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Abstract

We present a new basis of representation for the graphene honeycomb structure that facilitates
the solution of the eigenvalue problem by reducing it to one dimension. We define spaces
in these geometrical basis that allow us to solve the Hamiltonian in the edges of the lattice.
We conclude that it is enough to analyze a one-dimensional problem in a set of coupled
ordinary second-order differential equations to obtain the behavior of the solutions in the
whole graphene structure.
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1 Introduction

Graphene is a novel material with carbon atoms arranged in a honeycomb lattice. In the
past years, it has caught the attention of the scientific community for its unique electronic
properties (Alexander 1983; Avron et al. 1988; De Gennes 1981; Harris 2002; Katsnelson
2007; Kuchment and Post 2007; Saito et al. 1998). The behavior of the electrons in the
lattice can be captured by solving the Hamilton equations of the system as an spectral,
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or eigenvalues, problem H¥Y = A¥. However, a complete analytical solution stands as a
mathematical challenge.

We present a new basis of representation for the graphene honeycomb structure G that
facilitates the solution of the eigenvalue problem by reducing it to one dimension. For this,
we define two spaces in the geometrical basis G, L?(G) and H2(G), that allow us to solve
the Hamiltonian in the edges of G as 'H : H2(G) c L*(G) — L%*(G).

The paper is organized as follows. As part of this introduction, in Sect. 1.1, we show a
survey of the previous results and in Sect. 1.2 we define the basis of the graphene as a set of
edges L, of G such that every eigenfunction ¥ can be extended to all G from the values of
¥ in each edge L,. We also explicitly show the canonical basis of the system and some of
its properties are presented. In Sect. 2, we present the proofs of the principal results exposed
in Sect. 1.2. Finally, in Sect. 3, we analyze bases with support in the half-plane, i.e., we seek
for solutions of H¥ = AW such that ¥ € L%(G) has a compact support.

1.1 Survey of the previous results

The mathematical definition of the problem has been set in previous works (Conca et al.
2019). However, here we summarize theorems and definitions necessaries to present our
current results.

1.1.1 Floquet theory

Let us consider the Hill’s equation defined in Eastham (1973) as
— ¥ (x) + V(X)¥(x) = AP (x). (1)

Here, the function V is real, piecewise-continuous and 1-periodic. We know that equation
(1) has a basis of two linearly independent solutions ¢ (-; A) and ¢;(-; A), functions of the
parameter A, that satisfy

01(0:2) =1, ¢(0; 1) =0, ¢2(0; 1) =0, ¢5(0; 1) = 1. (2)
It is clear that any solution ¥ of (1) can be written as a linear combination:
¥ (x) = ¥ 0)p1(x; 1) + P (0)pa(x: A). (3)

The discriminant of (1) is given by
D) = @1(1; 1) + ¢5(1; A).
If the function V satisfies the symmetry relation V(1 — x) = V(x), then
@3 (15 1) = @1 (15 A), 4)
implying
D =2¢1(1; 1). (5)

1.1.2 The graphene

The graphene is a substance made of pure carbon, where the atoms follow a regular hexagon
pattern. This atoms are mathematically described by a set of vertices V € R? as Fig. 1 shows.

@ Springer f bMAC



A mathematical basis for the graphene Page3of33 19

Fig. 1 Vertices vij and f)lj representing the graphene G

More precisely, let us introduce the vectors
e=(3%) v e=(0v3). (©6)
Then, the set of vertices V is defined by
v={vl.d] i jez]. (7)

where the family of vertices (v'l.i )i,jez and (f)'l.j )i, jez are defined by the relations:

<
~

=iel + je ()
=/ +(1,0). 9)

~

v

As Fig. 1 shows, these vertices are connected by a set of edges .A defined by

L A 7% R I B A | Y i,J J oAl i,j Joajtly .o
A= {aE vay ,ag’ sag =[v;, v ],ay =[v;,0;_;l,ay’ =[v;,v;_| 1,1, EZ},

i i i i’
(10)

as it is displayed in Fig. 2. These set of edges and vertices constitute an hexagonal grid.
Using this notation, the structure of the graphene is represented by a non-oriented graph
G determined by the set of vertices and edges previously defined, i.e.,

G=0UA).

