from all samples (shown in black). The numbers above branches and 

line thickness reflect bootstrap support (from 1000 iterations). Alternating black and gray 

lettering signifies distinct families used in the study. RSRS: a hypothetical version of 

mtDNA designed for rooting of phylogenetic trees (23).
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