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A Robust Model for Protecting Road-Building and
Harvest-Scheduling Decisions from Timber Estimate
Errors
Cristian D. Palma and John D. Nelson

Road-building and harvest-scheduling decisions are primarily based on timber estimates and forecasts that are known to contain errors. It has been shown that in the
presence of constraints, decisions generated under these conditions are likely to become infeasible. Therefore, solutions are required that can ensure constraint fulfillment
despite the estimation errors. We present a robust model formulation of a multiperiod road-building and harvest-scheduling problem in which protection against minimum
demand infeasibility is sought despite the existence of timber estimates that are defined as continuous ranges of values instead of point estimates (as is usually the
case in this type of problems). We compare the benefits of this robust formulation with those of the traditional deterministic option and explore the tradeoff between
the robustness of the solutions and its impact on the objective function. By simulating different scenarios of the timber coefficient realizations, it is shown that the robust
approach produces solutions that are less sensitive to errors in the timber estimates at the expense of a slight reduction in the objective function.
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Medium-term tactical decisions that cover a 2- to 5-year
planning horizon typically involve harvest-scheduling
decisions and road construction. The difficulty of solving

this problem has led researchers to propose different mixed binary
models and to apply various solution approaches (Weintraub and
Navon 1976, Guignard et al. 1998, Richards and Gunn 2000, An-
dalaft et al. 2003) to find (near) optimal solutions to these models.
Most likely because of this complexity, the models assume that the
data are perfectly known and ignore the inherent uncertainty in the
coefficients of the model. Although uncertainty has been tradition-
ally associated with a lack of numerical information to describe the
future, unlike risk that refers to a quantified uncertainty (Davis and
Johnson 1987), we use uncertainty in this work simply to indicate
lack of certainty, whether measurable or not.

This uncertainty may originate from a variety of sources that are
well described in the literature (Marshall 1987, Mowrer 2000,
Regan et al. 2002). Biological processes that are not completely
understood, natural disasters, and changes in social and economic
conditions, in combination with long time horizons, all affect the
future consequences of forest-planning decisions made in the pres-
ent. In addition, uncertainties may result from the process of esti-
mating current and future resource levels. Different sampling meth-

ods used to determine the stand volume estimates will report
different estimate errors of the current inventory, and statistical
models used to project this inventory will also contribute to this
inexactness. Although an extensive area may produce a diversifica-
tion effect that could reduce the effects of some of these uncertain-
ties, the decisionmaking process still must be carried out in an un-
certain environment.

In the context of the sequential decisionmaking that takes place
in real-world systems, there is potential recourse if the forecasted
outcomes are not realized, and the consequences may not necessarily
be large. Because many of the real system decisions are guided by
model forecasts, it is possible to gain an understanding of the un-
certainty in the real system by examining the feasibility of the mod-
els for the cases in which information does change. Solutions from
deterministic models are likely to become infeasible if evaluated
with observed data. Although decisions implemented in the present
might appear optimal, these decisions will most likely become sub-
optimal and mathematically infeasible once the uncertainties are
realized. The information used to make these decisions will not
necessarily be observed in actuality (Hof et al. 1988, Pickens and
Dress 1988). This situation renders the search for good quality and
stable solutions (rather than strictly optimal solutions) highly
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relevant when decisions are implemented. In this article, we address
a harvest-scheduling and road-building problem in which the tim-
ber volume estimates are uncertain and are defined by a range of
values rather than by a point estimate. We use robust optimization
to identify solutions that remain highly feasible and close to the
optimal solution even if any combination of the possible timber
values is observed in actuality.

Approaches for Dealing With Uncertainty
Stochastic programming (SP), chance-constraint programming

(CCP), and fuzzy set theory (FS) are the best-known techniques that
include uncertainty in the optimization models. By considering a set
(usually discrete) of scenarios of random events or uncertainties, SP
allows the identification of a good solution for all scenarios or for the
most likely scenarios. The greatest disadvantage of this technique is
that as the number of scenarios increases, the models become com-
putationally difficult to solve and solution methods such as decom-
position and statistical approximation must be applied (Birge and
Louveaux 1997). In addition, the probability distribution of the
scenarios is required but is generally not known.

In CCP, constraints with at least one random coefficient are
modeled as probabilistic statements. The probability distributions
of uncertain coefficients are assumed to be known and the con-
straints are required to be met with a minimum probability that is
exogenously determined. Although particular cases of CCP models
are easy to solve (e.g., when only the right-hand side of a constraint
is uncertain), the models become nonlinear in most cases (Kall and
Wallace 1994, Birge and Louveaux 1997). Finding exact solutions is
difficult (Chen et al. 2007), thus motivating the search for approx-
imate solution techniques (Birge and Louveaux 1997).

