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Abstract: Estimating intensity−duration−frequency (IDF) curves requires local historical information
of precipitation intensity. When such information is unavailable, as in areas without rain gauges, it is
necessary to consider other methods to estimate curve parameters. In this study, three methods were
explored to estimate IDF curves in ungauged areas: Kriging (KG), Inverse Distance Weighting (IDW),
and Storm Index (SI). To test the viability of these methods, historical data collected from 31 rain
gauges distributed in central Chile, 35◦ S to 38◦ S, are used. As a result of the reduced number of
rain gauges to evaluate the performance of each method, we used LOOCV (Leaving One Out Cross
Validation). The results indicate that KG was limited due to the sparse distribution of rain gauges in
central Chile. SI (a linear scaling method) showed the smallest prediction error in all of the ungauged
locations, and outperformed both KG and IDW. However, the SI method does not provide estimates
of uncertainty, as is possible with KG. The simplicity of SI renders it a viable method for extrapolating
IDF curves to locations without data in the central zone of Chile.

Keywords: regionalization IDF curves; IDF Kriging; IDW IDF curves; Chile IDF curves

1. Introduction

Intensity−duration−frequency curves (IDF curves) are becoming increasingly im-
portant in the design of hydraulic works and in diverse areas of civil engineering [1–5].
IDF curves provide a statistical representation of historical rainfall intensity information
for a given duration (Di) and return period (Ti) [6,7], although they go beyond mere data
representation; they are also fundamental tools for flood risk reduction, playing a key role
in the modeling and prediction of rainfall events [8]. By characterizing the statistical rela-
tionship between rainfall intensity, duration, and frequency, IDF curves enable engineers,
urban planners, and decision makers to design and size infrastructure, such as stormwater
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drainage systems and flood barriers, to withstand extreme weather conditions [9]. In
regions prone to intense flooding, the accurate estimation of IDF curves is critical for de-
veloping resilient infrastructure that can minimize property damage and protect human
lives [10]. Thus, the significance of IDF curves extends from theoretical hydrological studies
to tangible real-world applications that are central to sustainable urban development and
disaster mitigation [11].

Several studies worldwide have focused on the development of IDF curves [12–16]
for specific locations in Chile [17–21]. At the same time, other studies have focused on
the estimation of IDF curves in areas with limited available information [5,22,23] and
in the development of mathematical relationships between storm durations and return
periods [7,24,25]. IDF curves are utilized in exploring climate change scenarios where
extreme events seem to be becoming more frequent and intense [25–27]. A drawback of IDF
curves is that they are valid for the area of influence of the station, so they cannot be directly
extrapolated to other areas. Within this framework, various authors [22,28–30] have tried
to regionalize IDF curves in order to estimate the precipitation intensity in ungauged areas.

Estimating IDF curves is not always straightforward, mostly due to the lack of data or
the low spatio-temporal resolution of rainfall records. Access to rainfall intensity records
of less than 1 h durations is also a big challenge [15,31,32]. As the lack of rain gauges
is a common problem in Central Chile, this paper evaluates and compares the perfor-
mance of three methods to interpolate/extrapolate IDF curves in mountainous locations of
Central Chile.

IDF curves are constructed from stations with continuous precipitation records over
time [33]. However, what happens for stations where rainfall amounts are only available for
24 h aggregation periods? In such cases, various methods have been suggested and applied
in different parts of the world; for example, trend analysis and statistical downscaling [34].
However, the performance of each method depends on territorial singularities such as
high variability of the topography, mountainous areas mixed with valley zones, and strong
altitudinal gradients. For instance, Central Chile has a central valley delimited by the Andes
Mountain range (peaks over 4000 m.a.s.l (meters above sea level)) to the east and a Coastal
Mountain Range (peaks less than 400 m.a.s.l.) to the west, at the coast. Most of the rainfall
comes from frontal systems from the Pacific Ocean and, in a smaller proportion, convective
rains in the Andes Mountains. This situation marks an important rainfall variability, to
which a latitudinal gradient is added, in which they increase from north to south and
lack or have a poor coverage of rain gauges. Thus, it is necessary to compare different
methods and establish which is the most appropriate for application in Chile, assuming an
acceptable error, especially in mountainous areas such as most of Chile.

