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A Multiobjective Model for the Cutting Pattern
Problem with Unclear Preferences
Cristian D. Palma and Francisco P. Vergara

The cutting pattern problem has been traditionally approached using single objective optimization models, although the sawmill performance is usually measured using
more than a single indicator. One of the shortcoming of using multiobjective approaches is that they need a preference relationship among the objectives, which is difficult
to determine in practice, and solutions are very sensitive to these preferences. In this article, we consider different criteria in a sawmill decisionmaking context using
a multiobjective linear optimization model and handle the unclear definition of the objective preferences by formulating a robust version of the model. Although the
deterministic formulation assumes perfect information of the objective preferences, in the robust formulation we consider that preferences may be different from their
estimate. We show that deterministic decisions are more balanced in terms of the different criteria than the traditional single objective models, although their quality
is very sensitive to the objective preferences. We also show that robust decisions are also balanced but less sensitive to the preferences. We explore how the level of
the different indicators and the cutting decisions are affected when the preferences are unclear.
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One of the most important decisions in a sawmill is how to
cut different logs so as to obtain the products demanded by
customers, and several optimization tools have been pro-

posed for this purpose (see, for example, Maness and Adams 1991,
Maturana et al. 2010). These tools optimize decisions based on a
single objective, but unfortunately sawmill managers are usually
required to meet various performance indicators simultaneously,
such as low operating costs and high productivity, among others.
This situation leads to unbalanced solutions that although very ef-
ficient in one indicator, present poor results in others. In addition, if
different indicators were considered in the decisionmaking process,
the preferences for each of them would seldom be well defined.

Different decisionmaking techniques can be applied when more
than a single objective is to be considered, and many applications
can be found in the forest management context (Diaz-Balteiro and
Romero 2008). Regardless of the technique used, the relative im-
portance of the objectives under consideration must be determined
and translated into objective preferences. The correct determination
of these preferences is crucial for a successful application of any
multicriteria techniques but doing it in practice is still difficult
(Steuer 1986, Cohon 2004).

In most of the multicriteria decision methods, the basis for de-
termining the preferences is the pairwise comparison (David 1988),
in which objectives (or decision alternatives in cases of a discrete

decision space) are compared in pairs to judge which of each is
preferred. Outranking methods (Brans et al. 1986) and the analytic
hierarchy process (Saaty 1987) are common techniques used to elicit
preferences, both of which are based on pairwise comparison.
SMART methods are a set of techniques that determine the objec-
tive preferences through direct rating of the objectives rather than
pairwise comparison. In all cases, the relative importance of the
objectives is obtained through different approaches that process the
scores obtained from the comparisons or rating, including matrix-
based and optimization methods (see, for example, Siraj 2011).
Interested readers are referred to Figueira et al. (2005) and Riabacke
et al. (2012) for a recent review of these and other preference elici-
tation methods.

Regardless of how the preferences are determined, it has been
shown that even small changes in the preferences used to solve a
model may affect both the quality and the type of solutions obtained
(Kangas 1994, 2006, Butler et al. 1997, Kurttila et al. 2009). Only
in specific situations in which the decision space is reduced may
optimal decisions remain unchanged if weights are modified (Kan-
gas 1994). The high sensitivity of the solutions with respect to the
preferences implies that traditional deterministic solutions may
largely differ from solutions that do consider the uncertainty in these
preferences. Ignoring this uncertainty may mislead decisions and
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produce suboptimal results (Pukkala and Miina 1997). In this con-
text, either a good estimation of the objective preferences or a solu-
tion that is less sensitive to these preferences must be sought. In this
study, we approach the cutting pattern problem from a multiobjec-
tive framework and consider that the objective preferences cannot
be defined precisely. To do this, a traditional weighted sum ap-
proach is used to consider three performance indicators as the plan-
ning objectives (i.e., operating cost, amount of waste produced, and
overproduction), and a robust version of this model that considers
unclear definition of the objective preferences is formulated. The
single objective model and the deterministic and robust multiobjec-
tive models are applied to a real problem and their solutions are
compared. A robust model is a modified deterministic model that
produces robust solutions. These solutions are, in the same sense as
in Barrico and Antunes (2006), solutions that remain good even
though the real objective preferences may differ from the ones used
to generate the solution. We note that our goal is not to determine
the objective preferences but to find robust solutions for a given set
of preferences that may not be accurately elicited.