We notice that each edge of the graphene is bijective to the segment [0, 1] € R. In fact,
to visualize this bijection, we consider the parameterization o, oriented from v to w, defined

by:
o :[0,1] x R? x R? > R?
t;v,wy—o(t;v,w)=v+t(w—v). (11)
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. i,j 1,j i,j
Fig.2 Edges ag,ay gnd ag-,
and their respective vertices

Thus, each edge [vy, v2] € A can be written as o ([0, 1]; v, v2). The inverse function is such
that

| x—vy |
| v2 — vy ||

Using the parametrization (11), whose inverse is (12), for each edge [v1, v2] € A we can
define the space L?(v;, vy) as follows:

X € [v],02] = o1 (x; vy, 0p) = (12)

L*(wi,v0) = {W oo ' (v, 02) : ¥ € L0, D},

endowed with the norm ||';I7 oo (v, V)220, 0y) = ||':I7||Lz(0’1). Then, we can define
L*(A) as:
L*(A) = {(wa»,eA € QL@ : ) 1¥all7z, < oof - (13)
acA acA

This space can be also called L?(G).
Similarly, for each edge [v, v2] € A we can define the Sobolev space H 2(vy, v2) by:

H*(v1,v2) = {¥ oo™ (5 v1,02) : ¥ € HX0, D)},
endowed the norm ||l:l7 oo (v, V) 2, 0y = ||E’17||H2(0’1). Thus, the Sobolev space

H?(G) is defined as the subset of functions (¥,)ac.4 € X e 4 H 2(a) which satisfy the three
following conditions:

Y ¥l < o0 (14)
acA
Yv eV, Vaj,a; € Alv ea Nay = Yy, (v) = ¥y, (v)], (15)
YoeV Y D¥yay iy —v) =0, (16)
vV
[v,v2]e A

where we have denoted by DYy ,](v; v2 — v) the directional derivative of the function
Ylv,v,] at the point v in the direction [v; — v]. These conditions are usually called Neumann
conditions of the graphene or Kirchhoftf conditions. The first condition, (15), corresponds
to the continuity condition on each vertex going from one edge to the other. The second
condition, (16), states that the sum of the outward fluxes from the vertex v must be zero.
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Case (a) Case (b)
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Fig. 3 Adjacent edges to the vertices of type f)lj (Case (a)) and type vij (Case (b))

1.1.3 The Hamiltonian of graphene

Let us now define the Hamiltonian of graphene in L?(G). Let V (¢) be a function in L(0, 1)
such that

V)=V —1). (17)

The Hamiltonian of graphene H : D(H) C L*(G) — L*(G)isthe operator, with domain
D(H) = H*(G), that maps ¥ = (W) gen € H*(G) to HY € L*(G), H¥ = ((H¥)a)acA,
such that

(HY)o(x) = (—& + V¥,) o0~ (x; a), (18)

where, for eachedge a € A, ¥, = ¥, 06 (-;a) € H2(0, 1).

The goal of this section is to study the spectrum of the operator H, characterizing the
functions ¥ which are bounded or unbounded solutions. To do this, we seek for non-zero
functions ¥ = (¥,),c 4 satisfying (15)—(16) and the following differential equations

— (1) + V()W (t) = MW, (1), Va € AVt € (0, 1), (19)

where A € R is a parameter.

1.1.4 Kirchhoff’s conditions

In this section, we will properly characterize the functions ¥ = (¥,),c 4 that satisfy Kirch-
hoft’s conditions (15)—(16). First of all, we notice that each vertex v € V has exactly three
adjacent edges, as Fig. 3 shows. Hence, continuity and flux conditions will be explicitly
written at the vertices of type v{ and f){ of V, where i, j € Z (see definition (7)).