In addition to these challenges, climate change has significantly affected central Chile,
where precipitation depth and intensity changes have been observed [35]. For instance,
higher rainfall intensity and more runoff, leading to high water levels and flooding, have
emphasized the need for reliable information, such as IDF curves, for the design, planning,
and management of water infrastructure [36–38].

Hence, this study aims to assess the feasibility of using different estimation meth-
ods, including Kriging, Inverse Distance Weighted Method (IDW), and the Storm Index
method proposed by Pizarro et al. [5], for constructing IDF curves at ungauged locations.
The exploration of these methods responds to the urgent need to improve the estima-
tion of IDF curves in data-sparse regions, thus contributing to effective flood protection
infrastructure sizing.

2. Materials and Methods

The study area—central Chile—encompasses the Mataquito, Maule, and Biobío basins
(Figure 1). The Mataquito and Maule basins have Mediterranean climates, with dry and
wet seasons of equal duration. In contrast, the Biobío basin has a transition climate from a
temperate Mediterranean to a humid Mediterranean [39]. Central Chile’s climate ranges
from semi-arid to humid climates, and rainfall intensity varies in space due to the oro-
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graphic effects of the Andes Mountain range [40]. From East to West is a valley region with
elevations between 300 and 1000 m.a.s.l., and the Coastal Range has a longitudinal distance
of less than 150 km.
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Figure 1. Study area and location of the stations with IDF curves, where: a, m, and n are dimensionless
parameters of the Bernard IDF equation. The Köppen–Geiger climatic classification is structured into
three hierarchical orders across five types of climates, represented by the first capitalised letter, which
follow latitudinal bands based on temperature and water availability. The second order, denoted by
the following letter, pertains to precipitation. The third order is related to temperature. Additional
letters in parentheses allow for further classification concerning mountain or ocean influence. More
details on the climatic regionalisation of continental Chile can be found in Sarricolea et al. [41]. In the
figure, the climates are as follows: Csb, Csb (i) Mediterranean (warm summer), Csb (h) Mediterranean
(warm summer) with mountain influence, Csc Mediterranean (cool summer), Cfb (s) Marine West
Coast (warm and dry summer), Cfc (s) Marine West Coast (cool and dry summer), and ET (s) Tundra
with dry summer.

In general terms, the mean annual precipitation is 700 mm in the intermediate area
between the Mataquito and Maule basins, but can exceed 2000 mm a year in the Andean
mountains. In the Biobío basin, on the other hand, the mean annual precipitation is
1000 mm and can reach more than 3000 mm in the Andean mountains, which is largely
made up of snow. This study considers stations (Figure 1) that are distributed between
18 and 1360 m.a.s.l. The number of years of available data, start year, and end year for all
31 stations are presented in Table S2 (see Supplementary Materials).

2.1. IDF Curves

The estimation of IDF curves demands the following variables: (1) rainfall intensity;
(2) rainfall duration, which represents the temporal distribution of the storm; and (3) the
number of years, in terms of probability for an event of a similar magnitude to occur [24,42].
Unesco. [19], as part of a 3-year research project, generated a set of 31 IDF curves, from
paper pluviograms, after developing an optical curve reader. Tailor-made software enabled
the automated construction of sub-daily IDF curves for durations from 15 min to 24 h,
collecting and pre-serving large amounts of information easily, efficiently and with minimal
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error. Pluviograph band data from 31 stations are over two large territories: the area of
influence of the Maule and the Biobío basin.