In the next sections, we briefly review the most relevant litera-
ture, describe the case study and the mathematical formulations,
and show and discuss numerical results. Finally, we present the main
conclusions of the study and ideas for future work.

Literature Review
Sawmills transform logs of different diameter and length, known

as log classes, into rectangular cross-section lumber, of standardized
thickness and width, by applying a cutting pattern to each log.
Different patterns can be applied to a single log class, each of them
producing a number of lumber pieces of different dimensions, as
well as waste material. Although for each log class there is an optimal
cutting pattern that minimizes waste, the log availability seldom
matches the lumber requirement and a log cannot be processed
using its optimal cutting pattern, therefore leading to an increase in
the waste production and to poor sawmill performance. Under these
conditions, a good combination of cutting patterns applied to dif-
ferent log diameters largely affects the amount of raw material re-
quired to meet the customer demands.

Different optimization models have been built to deal with the
cutting pattern problem as described. Although a few mixed integer
programming formulations have been proposed to solve the prob-
lem (Maness and Adams 1991, Pradenas et al. 2004), linear pro-
gramming has been the most common technique (Maness and Nor-
ton 2002, Singer and Donoso 2007, Caballero et al. 2009,
Maturana et al. 2010, Alvarez and Vera 2014, Varas et al. 2014).
Although the problem has been formulated in the literature in a
similar way, in some cases it has been combined with bucking deci-
sions (Maness and Adams 1991, Maness and Norton 2002) and
timber transfer decisions among sawmills in a supply chain context
(Singer and Donoso 2007). Multiperiod models have also been used
with the possibility of handling inventory, of either logs or lumber,
to add more flexibility (Maness and Norton 2002, Singer and
Donoso 2007, Maturana et al. 2010). Only recently, has uncer-
tainty for this type of problems been considered in the yield of the
cutting patterns (Kazemi et al. 2010) and in the product demand
and availability of logs (Varas et al. 2014), with the use of robust
optimization in both articles.

In all cases, either the minimization of costs or the maximization
of the profits or volume has been considered as the single objective,
although the performance of sawmills is measured using different

criteria. In forestry, the consideration of more than one objective in
decisionmaking models dates back to the early 1970s (Field 1973)
and has been applied to a broad range of forest planning problems
(Diaz-Balteiro and Romero 2008). Nevertheless, to our knowledge
no application to cutting planning problems has been reported. The
most common approaches include multiobjective optimization and
goal programming, both of which with a range of variations. In the
first case, different objectives are optimized by combining them in a
compounded objective function (Mendoza et al. 1987); in the sec-
ond, a set of target values (goals) are defined for each objective, and
the sum of all the differences between the observed value of each
objective and its target is minimized (Field 1973). In both cases, the
units of measure of the different objectives have to be standardized,
and the objectives can be weighted differently to reflect the decision-
maker preferences of one objective over the others (Marler and
Arora 2010).