The main result in this section will be splited into two theorems separating the cases
@2(1; A) # 0 and 2 (1; A) = 0, where ¢ (+; A) is the function defined in (2). This separation
is important because in the second case A is included in the Dirichlet case. The first Theorem
completely characterizes the functions that satisfy the flux and continuity conditions stated

in (15)—(16).
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Theorem 1 If 2 (1; 1) # O, then every function ¥ = (¥,)qe . satisfying (19), also satisfies
(15)—(16) if and only if, for each i, j € Z, it holds

~31(1; VW @)) + @) + w @) +w @) =0, (20)
—3p1(1; VY @) + ¥ @) + W )+ w0l ) =0, 1)
where @1(-; A) and @1 (-; \) are the functions described in (2).
Theorem 2 If ¢y(1; L) = O, every function ¥ = (¥,),c satisfying (19), also satisfies the
(15)—(16) if and only if the following conditions hold:

(1) There exists ky € R, depending on ¥, such that
W) =ke y W) =kepi(1:2), Vi.jeZ. (22)
(2) If on each edge a € A the functions ¥, can be written as
Wa(t) = Ta ()i (15 1) + caga(t5 1), (23)

where the parameterization t is chosen such that the edge goes from left to right, then
the constants (cq)qca satisfy the relations:

/ . . . . . — . . . . 7
Zklll‘pl(l’ )\') + c[ﬁ{jll»v,'j] + C[i\){_]?v'[/] — C[U{,f)lj](pl(l’ )\')’ Vl’ .] € Z’ (24)

k@i (15 0) 4 ci o1 (i) =i i

i7i+1

J=1ps Vi,j€Z. (25)

[/ 5/
1.2 Presentation of new results

The goal of this article is to study in more detail the structure of the function space ¥ =
(¥,)ac that satisfies the Kirchhoff conditions (15)—(16) and the equations (19). Onwards
we will consider these types of functions, and a parameter A such that ¢>(1; A) # 0, where
@2 (+; A) is the function described in (2), and therefore, the conclusions in Theorem 1 hold
true.

In the hexagonal grid G, we call profile L, g € Z, to the following set of vertices (see
Fig. 4):

_ |47k sq—k _q—k ~q—k |
Lq = {v2k sV Vopgys Vo T E Z}- (26)
Thus, all the vertices of G belong to one of these sets, i.e,

v=|]JL,.

qe’

The profile L, consists of four generating vertices periodically repeated with period 2e| —
e>. That is, for all £k € N,

i7" = vl £ k(e — e) 27)
997 = 30 + k(2e) — e2) (28)
vl = v] + ke —e) (29)
801 = 90 + ke — e2). (30)
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Fig.4 Set Ly, q € {—1,0, 1} C Z and its respective edges

Proposition 1 Let W € L?(G) such that HY = AW. If the values of ¥ at the vertices of Ly
are known, then the value of ¥ at every node and edge of G can be determined using the

following recursive relations:

(

K

(v (5

“ (v
v (o

w (v

W (f)
(v

(q+1)—(k—1)>\
2(k—1)+1

(g+1)—k
Vok

~(g+1)— k) =M
Vok

(q+1)—k) )
2k+1

(g—D—k
2(k—1) ) \

(g—D)—k )
2(k—1)+1

(k—=1)
("[’ (v2(k 1)+1)

A(q—l)—(k—H)) -

'/
v (”2(k-1)+1
v (v

(g—=1)— (k+1))
Vok

€1y

; (32)
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0 0 1 0 0 0

Fig.5 Function @ ; in some vertices of L, including the vertex vz_kk where is equal to one

with
s s2—1 s 1 s 1
—1 —s -1 0 0 0
M=10o o o -1 -5 —1| (33)
1 s 1 s s2—1 s
and
s = =3¢1(1; 1),

where @1(-; A) defined (2).