The Gumbel probability distribution function was used to obtain the return periods.
This function is widely employed because of its capacity for modelling maximum inten-
sities [43,44] and has been widely used for modelling precipitation data in Chile [18,19].
Rainfall intensities were estimated for durations of 1, 2, 4, 6, 12, and 24 h, for 5, 20, 50, and
100 years return periods. As obtaining the intensities from the IDF curve graphs is difficult,
the data were fitted to the Bernard model (see Equation (1)), which has shown good results
in Chile [19]. The Bernard model was one of the first models used for simultaneously
estimating the empirical relationships between rainfall intensity, duration, and return
period [18,45]. An advantage of this model is its direct and efficient computation [43];
therefore, it is among the most used models to represent these relationships [46]. The
equation reads as follows:

iT
D =

aTm

Dn (1)

where i represents rainfall intensity (mm/h) for a duration D (min) and a return period T
(years), and a, m, and n are dimensionless parameters.

2.2. Spatial Interpolation and Extrapolation of IDF Curves

Methods for interpolating or extrapolating IDF curves at ungauged basins have been
studied extensively [19]. However, selecting an appropriate method depends on the
spatiotemporal resolution of the rainfall intensity records [47,48].

Ordinary Kriging. The application of geostatistical methods, such as Ordinary Kriging,
are widely used across diverse scientific domains for spatial data interpolation [49,50].
Ordinary Kriging, in particular, provides a robust way to predict unknown values at un-
measured locations, offering a range of advantages over traditional interpolation methods.
The general assumption of Ordinary Kriging is that there is an underlying constant mean
process that is unknown. This contrasts with other forms of Kriging where the mean
function is assumed to be a known (Simple Kriging), polynomial (Universal Kriging), or a
regression function (Regression Kriging) [51].

Estimation using Kriging methods generally has two steps. First, it is necessary
to determine the covariance structure of the data, typically through the estimation of a
variogram. The empirical variogram is estimated by defining intervals (lags) and calculating
the average semi-variance for all pairs of points within a specific lag distance. This process
is repeated across 10–20 intervals to form the empirical variogram [52]. The variogram
for lag distance h is defined as the average squared difference (or semi-variance) of values
separated by h and is given by following:

γ(h) =
1

N(h)∑N(h)[z(u)− z(u + h)]2 (2)

where N(h) is the number of pairs for lag h, γ is the semi-variance, and z is the observed
data at location u.

A suitable variogram model is then fitted to the empirical variogram, yielding the
key parameters: sill (variance), range (distance over which spatial correlation exists), and
nugget (micro-scale variation or measurement error). This first stage is pivotal to the
accuracy of Kriging and might be sensitive to outliers or anomalous values [53].

The second step is the interpolation of data to generate predictions at locations with
no data (Kriging). Ordinary Kriging [54] assumes a stochastic process, considering both
the distance and the level of variation of observed data (a variogram) [55]. The unknown
values are estimated based on a weighted sum of nearby observations, where proximity
confers greater weight [56]. Equation (3) shows the sum of the weights, λi, multiplied by the
observed data Zi, which estimates the prediction at a location. The value to predict comes
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from the weighted sum of the surrounding locations with measurements [57]. Setianto and
Triandini [58] state that ordinary Kriging is unbiased if the sum of the weights is 1.

ẑ = ∑n
i=1 λiZi (3)

where ẑ is the estimated value at a certain point, λ denotes the weights, and Zi is a value of
a known point.

The spatial structure of data must be evaluated to estimate the weights in the Kriging
equations. The variogram can be estimated using a method of moments or maximum
likelihood approach [59]. Kriging has various advantages over other methods. Firstly, it is
a probabilistic model, and in addition to predicting a value, it also provides an estimate
for the error or uncertainty [60]. The variogram enables the use of anisotropic covariances
if the variation is directional. Modelling the variogram is crucial for accurate prediction;
however, the variogram estimation process can break down in the presence of outliers and
may require supervision.

The direct Kriging of distribution or function parameters for IDF curve estimation is
not a new concept and has been explored in previous work [61–63]. Although it would be
more appealing to model the random precipitation variable directly, data scarcity often
necessitates a simpler, albeit less principled approach. Hence a less principled but appealing
simpler approach is to evaluate its effectiveness compared to more established methods.