These techniques have been mainly used in a deterministic set-
ting, and most of the work that considers uncertainty in multiple
criteria decisionmaking has been done in techniques that evaluate
solutions previously identified (Butler et al. 1997, Kangas et al.
2006; for a review, see Durbach and Stewart 2012) rather than in
techniques that generate the solutions. The explicit inclusion of
uncertainty in forest planning models has grown as more computer
capacity has become available. Strategic (Hoganson and Rose 1987,
Palma and Nelson 2009) and tactical (Alonso-Ayuso et al. 2011,
Palma and Nelson 2014, Varas et al. 2014) models that include
uncertainty have been proposed, but most of them have dealt with a
single objective. In a multiobjective setting, the uncertainties in the
future state of the forests have been considered using multiobjective
dynamic programming (Gong 1992) and the vagueness in the def-
inition of the objectives has been modeled using fuzzy set theory
(Ells et al. 1997). To our knowledge, the uncertainty in the prefer-
ences of the objectives has been only scarcely considered, using a
combination of simulation and optimization (Pukkala and Miina
1997) and using robust optimization (Palma and Nelson 2010). In
both of these articles, deterministic solutions are compared with
robust solutions, those that remain good even if the uncertain pa-
rameters change. However, none of these works explores how the
presence of uncertainty in the objective preferences determines the
type of decisions that should be preferred and how the amount of
the different objectives is affected.

In this study, we present a deterministic and a robust formulation
of a multiobjective model for the cutting planning problem and
explore how the unclear definition of the objective preferences af-
fects the optimal decisions and the level of the different objectives.
To do this, we consider three performance indicators of the sawmill-
ing process as objectives and evaluate both deterministic and robust
decisions under simulated objective preferences.

Methods
Study Case

The need for decisions that produce a good balance among dif-
ferent performance indicators motivated the production manager of
a medium size sawmill located in a southern province of Chile to
explore the use of a multiobjective planning approach. The sawmill
production in 2009, the year used for this evaluation, was approxi-
mately 315,000 m3 of lumber that was exported to Asia, Europe,
and North America and sold to the domestic market.

The three main indicators (planning objectives) identified by the
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manager were the total cost of operation, the amount of waste (in-
directly the lumber recovery factor), and the amount of overproduc-
tion. The overproduction represents the production of lumber
products that are not demanded at the time of production and that
are obtained in addition to demanded products when a cutting
pattern is applied. These nondemanded products are obtained due
to the discrepancy among the demanded products and the set of
products produced by the cutting patterns and are usually invento-
ried for future orders.

To evaluate the models, we considered 322 cutting patterns
available in the sawmill database. For these cutting patterns, the
yield of different lumber products if applied to different log classes
was available.

Deterministic Multiobjective Model
The model considers multiple periods and the possibility of in-

ventory of logs and final products. To overcome the effect of the
different units and magnitudes of the objectives, we translated the
original objectives into their relative improvement based on their
ideal and anti-ideal values (Martinson 1993). To do so, the solution
for each objective was obtained independently, and from this set of
solutions, the ideal and anti-ideal values of each objective were ob-
tained. These values were then used in the multiobjective formula-
tion to determine the relative improvement of these indicators over
their minimum possible levels (see Equation 12 below).

The following notation is used to present both the deterministic
and robust models. Lowercase represents decision variables, and
uppercase represents parameters and coefficients of the models.

Decision Variables

xit � volume of logs of type i acquired in period t (m3)
yijt � volume of logs of type i sawn with cutting pattern j in

period t (m3)
Zkt � volume of product k produced in period t (m3)
nkt � volume of product k sold in period t (m3)
uit � volume of logs of type i kept as inventory in period t (m3)
vkt � volume of product k kept as inventory in period t (m3)
om � amount produced of objective m (m � cost, waste, over-

production)
rom � relative improvement of objective m over its worst possible

value

Parameters

Lt � processing capacity (h)
Tij � time required for a log of type i to be sawn with pattern j

(h/m3)
Sit � availability of logs of type i in period t (m3)
Rijk � volume of product k obtained if log i is sawn with pattern j

(m3 product/m3 log)
Mij � volume of waste produced if a log i is sawn with pattern j

(m3 waste/m3 log)
Dkt � minimum demand of product k in period t (m3)
Pk � price of product k ($/m3)
CAt � acquisition cost of a log of type i ($/m3)
CSij � cutting cost of a log of type i if sawn with cutting pattern j