FS provides a different approach to dealing with certain types of
uncertainty by defining a degree of membership for a parameter to a
set of possible values. The more likely the value of a parameter, the
greater is its degree of membership. This concept is used to model
the objectives and constraints for which a combination of their
degree of membership can be maximized (Zimmermann 1996).
This approach may be appropriate if there is vagueness, for example,
in the meaning of certain events, phenomena, or statements such as
the preferences among different objectives or the definition of aspi-
rational goals. However, the appropriateness of the approach is not
clear if the model represents a lack of information with respect to the
value of the parameters. In the latter case, FS actually results in a
relaxed version of the traditional deterministic problem in which
constraint violations are allowed and better objective functions are
obtained as a consequence.

These three techniques have been used in harvest-scheduling
problems. For example, SP has been used to address the uncertainty
in timber yield (Hoganson and Rose 1987, Eriksson 2006) and fire
losses (Gassmann 1989, Boychuk and Martell 1996), and uncer-
tainty in timber yield has also been considered using CPP
(Weintraub and Vera 1991, Pickens et al. 1991, Hof et al. 1992,
Weintraub and Abramovich 1995). Most recently, CCP with ap-
proximation solution techniques were applied to a fire budget allo-
cation problem with uncertain fire suppression costs and to a habitat
restoration problem in which the survival parameters were uncertain
(Bevers 2007). With use of FS, the uncertainties in timber yield
(Bare and Mendoza 1992), periodic harvesting goals (Hof et al.
1986, Pickens and Hof 1991), and vagueness in seral-class defini-
tions (Boyland et al. 2006) have been considered in harvest-sched-
uling problems. In the context of multiobjective models, fuzziness in

the objective function coefficients (Mendoza et al. 1993, Stirn
2006), as well as in the goal definitions (Ells et al. 1997, Maness and
Farrell 2004), has been addressed using FS.

Uncertainty in road-building decisions has been scarcely ad-
dressed, most likely because of the additional difficulty in solving
integer models. To our knowledge, only a few applications that
address the uncertainty in road-building problems have been re-
ported, and all of them use SP. In Olsson (2007), road upgrade
decisions with an uncertain length for the period of poor road con-
ditions were examined, and in Alonso-Ayuso et al. (2009), the har-
vest and road construction problem was considered for cases in
which different price scenarios were defined. In both cases, the ex-
plicit consideration of the uncertainties was recommended over the
traditional deterministic model because the decisions performed
better in terms of their stability. The reduced number of scenarios
that the methodology can handle was also clear in these works.

The aims of this article are two-fold. First, we explore the effect of
random volume uncertainties on harvest-scheduling and road-
building decisions, and second, we do this using robust optimiza-
tion (RO), a mathematical programming approach that has not yet
been extensively applied in forest resources management and that
allows finding decisions that are less sensitive to uncertain parame-
ters. This method has been applied in engineering (Ben-Tal and
Nemirovski 2002), network design (Bertsimas and Sim 2003, Or-
donez and Zhao 2007), and inventory theory (Bertsimas and Thiele
2006), among other problems. In natural resources planning, appli-
cations of RO can be found in water supply management (Chung et
al. 2009) and strategic forest harvest-scheduling problems (Palma
and Nelson 2009, 2010).

The RO Approach
We base our model development in the RO approach proposed

by Bertsimas and Sim (2004). Other approaches have also been
proposed (Mulvey et al. 1995, El Ghaoui et al. 1998, Ben-Tal and
Nemirovski 2000) but have resulted in models that are computa-
tionally more complex. The approach used in this work produces
models of the same type as the original model. That is, if the original
model is a mixed-integer linear model, then the robust model is also
mixed-integer linear, therefore eliminating the need for specific so-
lution techniques other than that used to solve the original problem.

The RO approach operates as a buffering strategy. An additional
term, known as the protection function, is added to each constraint
for which feasibility is highly desirable and for which the technical
coefficients are uncertain. Let us consider the general lower bound
constraint, in which i � 1, …, m and j � 1, …, n

�
j�1

n

aijxj � bi �i (1)

where aij are assumed as uniformly distributed in the range [a�ij �
âij, a�ij � âij] with a�ij as the coefficient estimate and âij as the accuracy
of the estimate. Although other distributions might be more realis-
tic, the assumption of a uniform distribution of errors allows robust
models to remain linear. If, for each aij, a scaled deviation is defined
as �ij � (aij � a�ij)/âij, then �ij�[�1, 1], and for each constraint,
�j�1

n �ij can theoretically take on values between �n and n. We can
now limit the number of uncertain coefficients that are allowed to
change in constraint i by considering �j�1

n ��ij� � �i where �i is
known as the protection level of constraint i. Three possibilities can
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be identified: if �i � 0, the �ij for all j in constraint i are forced to 0
such that aij � a�ij for all j, and constraint i has no protection against
uncertainty; if �i � n, constraint i is totally protected against un-
certainty because all �ij in constraint i are allowed to take on a
nonzero value; and if 0 � �i � n, constraint i is partially protected
against uncertainty, in which case a subset of the �ij can be different
from 0. The robust version of Equation 1 is then

�
j�1

n

a� ijxj � �i� x*,�i� � bi �i (2)