Ordinary Kriging is as a powerful spatial interpolation tool, aptly suited for complex
tasks such as IDF curve estimation [64]. Its probabilistic nature, allowance for anisotropic
covariances, and adaptability to different spatial structures make it the preferred method for
many researchers and practitioners. However, careful handling of the variogram estimation
and consideration of the method’s underlying assumptions are vital for obtaining reliable
predictions. In the context of rainfall analysis and flood risk management, Kriging can
offer valuable insights, provided that the data quality and methodological constraints are
thoroughly addressed. For all analyses in this paper—Ordinary Kriging and IDW—the
R software environment was used with the package gstat [65].

Inverse distance weighting. The inverse distance weighting technique (IDW) assumes
closer points have greater weights than between points that are further apart, as stated in
Equation (4).

ẑ =
∑n

i=1 zid−2
i

∑n
i=1 d−2

i
(4)

where d is the distance between known points and the point to be estimated (see Equation (3)
for more parameters).

Given that the computational complexity limits the efficient application of this method,
a search radius is often used to select those points with data [66]. Although the value of the
exponent can vary, the square of the distances is more frequent [58].

Comparing the performance of Kriging and IDW on interpolating parameters or
intensities, Yao et al. [67] indicated that the network density affects the performance of
these techniques. Almasi et al. [68] stated that when comparing Kriging with IDW, a better
interpolator does not exist as the quality of the interpolation will depend on the spatial
variation of the information. Liu et al. [50] suggested that Kriging is a better interpolator
than IDW, but other studies indicate that IDW has similar or better results [67,69–71].
Much of the accuracy of the Kriging approach depends on the correct estimation of the
variogram structure.

In Colombia, Becerra et al. [72] interpolated the parameters of the Gumbel distribution
using IDW. The authors generated spatial maps for the parameters and the construction of
IDF curves at an arbitrary location. The comparison with real intensities values showed
errors of 10%.

Storm Index (k method). The storm index method, or k method, was developed by
Pizarro et al. [5] and offers a practical approach for the construction of IDF curves for basins
where continuous or high-resolution rainfall records are not available. Typically, this is
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achieved using pluviometer data from stations that have a hydrological behaviour similar
to the station under study. The selection of a station that provides the k values (Ek) is
crucial for the accuracy of the method. To select the station that provides the k values (Ek),
Pizarro et al. [5] recommend stations where the differences between the intensities in 24 h
are less than 2 mmh−1 as a selection criteria. This similarity in intensities ensures that the
chosen station’s behaviour aligns well with the study area, allowing the derived k factors
to be representative and accurate.

The core of the k-method consists of the generation of “k-factors”. These coefficients
relate the intensity of rainfall for a specific duration to the intensity observed over a 24 h
period. The expression for the k-factors is given by the following:

Kij =
Iij

I24j
(5)

where Kij is the k factor for a duration i (hours) and return period j (years), Iij is the
maximum intensity for the duration i and return period j, and I24j is the maximum intensity
in 24 h for a return period j. The product between the k factors and the intensity in 24 h at
the pluviometric station generates the intensity for the studied durations and hence enables
the construction of the IDF curve.

The Storm Index method offers a practical approach for constructing IDF curves in
areas where continuous or high-resolution rainfall records are not available. By relying
on comparable stations and scaling the intensities with k factors, it bridges the data gap
and provides valuable insights into the rainfall characteristics of ungauged or under-
studied areas. However, the success of this method requires careful selection of the nearby
station, considering the hydrological similarity and adherence to the specified intensity
difference criteria. Moreover, while the method is relatively straightforward, it might
require adjustments based on regional non-homogeneities or specific hydrological features
of the study area.

The LOOCV methodology [73] allows for an evaluation of the above-listed methods.
This process consists of leaving out one of the stations for predictions. The previously
generated IDF curves within the study area that are known and fully validated in their
parametric form, according to the Bernard equation (e.g., Unesco [19]), were used. For
Kriging and IDW, the stations were systematically out, assuming that the parametric values
of the Bernard equation are unknown for the station (a, m, and n). Next, the station’s
parameters were estimated using each interpolation method to generate an estimation or
infer its parametric behaviour for the IDF model for the station under study. The new
IDF curve parameters were compared with the observed parameters for that particular
station. In the case of the Storm Index, this method has a drawback. Thus, the LOOCV is a
cross validation method that calculates the prediction error iteratively at the same time in a
spatial location. Therefore, the prediction error is the average of the prediction errors for all
iterations. This method captures the sensitivity of Kriging when few data are available. In
the case of the Storm Index, LOOCV was not used.