($/m3)
CLi � inventory cost of a log of type i ($/m3)
CPk � inventory cost of product k ($/m3)

UOt � initial inventory of logs of type i (m3)
VOk � initial inventory product k (m3)
bom � best possible value of objective m
wom � worst possible value of objective m
Wm � weight of objective m

Objective Function
We maximize the weighted relative improvement over the worst

result

Max �
m�1

M

Wmrom (1)

Constraints
Log availability

xit � Sit �i, t (2)

Processing capacity

�
i�1, j�1

I,J

Tijyijt � Lt �t (3)

Log balance

xit � UOi � uit � �
j�1

J yijt �i, t � 1 (4)

xit � uit�1 � uit � �
j�1

J yijt �i, t � 1 (5)

Product balance

�
i�1, j�1

I,J

Rijkyijt � VOk � vkt � nkt �k, t � 1 (6)

�
i�1, j�1

I,J

Rijkyijt � vkt�1 � vkt � nkt �k, t � 1 (7)

Demand

nkt � Dkt �k, t (8)

Objective Calculations

o1 � �
i�1,t�1

I,T

CAixit � �
i�1, j�1,t�1

I,J,T

CSijyijt � �
i�1,t�1

I,T

CLiuit

� �
k�1,t�1

K,T

CPkvkt (9)

o2 � �
i�1, j�1,t�1

I,J,T

Mijyijt (10)

o3 � �
k�1,t�1

K,T

�nkt � Dkt� � �
k�1

K

vkT (11)
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rom �
�wom � om�

�wom � bom�
�m (12)

Equation 1 represents the weighted sum of the relative improvement
over the worst possible values of the three indicators, and Equations
2 and 3 limit the use of resources (log availability and processing
capacity) to their maximum availability. Equations 4–7 are balance
constraints that relate acquired, processed, and inventoried logs with
the production, inventory, and sale of products. Equation 8 ensures
that the minimum demand is met, and Equations 9–11 compute
the levels of the three indicators. Finally, Equation 12 calculates the
relative improvement of the indicators based on their best and worst
possible values. These are the three indicators used as objectives of
our model.

We assumed, without loss of generality, that the weights for the
three objectives were equal; that is, Wm � 1 for all objectives m. We
note that our weight definition is equivalent to the most commonly
used definition in which the sum of weights equals 1. We opted to
set each weight to 1 to make it easier for the decisionmaker to
compare the relative importance of the objectives when uncertainty
in their weights was introduced.

Robust Multiobjective Model
Several approaches of robust optimization to find decisions that

are less sensitive to uncertain data have been proposed. Although the
first ones resulted in models that solved the worst-case scenario
(Soyster 1973), other less conservative approaches have been sug-
gested since then (El Ghaoui and Lebret 1997, Ben-Tal and Nemi-
rovski 1998). These approaches transform a deterministic model
into its robust counterpart in a way that the latter seeks the best
objective value that simultaneously allows changes in the model
parameters within their range of possible values. The main disad-
vantage of these transformations is that the complexity of the orig-
inal models increases; that is, linear models become nonlinear, and
the problems become more difficult to solve. However, Bertsimas
and Sim (2004) proposed an approach that does not increase this
complexity. The approach has been extensively used in different
areas, and in the forest context some applications can be found at the
strategic (Palma and Nelson 2009, 2010), tactical (Palma and Nel-
son 2014), and operational (Alvarez and Vera 2014) levels.

In this approach, uncertainty is assumed to distribute uniformly
within a range of values, and robustness is modeled by ensuring
constraint feasibility through the inclusion of a buffer term,
	(ro*, �), that depends on a given vector of decision ro* (relative
improvement of the objectives) and the level of protection required,
�. This level of protection, �, can take on values from 0 (determin-
istic case) to the number of uncertain coefficients and allows deci-
sionmakers to handle the level of robustness of the solutions. If
applied to the objective function, this concept of robustness trans-
lates into searching for solutions that guarantee that a good value of
the objective function will be achieved even if the objective coeffi-
cients vary.