The protection function of constraint i, �i(x*, �i), depends on
the user-defined protection level �i and is specific for a given solu-
tion vector x*. RO looks for the optimal buffer that maintains the
left-hand side of Equation 2 �bi for different values of aij. For a
given solution vector, the protection function determines the buffer
required if up to �i parameters are allowed to change; i.e., the buffer
size corresponds to the sum of the �i largest deviations produced by
a fixed value of x. In other words, the protection function equals the
objective function of the following optimization problem

Max �
j�1

n

âijx*jwij (3)

subject to

�
j�1

n

wij � �i (4)

0 � wij � 1 �j (5)

where wij are new variables that represent the random variable of the
scaled deviation �ij described above. Although this model is linear
for the given solution vector x*, this is not the case when x is variable.
However, its dual can be used to express this function linearly in 2.
If zi and pij are the dual variables of the constraints 4 and 5, respec-
tively, then the dual of 3–5 is

Min �izi � �
j�1

n

pij (6)

subject to

zi � pij � âijx*j � j (7)

pij � 0 �j (8)

zi � 0 (9)

Because model 3–5 is feasible and bounded for all �i�[0, n],
then its dual, model 6–9, is also feasible and bounded, and their
objective functions coincide (Bertsimas and Sim 2004). Therefore,
�i(x*, �i) is equal to the objective function of model 6–9 and can be
substituted into Equation 2 to produce its robust version.

�
j�1

n

a� ijxj � �izi � �
j�1

n

pij � bi �i (10)

zi � pij � âijxj �i, j (11)

pij � 0 �i, j (12)

zi � 0 �i (13)

Methods
In this section, we describe the study area, both the deterministic

and robust formulations, the data used, and the simulation experi-
ments performed to test the resulting infeasibility rates.

Study Area
In this work, we determined the road and harvest decisions in a

11,675-ha area located on mid-Vancouver Island, British Colum-
bia, Canada, of which 7,554 ha were available for harvesting (Figure
1). The area is divided into 431 harvestable stands with an average
size of 17.5 ha and ranging from 1.6 to 52.3 ha. We considered 412
potential road segments and two demand nodes for which a mini-
mum timber supply must be guaranteed over three planning peri-
ods. To cover the planning horizon usually considered in tactical
decisions while simultaneously providing additional detail in the
first periods, the periods were defined as 2, 3, and 4 years, respec-
tively, which correspond to a 9-year planning horizon. Because a
considerable portion of this area could be harvested in a relatively
short period of time, 15% of the volume is to be retained when a
stand is harvested. Inventory data and harvesting and transportation
costs are available for the area.

Harvest-Scheduling and Road-Building Models
The road-building problem is a network design problem in

which the arcs represent segments of potential roads and the nodes
represent either timber sources or the intersection of the arcs. Roads
must be built and harvesting decisions (as well as timber flow) must
be determined to transport the harvested timber toward the exit

Figure 1. A harvestable area of 7,554 ha was used as the study
area and included 431 stands and 412 potential roads.
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nodes that connect the forest to the demand nodes. In our formu-
lation, we minimized the discounted harvesting, transportation, and
road-building costs subject to a minimum timber demand. Adja-
cency constraints were not included, and only one timber product
and one road standard were assumed. Although external timber
supply is a common practice used to meet timber demand con-
straints in this type of problem, this option was omitted to facilitate
the analysis of the effect of infeasibilities of these constraints. In
other words, if the external timber supply were possible, any need for
extra production due to an uncertain future would be solved by
buying the extra timber in the market and not changing the harvest
decisions.

Because integrated harvest-scheduling and road-building models
are difficult to solve to optimality, various solution approaches have
been proposed to identify good solutions, e.g., mixed-integer solvers
(Weintraub and Navon 1976), heuristics and meta-heuristics
(Weintraub et al. 1995, Clark et al. 2000, Richards and Gunn
2000), and Lagrangean relaxation (Andalaft et al. 2003). In addi-
tion, strengthening and lifting techniques are also simple steps used
to facilitate the model solution. By adding logical inequalities (or
“triggers”) and increasing the dimension of a constraint space (or
“lifting”), the solution space of the LP relaxation is reduced, and
therefore fewer solutions are evaluated and better bounds for the
integer solution techniques can be obtained (Guignard et al. 1998).
We opted for a strengthened formulation of the problem and solved
it using commercial optimization software as detailed later.

The following nomenclature will be used in both the determin-
istic and robust formulations.

Sets:

Nodes in the network (supply, intersection and exit nodes) (i �
1, …, I; j � 1, …, J)

i, j

Demand node (n � 1, …, N)
n

Potential road corresponding to an undirected arc connecting two
nodes; i.e., each road r supports timber flow on directed arcs ij
and ji (r � 1, …, R)

r

Stand (s � 1, …, S)
s

Time period (t � 1, …, T).
t

Set of stands that supply timber to node i
s(i)

Coefficients and Parameters:

Minimum demand in node n in period t (m3)
dnt

Total volume in stand s in period t (m3)
vst

Cost of building road r ($)
crr

Cost of transportation between nodes i and j (or demand node n) in
period t ($/m3)

ctij(n)t

Total cost of harvesting stand s in period t ($)
chst

Discount factor applied to period t
	t

Decision Variables:

Binary variable that represents whether road r is built (1) in t or not
(0).