In LOOCV, the possible number of comparisons would be n − 1, with n being the
total number of stations. In this case, n = 31 stations, with their respective IDF curves [19].
However, as the intention was to compare the three IDF curve estimation methods for
areas with missing data (Kriging, IDW, and Storm Index), the Storm Index restricted the
rest of the methods because it can only be applied in those cases where the difference in
24 h rainfall intensities is less than 2 mm [5]. Nevertheless, it is always possible to apply
it to each one of the stations because although one surrounding station does not fulfil the
requirement, there would be another station that does fulfil it.

Goodness-of-Fit test. The goodness-of-fit compares intensity values for durations and
return periods. As we have both observed intensity values and estimations carried out for
each one of the methods for these same intensities, we were able to carry out statistical
comparisons to determine the quality of such estimations. Thus, the Nash−Sutcliffe
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efficiency test (NSE) (Equation (6)), the Standard Error of Estimation (SEE) (Equation (7)),
and the Mann−Whitney U test (U) (Equation (8)) were used:

NSE = 1 − (y − ŷ)2

(y − y)2 (6)

SEE =

√
(y − ŷ)2

n − 2
(7)

U(n < 25) = n1 × n2 +

(
n1 + n2 + 1

2

)
− ∑ R1 (8)

U(n > 25) =
∑ R1 − ∑ R2 − (n1 − n2) ∗

(
n1+n2+1

2

)
√

n1 × n2 ×
(

n1+n2+1
2

) (9)

where NSE is the Nash−Sutcliffe efficiency, SEE is the standard error of estimation (mm/h),
U is the Mann−Whitney test, y is the observed values (mm/h), ŷ is the estimated values
(mm/h), y is the average of the observed values, n is the sample size, n1 is the size of the
samples of the original data, n2 is the size of the samples of the estimated data, and R1 and
R2 are rankings for samples R1 and R2, respectively.

NSE determines the relationship between the residual variance and the variance of the
observed data [74,75]. Its values vary between −∞ and 1, where values closer to 1 indicate
a better model fit [76]. In the case of the standard error of estimation [77,78], it shows the
average deviation of the observed and modelled data; low SEE values indicate that the
model fit is suitable and, according to Pizarro et al. [5], SEE values lower than 1.5 mmh−1

indicate an acceptable model fit. The Mann−Whitney U test is an alternative that is not
parametric to Student’s t-test [79], which assumes that two samples come from the same
distribution (H0) and can be used when small samples are available [80].

3. Results
Goodness-of-Fit of the Methods

The results for the combined durations and return periods for 31 stations for the NSE
coefficient is shown in Figure 2 for the Kriging, IDW and Storm Index methods.

Table S1 (Supplementary Materials) shows the results for each station regarding the
Nash−Sutcliffe efficiency coefficient, the standard error of estimation (mm/h), the result
of the Mann−Whitney U test (p-value), and the station’s Ek are shown, as well as the
Storm Index.