The objective function of our model is therefore reformulated as
follows

Min c (13)

subject to

�
m�1

M

Wmrom � 	�ro*,�� � c (14)

The larger the buffer term is, the more the impact it has on the
quality of the objective function, so an optimal value of 	 has to be
sought. Bertsimas and Sim (2004) estimate the buffer size through a
linear programming (LP) model and then replace the buffer term
with the dual of this LP model. The robust version of the model
given by Equations 1–12 becomes

Min c (15)

subject to

�
m�1

3

W� mrom � �g � �
m�1

3

hm � c (16)

g � hm � Ŵmrom �m (17)

g � 0 (18)

hm � 0 �m (19)

plus Equations 2–12 where W�
m and Ŵm are the weight estimate and

its error size (i.e., the real unknown weight Wm � [W�
m � Ŵm],

uniformly distributed, for all objectives m) and Equations 16–19
and the new variables g and hm come from the dual transformation
of the LP model used to determine the buffer size (see Appendix for
details). These new variables have no practical meaning other than
representing dual values that allow us to quantify the buffer size
based on the level of the objectives and their weight estimate error
(Equation 17).

We defined the weight errors (Ŵm) as 0.1, 0.2, and 0.3 for the three
objectives (cost, waste, and overproduction), respectively, to evaluate
the effect of different levels of errors on the decisions. This definition
represents, for example, that due to the unclear objective preferences the
second objective can be up to either 33% more important or 27% less
important than the first objective. We note that the specific values we
used for the weights and their errors do not affect the proposed meth-
odology and the main conclusions of this work. In addition to the error
size, two levels of robustness were tested, � � 1 (labeled as robust 1),
and � � 2 (labeled as robust 2).

Both deterministic and robust models were implemented in IBM
ILOG CPLEX Optimization Studio version 12.5.

Results
Deterministic Single Objective and Multiobjective Approaches

The use of a single indicator as objective function produced
unbalanced solutions in terms of the dissimilar quality of the other
indicators (Table 1). For example, minimizing the overproduction
led to the highest cost (US$504,848) and minimizing the waste led

Table 1. Payoff table of the deterministic single objective and
multiobjective solutions.

Objective

Performance indicator

Cost ($) Waste (m3) Overproduction (m3)

Cost 412,003 9,053 229
Waste 500,623 8,805 242
Overproduction 504,848 9,127 206
Multiobjective 478,128 9,044 230

The multiobjective approach produced a compromise solution that balanced the
three objectives.
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to the highest overproduction (242 m3). As expected, the multiob-
jective approach produced a compromise solution for the three ob-
jectives. Cost, waste, and overproduction improved their values by
29, 26, and 33%, respectively, in relation to their worst possible
levels when the multiobjective approach was used.

Deterministic and Robust Multiobjective Approaches
A set of 100 objective weights were simulated within their range

of possible values ([W�
m � Ŵm] with W�

m � 1, m � 1, 2, 3) to
represent different scenarios of real preferences. These weights were
used to evaluate both the deterministic and the robust decisions. If
the real objective preferences are not as estimated and can fluctuate
within a range of values, the compounded objective value of the
deterministic multiobjective model showed an important variability
(SD � 0.073). This variability was reduced to 0.049 and 0.044 with
the two levels of robustness, respectively (Figure 1).

Deterministic and robust decisions were different (Table 2). The
quality of the compounded objective function (weighted sum)

slightly decreased as more robustness was required, and both the use
of logs and the levels obtained for the different objectives differed.
More robust decisions improved the cost indicator (the cost was
reduced) but increased the amount of waste and the excess of pro-
duction. Unlike the deterministic solution that used the full avail-
ability of large logs, robust solutions preferred small logs as more
robustness was required.