Xrt

Binary variable that represents whether stand s is harvested (1) in t or
not (0).

Yst

Timber flow (directed) between nodes i and j in period t [m3].
Fijt

Timber flow (directed) from node i to demand node n in period t
[m3]

Fint

Deterministic Model
The sum of the road building, harvesting, and transportation

costs was minimized as follows

Min�
t�1

T

	t� �
r�1

R

crr Xrt � �
s�1

S

chstYst � �
i�1

I �
j�1

J

ctijFijt

� �
i�1

I �
n�1

N

ctinFint� (14)

Subject to the following set of constraints

�
t�1

T

Yst � 1 �s (15)

�
s�s�i�

vstYst � �
j�1

J

Fjit 	 �
j�1

J

Fijt � �
n�1

N

Fint �i, t (16)

�
i�1

I

Fint � dnt �n, t (17)

�
k�1

t

�Fijk � Fjik� � Mrt�
k�1

t

Xrk ��i, j� � r, t (18)

Yst � �
k�1

t �
r�r�s�

Xrk �s, t (19)

Constraint 15 limits the number of times that each stand can be
harvested during the planning horizon. Constraint 16 imposes the
conservation of flow at each node and within each period. The
inflow to a node (left-hand side) may come directly from harvesting
stands or from other nodes, whereas the outflow (right-hand side)
may go to other nodes in the network or to the demand nodes.
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Constraint 17 defines the lower bound of the timber transported to
the demand node m in each period. Constraints 18 and 19 corre-
spond to the road construction trigger (lifted with respect to time)
and a logical inequality, respectively; these both contribute to a
strong formulation of the harvesting and road-building problem
(Andalaft et al. 2003). In 18, the timber flow in any arc and up to a
given period is only possible if the corresponding road has been built
in the same or in a previous period. Mrt is a large number that allows
the flow to be greater than 1. Because its value has a major impact on
the solution process of the model, the lowest possible value that
preserves the original integer optimum should be used (Andalaft et
al. 2003). When maximum demands are present, the sum of all
maximum demands represents an upper bound for the timber flow
in each period and thus can be used as a value for M in the corre-
sponding period. If there are no maximum demand constraints, as
in our case, the total volume of the forest in each period, �svst, is
another option. However, because a minimum demand is required
in each period, not all of the forest can be harvested in the same
period because a certain amount of timber must be retained to meet
demands in other periods. Therefore, a better upper bound for the
flow for every arc and period t would be �svst � �l
tdl. Moreover,
the tightest upper bound can be determined if the arcs have a treelike
structure (Figure 2). Unlike the cycle structures, only one flow di-
rection is possible in treelike structures, and the potential flow in an
arc cannot be larger than the maximum cumulative production of
the source nodes from the leaves to the tree base.

For each arc and period, the flow upper bound was then deter-
mined as follows

Mrt 	 �
Mrt � �

s�s�i�,�i, j��r

vst if r is in a tree structure

�
s�1

s

vst � �
l
t

dl if r is in a cycle structure

where r is the preceding arc of r from the leaves to the tree base and
node i is the node in r closest to the leaf. Mrt � 0 for terminal nodes.
These calculations were automatically computed.

Constraint 19, known as a project-to-road trigger (Andalaft et al.
2003), allows harvesting of a stand in a period only if at least one
road connecting the stand to the road network has been built in the

same or in a previous period. In this equation, r(s) represents the set
of roads that connects stand s to the road network.

Robust Model
To protect the minimum demand constraint from infeasibilities,

Equation 17 was modified, and new variables and constraints were
added as described previously. We assumed that the real volume, vst,
belongs to and is symmetrically distributed in the range [v�st � v̂st,
v�st � v̂st], where v�st is the volume estimate and v̂st � v�st � et is its
estimate error.

A special feature of this problem deserves attention. The network
structure of the problem makes it such that uncertain coefficients
(vst) are not included in the equation to be buffered, i.e., Equation
17. In fact, these coefficients do not depend on the demand at node
n. Therefore, the protection function �t will not provide a harvest
buffer for each node n but only a total buffer at the period level.
However, we can assign a portion of this total buffer to each node n
by introducing the parameter 
nt, with �n
nt � 1. In our case, both
demands were assumed to be equally important in terms of the need
for reducing infeasibilities, and thus 
nt took on the value of the
proportion of the demand that each destination represents out of the
total demand (i.e., 0.6 for node 1 and 0.4 for node 2 for all periods).
Although only flow variables (Fint) are present in the constraint to be
buffered, these variables are linked to the harvest variables (Yst),
which are associated with the uncertain coefficients, through con-
straint 16. The additional timber flow needed to satisfy the demand
constraint (Equation 17) forces the additional harvest (Equation 16)
and the required road construction (Equation 18).