On average, NSE shows higher values for the Storm Index method than for Kriging
and IDW (Table S1 in the Supplementary Materials). Similarly, in 26 out of 31 gaug-
ing stations, NSE exceeds a value of 0.9 for the Storm Index. In Kriging, it is higher in
12 of 31 and in IDW in 13 of 31. For NSE higher than 0.8, the Storm Index goes up to
28 of 31 comparisons, while the Kriging and IDW methods rise from 12 to 18 and 13 to
21, respectively. Regarding the standard estimation error, the Kriging and IDW methods
exceed, on average, 3 mmh−1, whereas the Storm Index shows a lower value. If an error
in the estimation of intensities of 2 mmh-1 is acceptable [5], Kriging (22 out of 31, 71%)
and IDW (19 out of 31, 61%) exceeded this value, while the Storm Index achieved it in
9 of the 31 (29%) stations. Figure 3 shows the results for three stations for return periods of
T = 5, 20, 50, and 100 years for all of the durations considered. The selected three stations
shown were chosen as a representative sample of the data so that characteristics of the
results could be highlighted. The results for the remaining 28 stations can be found in
Supplementary Materials. The figures show that no method estimated the intensities well
at lower durations (1 to 4 h), likely due to the high variability of precipitation at lower
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intensities. For durations longer than 5 h, Kriging and IDW overestimated the intensities.
However, the Storm Index generally performed better.
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The Mann−Whitney U test results showed no significant difference between the
observed and estimated intensities for the three methods considered (p > 0.05) in most of
the stations. Only 4, 2, and 0 stations showed significant differences (p < 0.05) for Kriging,
IDW, and the Storm Index, respectively. This situation could have been because of the
dependence of this test on the size of the sample (24 samples) and the variation in the series
of data [81] (Figure 4).
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4. Discussion

Various authors have found that the Kriging method obtains better results when in-
terpolating data than IDW [57,82], while other authors have reported the opposite [83–85].
However, in this study, IDW was a better estimator of intensities than Kriging, possibly be-
cause of insufficient observations. The Kriging variogram fitting process can be particularly
inefficient when sufficient data are unavailable [50].

Another important factor to address is the regionalization of IDF curves. Hersh-
field [86] designed precipitation intensity isolines for 30 min to 24 h and return periods of
1 to 100 years, limited to the continental United States. Similarly, Basumatari and Sil [87]
constructed maps of rainfall intensities in the Barak River basin, India, for durations from
30 min to 24 h and return periods of 2 to 100 years. A similar approach was taken in
Botswana, generating maps of 24 h intensities for return periods from 2 to 100 years [88].
This approach to regionalizing the IDF curves facilitates the creation of curves in areas
without data. However, this approach limits estimates to the durations and return periods
in the maps. On the other hand, various studies have preferred to regionalize the param-
eters of the equation to calculate IDF [30,44,86,87]. This approach has the advantage of
allowing the IDF model in areas without data; therefore, IDF intensities are in a continuous
spectrum. However, the results of the investigation by Rodríguez-Solà et al. [89], reported
errors of up to 50% in the estimation of intensities of 1 h in the Iberian Peninsula, reducing
to 20% for intensities greater than 2 h. Puricelli [90] used a similar strategy to regionalize
the IDF curves of the Argentine Pampa, obtaining a good fit (r close to 0.9).

The results of this research, when regionalizing through spatial techniques (Kriging
and IDW) were similar to Rodríguez-Solà et al. [89], that is, there was a significant error in
the intensity estimates. However, when modelling using the storm index, the quality of the
fit increased (Table S1 in the Supplementary Materials).

5. Conclusions

The results of this study demonstrate the high efficiency of the Storm Index method,
compared with the Kriging and IDW methods, for estimating IDF curves in stations with
missing data on mountainous areas of central Chile. The Kriging method generated the
poorest results, as expected, as both methods require sufficiently spatially dense data [67],
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which was not the case in the study area, and underscore the drawback in areas with
Mediterranean climates, mountainous terrains (i.e., high variability), and a low density
of stations. One possibility would be to include expert opinions when determining the
covariance structure rather than an empirical approach when few data are available, or an
even more complex Bayesian approach that would allow for the principled integration of
expert opinions with observed data.

The IDW method showed slightly better results than Kriging, seemingly because
it does not require a variogram estimation, which can reduce prediction accuracy if the
variogram model and its parameters are incorrectly specified or if precise estimation is
problematic. However, the goodness-of-fit indices do not show large differences compared
with the Kriging method.

The Storm Index method produced the best results. However, it is important to
consider that this method has limitations for its application, as previously mentioned. Even
so, considering these limitations, the Storm Index satisfactorily generates the best results
for the territory under study for these cases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/hydrology10090179/s1. Figure S1: Boxplots of intensities for the
following stations; Figure S2: Boxplots of intensities for the following stations; Table S1: Summary of
the goodness-of-fit tests; Table S2: Summary of data availability for each station in this study.
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