Discussion
As expected, the multiobjective formulation of the sawmill prob-

lem produced a more similar level for the three performance indi-
cators than the single objective formulation. Our results suggest that
the value of the objective function of the decisions obtained using a
point estimate of the objective preferences may be more variable,
depending on the observed preferences. This variability can be re-
duced with a robust formulation of the problem.

Considering robustness when the objective preferences were un-
certain affected both the cutting decisions and the level of achieve-
ment of the performance indicators or objectives. When the size of
the preference uncertainty was different among the objectives, the
values of those objectives for which the preference was more accu-
rately defined increased in relation to what is observed with deter-
ministic models. The more uncertain the objective preferences were,
the lower the amount of the objective produced. More specifically, it

can be observed from Equation 17 that rom � (g � hm)/Ŵm for all

objectives m, i.e., the more uncertain the objective weight (Ŵm), the
smaller the amount of the objective produced. Thus, the robust
approach explicitly considers both the contribution of the decisions
to a higher objective function value and their impact on the vari-
ability of the solution quality. This situation is explained by the
higher potential impact on the objective function variability that a
large objective amount could produce if the possible weights change
widely. The practical consequence of this fact is that although an
objective is clearly more important than other objectives, if its
weight error is large, then a low level of that objective will be ob-
tained. To avoid this situation, when using this approach, decision-
makers should make a special effort to accurately define the weights
of those objectives that are more important.

As occurred with the objectives, weight error had a similar effect
on the decisions that the robust formulation chose. The determin-
istic model preferred decisions with the best average levels of the
three objectives, regardless of their variability, this is, decisions that
are very good for some objectives and very bad for others. The robust
models combined decisions with the best average levels of objectives
with decisions that, although reported worse levels of objectives,
produced a more uniform level of them. For instance, large diameter
logs are more profitable for a sawmill than small diameter logs and
are usually preferred in deterministic settings. However, in our case
they affected the variability of the objective function in the presence
of unclear objective preferences. Because large diameter logs allow
more cutting possibilities, a wider variability in the total cost, waste,
and overproduction is observed than in small diameter logs. Because
the robust model tries to reduce this variability, small diameter logs
are also part of the robust optimal decision. We note that the use of
small diameter logs may sound counterintuitive as large logs allow
more flexibility in terms of the products that can be obtained. How-
ever, we are not considering uncertainty in the demand, in which
case this flexibility would be very useful, but uncertainty in the
objective preferences in a multiobjective framework. Higher values

Figure 1. A decrease in the variability of the objective function
was observed with robust models (Rob 1 and Rob 2) compared
with the deterministic model (Det). The lowest boundary of the box
indicates the 25th percentile, the line within the box marks the
median, and the highest boundary of the box indicates the 75th
percentile. Error bars above and below the box indicate the 90th
and 10th percentiles.

Table 2. Comparison of deterministic and robust multiobjective
solutions to the sawmill problem with three objectives and two
levels of robustness.

Model

Deterministic Robust 1 Robust 2

Objective
Cost ($) 478,128 470,537 467,874
Waste (m3) 9,044 9,050 9,052
Overproduction (m3) 230 234 236

Log sizea

Small (m3) 0 418 551
Medium (m3) 1,688 1,715 1,780
Large (m3) 2,978 2,598 2,452

Weighted sum 0.3954 0.3878 0.3843

a The 15 log types were grouped in three categories: small (logs 1–5), medium (logs
6–10), and large (logs 11–15).
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of highly variable decisions, such as the use of large diameter logs,
will translate into highly dissimilar levels of objectives.

The robust approach used is based on increasing the chance of
feasibility of constraints with uncertain coefficients. A buffer for
each constraint is explicitly modeled to maintain the left-hand side
of a constraint far enough from the right-hand side so that the
inequality holds in practice even if the coefficients are not as esti-
mated. Whether the uncertain coefficients are in the objective func-
tion, as in the weighted sum of objectives we used, the approach can
still be used by modeling the objective function as a constraint.
However, in this case the philosophy of the robust optimization
approach is less clear. With uncertainty in the objective coefficients,
the robust model is intended to seek solutions that guarantee that a
good value of the objective function will be obtained for a range of
values of the uncertain coefficients. The practical implication of this
fact is that, regardless of the objective weights actually observed,
robust solutions will preclude the occurrence of decisions with a very
low objective function. A good value of the objective function is
therefore guaranteed.