Constraint 17 of the original model was subsequently replaced
by the following set of constraints

�
i�1

I

Fint � 
nt��tzt � �
s�1

S

pst� � dnt �n, t (20)

zt � pst � v̂stYst �s, t (21)

pst � 0 �s, t (22)

zt � 0 �t (23)

where zt and pst are new variables. All other equations of the original
model remain the same. The models were implemented in OPL
Development Studio 5.2 (CPLEX 10.2.0 as optimizer) on an Intel
Core 2 Quad 2.5 GHz computer with 4 GB of RAM.

Uncertain Coefficients and Model Parameters
A stable annual timber supply requirement was determined in

such a way that approximately 70% of the total area needs be har-
vested during the planning horizon. Sixty percent of this supply
requirement was arbitrarily assigned to one of the two demand
nodes, and the rest was assigned to the other demand node. We note
that other demand configurations do not affect the methodology
and the conclusions of the study, although specific decisions may
change. Demand levels for each period, therefore, resulted in
396,000, 594,000, and 792,000 m3 for demand node 1, and
264,000, 396,000, and 528,000 m3 for demand node 2. The annual
discount rate was assumed to be 4%.

The timber forecast was based on both the current volume esti-
mate and on a growth-and-yield model that projected this volume to
future periods. The error of the initial volume estimate, e1, was used

Figure 2. In a tree structure: (A) only one flow direction is possible
so that the maximum flow in an arc can be determined as a
cumulative flow (Max Flowcb � Vc; Max Flowba � Vc � Vd). If
cycles are present: (B) the maximum flow in an arc is more difficult
to determine because complex flow interactions might result (An-
dalaft et al. 2003).

Forest Science • February 2014 141

D
ow

nloaded from
 https://academ

ic.oup.com
/forestscience/article/60/1/137/4583736 by U

niversidad de D
esarrollo user on 15 O

ctober 2021



to define two scenarios that might represent two sampling intensi-
ties. We assumed e1 � 10% in the first scenario (referred to as
SCE10) and e1 � 15% in the second scenario (referred to as
SCE15). In both cases, we assumed that errors increased 1% annu-
ally, which reflects the increasing uncertainty observed as the esti-
mate goes farther into the future. Assuming that calculations occur
at the midpoint of each period, the errors for the second and third
periods were 12 and 16% in SCE10 and 17.5 and 21% in SCE15,
respectively. The volume of a stand s in period t was therefore as-
sumed to be random and uniformly distributed in the range v�st �
v�stet as a result of unbiased errors in the initial estimation of the stand
area or current volume or in the forecast model. Because uncertain-
ties have to be noncorrelated in the same constraint (i.e., the volume
must be independent within the same period), spatial independence
was also assumed.

As mentioned previously, the degree of conservatism in satisfying
a constraint is controlled by the user-defined protection level, �t.
The immediate question that arises is how large should this param-
eter be to get a desired feasibility rate. Although there is no exact
expression that will output this parameter, there exist bounds that
relate a desired probability of the constraint violation to the protec-
tion level required (e.g., Bertsimas et al. (2004), Bertsimas and Sim
(2004)). However, as noted in Palma and Nelson (2009), these
bounds represent only a weak estimate of this probability and there-
fore overestimate the protection level and excessively affect the ob-
jective function value. We discarded the use of probability bounds
in this work and determined protection levels as different percent-
ages (e.g., 0.5, 1.0, and 1.5%) of the number of uncertain coeffi-
cients of each constraint. These numbers provided a good descrip-
tion of the tradeoff between robustness and optimality. For these
three protection levels, we determined infeasibility rates by simula-
tion as described in the following section.

Simulation Experiments
Because the probability bounds were not used to determine the

protection levels, we had no insight into the infeasibility rates pro-
duced by the protection levels. We therefore estimated these rates by
simulation experiments. We simulated the volume for each scenario
(SCE10 and SCE15) and used this volume in the deterministic and
robust solutions to evaluate the performance of the harvest decisions
in satisfying demand constraints. In other words, the road decisions
and the selection of stands to be harvested were fixed, and the harvest
levels were recomputed with the simulated volume coefficients. Be-
cause no maximum capacity on arcs was assumed, the flow feasibility
did not need to be assessed. The total simulated timber production
was compared with the total minimum demand, and a simulation
was considered infeasible if the production fell under the minimum
requirement. Because specific flow details are not required to deter-
mine whether a simulation was feasible or not, the flow variable was
not recomputed. A total of 1,000 simulations were performed for
each scenario, and the solution of the deterministic model was com-
pared with the solutions of the robust models with the three protec-
tion levels used (labeled as PL0.5, PL1.0, and PL1.5). In addition,
we used the buffer estimated by robust models (i.e., the value of the
protection function) in a deterministic framework; that is, the de-
terministic model was run with the modified demand levels given by
the original demand plus the buffer. Therefore, we compared the
effect of using a robust approach instead of a deterministic one with
manually imposed buffers on the quality of the harvest and road
construction decisions. For each simulated scenario, we evaluated

the performance of the deterministic decisions (DET), three robust
decisions (ROB), and three deterministic solutions with manually
imposed buffers (BUF). The simulations were performed in MS
Excel on an Intel Core 2 Quad 2.5 GHz with 4 GB of RAM.