This guarantee can be very important in a multiobjective deci-
sion context in which different actors are involved, such as in envi-
ronmental and social problems. Because the objective preferences in
this type of problem can be difficult or even impossible to deter-
mine, the approach can help decisionmakers find less risky decisions
and therefore decrease the negative outcomes if the real preferences
differ from their estimates. Most of the current approaches that
consider uncertainty in multiobjective problems compare a reduced
number of solution alternatives by assigning to each of them an
index that reflects the stability of a solution (Lahdelma et al. 1998,
Kangas 2006). The robust formulation presented in our study does not
compare solutions already generated but generates solutions that were
demonstrated to be less sensitive to uncertain weights than those gen-
erated by the traditional deterministic multiobjective models.

An approach that minimizes the variability of the solutions along
with other objectives could eventually be useful to our purpose.
Such an approach, as suggested by Mulvey et al. (1995), would not
need a description of the uncertainties but would require a descrip-
tion of the decisions’ covariance. These models are common in
finance, where the information of (co)variance is broadly available.
Another approach is one that combines optimization and scenario
analysis (Pukkala and Miina 1997), in which the variability of a
solution is evaluated for a set of scenarios of weights and then the
model is successively reoptimized to find better solutions. The ro-
bust approach proposed here has the main advantage of producing
computationally tractable models, and the use of a simple descrip-
tion of the uncertainties (uniform distribution), which is particu-
larly useful when uncertainties are not statistically described as hap-
pens in many cases. However, if uncertainties are well described
through probability distributions, then the simplicity of the uncer-
tainty description becomes a drawback of the approach, as useful
information will be left out of the decision process. In addition, the
level of protection, �, used in the robust model has no clear meaning
other than to control the tradeoff between the quality of the objec-
tive function and the robustness of the solutions. The approach
therefore requires the evaluation of different levels of protection to
obtain a range of solutions from which the decisionmaker can make a
choice. Further research on a more accurate way to relate the level of
protection and the solution quality and on the convenience of using this
approach to other management decision problems is of interest.

In conclusion, robust optimization seems to be a good tool to

handle uncertainty in the objective weights of multiobjective mod-
els. Although a larger number of variables and constraints is re-
quired, the model complexity remains the same. If weights are
not accurately defined, decisions that produce more homogeneous
objective outcomes are to be preferred, and the production of ob-
jectives with a wider range of possible weights tends to decrease
compared with deterministic solutions.
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Appendix
For the buffer 	(ro*, �) used in Equation 14, Bertsimas and

Sim (2004) propose the following LP model for a fixed value of
the decisions ro* and nonnegative values of em, BLP: {max 	m�1

3

Ŵmro*mem; subject to 	m�1
3 em � �and em �1 @m}. BLP is a sub-

problem that finds the maximum buffer required if a given solution
is made and up to � of the uncertain coefficients (Wm) are allowed to
change simultaneously. The decision variable em identifies those
objectives that contribute the most to the size of the buffer. Note
that BLP assumes a fixed value of ro*m; otherwise the problem would
be nonlinear.

Since objective levels are fixed and considering that we are only
interested in the objective function of model BLP, its dual can be
used to estimate the buffer size of Equation 14 as a linear model.
With g and hm as the dual variables associated with the equations of
BLP, its dual is DBLP: {min �g � 	m�1

3 hm; subject to g � hm �
Ŵmrom @m; g � 0; hm � 0 @m}. This dual is then embedded in
Equation 14 to replace the buffer term and becomes Equations
16–19.
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