Results
Considering that solving this type of problems to optimality is

virtually impossible, the models were run for a fixed period of time
to obtain reasonably small gaps. The deterministic models were run
for 1 hour and obtained gaps between 2.3 and 2.7%. The robust
models were run for 15 hours to obtain similar gaps (except for
SCE15 of the ROB_PL1.5, for which we obtained a 3.1% gap). We
will refer to this greater difficulty in solving robust models in the
Discussion section. The results of the optimization process are pre-
sented in Table 1.

The simulation experiments showed that the infeasibility rates of
the deterministic decisions were considerably reduced as higher pro-
tection levels were used to find robust decisions (Figure 3). The
infeasibility rates of approximately 49% observed in the determin-
istic decisions (protection level 0) dropped to 1.1 and 1.3% for
scenarios SCE10 and SCE15, respectively, when the protection level
was 1.5%. The decisions from the deterministic models with mod-
ified demand levels (BUF) also showed lower infeasibility rates,
although these values were higher than those from the robust models
(3.8% in SCE10 and 2.9% in SCE15). The need for higher harvest
levels than those in the optimal deterministic solution caused a
reduction in the objective function of the robust and buffered solu-
tions (Figure 3). This reduction is small and consistently lower for
the robust decisions than for the buffer solutions.

The robust models harvested a greater quantity of timber than
the deterministic model because the former needed to guarantee the
fulfillment of the minimum demand constraints for different values
of the volume coefficients (Figure 4). As expected, the higher the
protection level, the higher the timber production was. Further-
more, the higher the volume estimate error (Figure 4B), the higher
the timber production required for an equivalent protection level
was.

The road and harvest decisions from the robust models were
different from those of the deterministic decisions. For the sake of
brevity, only the decisions of scenario SCE10 are shown in Figure 5.
The decisions of SCE15 were similar. In the first planning period,
61 (72) stands and 98 (112) segment roads were scheduled differ-
ently in SCE10 (SCE15) when the highest protection level was used
to obtain the robust solutions (Figure 5A and C). The decisions of
the buffer strategy were slightly different from those of the tradi-
tional deterministic model because modified demand levels were

Table 1. Numerical results of the optimization process.

Problem

No. of
CPU
time
(min)

Residual
gap (%)aConstraints

Binary
variables

Total
variables

DET 4,025 2,532 5,017 60 2.3, 2.3
ROB_PL0.5 5,318 2,532 6,313 900 2.6, 2.7
ROB_PL1.0 5,318 2,532 6,313 900 2.7, 2.9
ROB_PL1.5 5,318 2,532 6,313 900 2.8, 3.1
BUF_PL0.5 4,025 2,532 5,017 60 2.5, 2.4
BUF_PL1.0 4,025 2,532 5,017 60 2.7, 2.5
BUF_PL1.5 4,025 2,532 5,017 60 2.4, 2.5

a Residual gap is shown for the two scenarios of volume estimate precision (SCE10,
SCE15).
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used. In this case, 39 (44) stands and 67 (75) road segments were
scheduled differently in SCE10 (SCE15). Although the buffer size
was the same as that determined by the robust model, the decisions
of the buffer strategy tended to follow a spatial pattern similar to that
for the deterministic decisions (Figure 5A and B).

Because of the higher harvest levels required to obtain protection
against infeasibility, both the robust and buffer models increased the
number of stands and the area harvested throughout the planning
horizon (Table 2). Surprisingly, in both scenarios the robust deci-
sions generally required a smaller road network than the determin-
istic and buffer strategy models. The buffer model required even
more roads than deterministic solutions. No major changes in the
costs were observed among the different models. However, the ROB
solutions consistently outperformed the BUF solutions. The road-
building costs tended to be lower as more robustness was required.

Discussion
Our results suggest that using a robust optimization approach

rather than a deterministic formulation to solve a road-building and
harvest-scheduling problem produces solutions that are less sensitive

to random errors in the volume estimates at the expense of a slight
reduction in the objective function. Even in the case in which the
appropriate buffer is used to modify the minimum demand levels of
the deterministic models, the robust formulation produced more
stable solutions and smaller losses in the objective function.

The robust optimization approach operates by determining a
buffer or overproduction amount for each constraint for which fea-
sibility is highly desirable. Because the ability to meet the minimum
demand constraints is highly desirable in our case, the harvest levels
of robust solutions were higher than those of the deterministic so-
lutions. As expected, the greater the need for constraint fulfillment,
the higher the level of timber production was. In addition, when the
volume coefficients are more uncertain (i.e., scenario SCE15), an
additional timber harvest is needed to guarantee a certain level of
constraint satisfaction. This increase in the harvest level occurs be-
cause the wider range of possible values increases the magnitude of
the eventual negative deviations against which we seek protection to
satisfy the minimum demand levels. Although buffers can be used to
manually modify the minimum demand levels, the robust approach
estimates this buffer based on the decisions actually made as well as

Figure 3. Reductions in the percentage of infeasible simulations and in the objective function were observed in both scenarios when
higher protection levels were used. The buffer strategy showed higher infeasibility rates and higher losses in the objective function
compared with the robust decisions. (A) SCE10. (B) SCE15.
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the degree of data uncertainty, thus providing optimal “stable” de-
cisions rather than the traditional optimal solutions. We demon-
strated this improvement using a comparison between the robust
approach and what we referred to as the buffer strategy. When the
same buffer obtained by the robust models was used to modify the
demand levels of the deterministic model, the robust solutions out-
performed the deterministic decisions both in terms of infeasibility
rates and objective function value. Although one might conclude
that the buffer strategy performed almost as well as the robust ap-
proach, we note that finding the buffer levels by means other than
the approach presented in this work is quite difficult. The amount of
buffer obtained by the robust models was “optimal” within the
range of the solution gap, and, therefore, the use of any other buffer
level would probably produce inferior results. Because it is unlikely
that integer models will be solved to optimality, the presence of a gap
in the solutions precludes an exact comparison of their quality.
Obtaining the same gap for different models to standardize the
comparison is also difficult because the gaps progress by discrete
steps rather than by continuous movements. However, the greater

gap observed in the robust models might represent additional room
for improvement of their solutions and may therefore enhance the
benefits of the robust formulations.

The volume estimate error affected the management decisions.
The robust models scheduled both the harvest and road construc-
tion in a manner different from that of the deterministic model to
take advantage of the uncertain timber yield throughout the plan-
ning horizon in a cost-efficient way. Although the robust models
and the buffer strategy were set up with the same minimum level of
production, their decisions differed to a large extend. Whereas the
buffer strategy tended to follow a spatial pattern similar to that for
deterministic decisions (with the extra requirement to harvest addi-
tional timber), the robust approach favored the spatial concentra-
tion of the harvest operations in each period. Although clustering
operations may sound counterintuitive if spatial diversification is
desired, they reduced the cost of road construction (Table 2) and
therefore balanced the tradeoff between the optimality and the ro-
bustness of solutions. We note that although the decisions are sce-
nario-specific (i.e., influenced by stand volume, roads network, and

Figure 4. Harvest levels in the robust optimization models increased in both scenarios when a higher protection level (PL) was used. A
lower timber harvest was required when the volume estimate error was smaller (SCE10). (A) SCE10. (B) SCE15.
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demands), we still expect that robust optimization will yield better
protection and better solutions than the deterministic and buffer
strategies. We used short planning periods, and, in these cases, a
solution is more likely to be implemented than with long planning
periods. Hence, the robust solutions offer better recourse when it
comes time to replan for the next period(s). From this perspective,
we believe that robust optimization has good potential for this type
of planning problems. For larger problems, the increased availability
of stands and arcs for potential roads will probably provide more
flexibility for finding robust solutions, therefore enhancing its ben-
efits over a determinist approach.

The robust approach could also be applied to explore the value of
the inventory precision or the value of the information. If we con-
sider the deterministic formulation of the problem as the perfect
information scenario, the decrease in the value of the objective func-
tion of a robust model for a given estimate error may represent the
cost of not carrying a perfect inventory. Reducing the estimate error
of the inventory will translate into a better and more robust objective
function value, although it may still be worse than the deterministic
solution. The improvement between the two robust objective values
would represent the value of the improvement in the inventory
precision.

Figure 5. Harvesting and road-building decisions were different among the deterministic (DET [A] and BUF [B]) and robust models (ROB
[C]). The buffer strategy tended to produce a decision pattern similar to that of the deterministic model.
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For each constraint with uncertain coefficients and for which
feasibility is desirable, a new term is added. This term, known as the
protection function, represents an optimization problem in itself.
For each solution vector, the process looks for the buffer required to
meet the constraint for a given user-defined protection level. From a
mathematical point of view, the difference between the robust and
deterministic (including the buffer approach) formulations is that
the former imposes bounds on the variables associated with the
uncertain coefficients. From Equation 21, it is clear that harvest
decision Yst is upper-bounded by (zt � pst)/v̂st, which implies that the
higher uncertainty forces larger values for z and p, and therefore a
larger buffer if the corresponding stand is harvested. Decisions that
contribute to both a higher objective value and small buffers are
preferred, thereby providing high-quality solutions. Although the
same protection levels were used in our analysis for all constraints,
these levels can differ to express different degrees of importance. For
example, protection levels can emphasize the importance of the first
period over the remainder of the planning horizon or the differences
among products if a multiproduct model is used. In this case, the
manual estimation of the proper buffers for each product becomes
more difficult, and the robust optimization approach becomes more
useful. The importance of demand centers can be handled with the
parameter 
nt, which represents the fraction of the buffer to be sent
to each destination point. We consider that our initial setting for the
total demand (70% of the available volume) will not change the ef-
fect of using the robust optimization approach. However, the higher
the proportion of the volume to be harvested, the higher the chance
of obtaining infeasible robust solutions because extra harvests are
required.

The robust models contain more variables and constraints than
the original models. In our case, because the harvested volume in
each period t comes from the potential harvest of any of the S stands,
S � T (431 � 3 � 1,293) new constraints must be added (given that
all stands are available and all have uncertain volume). For each of
these constraints, as well as for each period, a new variable must also
be created, that is, S � T � T (1,293 � 3�1,296). Although the
increase in the model size does not appear to be particularly impor-
tant, the robust models were harder to solve than the deterministic
model because additional protection levels were used. Despite the
extended solution time used for the robust models, the residual gaps
were greater than those for the deterministic models. This result
suggests that the robust formulations are weaker than the determin-
istic formulations and that extra effort should be made to obtain the
same gaps as those for the deterministic approach (i.e., increased
solution times and other strengthening and solution techniques).

Our approach includes some assumptions. For example, the un-
certain coefficients must be noncorrelated in the same row, which
means that the volume coefficients of each constraint should be

independently distributed. This situation forced us to assume that
the stand volume uncertainties originate from random and spatially
independent errors, which is usually expected if a recent cruise of the
area is used. However, uncertain trends in data and catastrophic
events such as fires and pest attacks cannot be properly modeled with
the current assumptions, and, hence, further research is needed to
address this limitation. It is important to note, however, that a
certain degree of independency must be assumed if we are to seek
stable solutions to address uncertainty. If decisions are highly corre-
lated, then we cannot take advantage of diversification strategies and
only the worst-case scenario solutions would become relevant.

The uncertain values are also assumed to be uniformly and sym-
metrically distributed, which can lead to the loss of information if
the uncertainties are well described by a different probability distri-
bution. This situation could be handled by considering a uniform
range that embraces, for instance, 99% of the observations of the
original distribution of uncertain values (Palma and Nelson 2009).
Although more conservative solutions will be obtained than when
the true distribution is used, this simplification assists in assuring
that the robust models are easier to solve. Another disadvantage of
the methodology is the impossibility of accurately determining the
protection levels required to deliver specific infeasibility rates. Al-
though probability bounds can be used to estimate them (Bertsimas
and Sim 2004), they are loose and produce more conservative deci-
sions than desired (Palma and Nelson 2009). As in this work, sim-
ulation experiments can be used to evaluate the infeasibility rates.

Further research should address the previously mentioned limi-
tations. Possible methods for inclusion of some levels of indepen-
dency as well as the asymmetry of the uncertain coefficients have
been proposed recently (Chen et al. 2007), and their applicability
should be explored. In addition, more accurate probability bounds
to relate the probability of constraint violation and protection levels
would improve this methodology by eliminating the need for sim-
ulation experiments. Finally, the application of alternative solution
techniques (i.e., Lagrangean relaxation and heuristics) to solve ro-
bust road-building formulations would also be of interest in solving
larger problems quickly and with reduced gaps.

Conclusions
We presented a robust formulation of a road-building and har-

vest-scheduling problem with random volume coefficients for situ-
ations in which the feasibility of minimum demand constraints is
highly desired, although the same approach can be used to address
other constraints. The decisions obtained with this formulation
were less sensitive to volume uncertainties and more efficient in
terms of the objective value than those of the traditional formula-
tions or buffering strategies used. The appropriate amount of buffer
required for each constraint was determined in conjunction with the

Table 2. Summary of harvest results for the planning models (SCE10/SCE15).

Model No. stands Total area (ha) Roads (km)

Average cost ($/m3)

Harvest Transportation Roads

Det 218 4,804 108.7 2.85 1.77 2.55
Rob0.5 223/223 4,827/4,835 110.2/108.7 2.89/2.87 1.72/1.71 2.62/2.55
Rob1.0 224/226 4,911/4,885 106.7/110.0 2.86/2.88 1.69/1.68 2.50/2.62
Rob1.5 226/231 4,923/4,995 107.6/105.8 2.81/3.01 1.75/1.77 2.48/2.45
Buf0.5 223/219 4,835/4,821 112.9/110.9 2.88/2.85 1.82/1.78 2.59/2.58
Buf1.0 223/227 4,897/4,903 119.5/110.1 2.85/2.91 1.82/1.79 2.74/2.57
Buf1.5 224/228 4,868/4,976 113.1/116.0 2.90/2.88 1.76/1.77 2.59/2.62
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decision variables in such a way that the tradeoff between cost and
robustness was explicitly considered in the formulation. Although
larger models were obtained, the approach remains the model type
(i.e., linear mixed integer), and commercial integer optimization
software can be used to solve the problem. However, larger gaps
were also observed, suggesting that additional strengthening or dif-
ferent solution approaches may be necessary. The formulation al-
lows for different levels of protection (robustness) against constraint
infeasibility, which make it possible to evaluate the tradeoff between
robustness and optimality. Because the current probability bounds
that relate protection levels and feasibility rates represent only weak
estimates of the probability of constraint satisfaction, simulation
experiments were performed to obtain the infeasibility rates. The
independency assumption among uncertain coefficients appears to
be the main limitation of the methodology if spatial correlation in
errors must be considered, suggesting that further research is needed
in this area.
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