Corollary 1 If ¥ € L*(G) is such that HY = A and ¥ = 0 at each vertex of Ly, for some
fixq € Z, then ¥ = 0.

Remark 1 We say that the profile L, is a basis for the graphene G, because every function
¥ defined on G can be generated from the values of ¥ at each node of L.

Remark 2 Since all profiles L, can be chosen as a basis for graphene, without loss of gener-
ality we explicitly defined the basis function for ¢ = 0. Using the one-dimensional structure
of Ly, it is known that an arbitrary function in this profile can be generated by introducing
a canonical basis. This basis is composed by functions, whose values on each vertex of L
are equal to zero, except in one of them where the value becomes one. The L vertices are
defined in (26), from four core vertices and the observed periodicity on (27)—(30). We denote
the canonical basis functions in Lo by @1 x, P2k, P3.k, Pak, k € Z, such that

®1(v) =0 Yv e Lo\{v3}, Pra(vyl) =1, (34)
@y (v) =0 Vv e Lo\(b5 ), Pax(isy) =1, (35)
®3(v) =0 Vv € Lo\(v3,}. Pax(vrl ) =1, (36)
Gyp(v) =0 Yo e Lo\(dyl )}, Par(sl ) = 1. (37)

If we have defined this functions in the profile L¢, we can extend it to G thanks to Proposition
1, and thus we obtain a canonical basis for the complete graphene G (Fig. 5).

In (34)—(37), we introduced the functions @1 x, D2k, L3k, Pak, k € Z, that form the
canonical base of the graphene. Also, by definition, we know the value of these functions in
the vertices of the profile L. In this section, we are interested in calculating the values of
these functions in the others profiles L, for g € Z\{0}.

The support is bounded in the profile L. One of the questions that we want to address is
whether the support is still bounded in the rest of the profiles and in the complete graphene.
Using the periodicity of the Lo, all the analyses in this section can be concentrated in the
study of the functions @1 0,920, P30 Y P4,0. Once we know completely these functions,
the other ones are horizontal translations (respect to the vector 2e; — e) (Fig. 6).
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Theorem 3 Let us consider the function @1 o defined in (34) and the vector X = 2e1 — ey =
3, 0).

(1) In all the profiles L, with g > 1, we have that for all j > g
@100] + (j — DX) = @10(v] + jX) = D100 + jX) = @1000] + jX) =0.
(38)
(i1) In all the profiles Ly, with q > 1, we have that for all j > —q
P1o(] + (j — DX) = @10 + jX) = @10(05 + jX) = P100] + jX) = 0.

(39)
(iii) In all the profiles Ly, with g > 1, we have that for j = q — 1
D107+ (j — DX) =5, Pro@] + jX) =—1, (40)
D10(0¢ +jX) =0, D1 000] +jX) = 1.
(iv) In all the profiles Ly, with g > 2, we have that for j = —q + 1
Do) +(j = DX) =5, P10(vg + jX) =0, @)

D100 +jX)=—s, D00 +jX) =52
(v) In all the profiles Ly, with g > 2, we have that for j = q — 2
@100 + (j — DX) = (2g — 3)s(s* — 1),
D1o(vg +jX) = —(2g = 3)(s* — 1),
®10(df + jX) = —s,
®100] +jX) = (2q — 2)(s* = 1). (42)
(vi) In all the profiles L,, with g > 3, we have that for j = —q + 2
@107 +(j — DX) = 2q — 3)s(s* + 1),
®10(v) + jX) = —s2,
@000 + jX) = —(2g —Ds(s* + 1),
@100 + jX) = (2q — Ds* (s> + D). (43)

(vi1) The values of @1y in the profiles L, with g < 0 can be obtained from the previous
items considering the antisymmetry as follows:
yity V3

T =5 = D1 0(x, y1) + P1,0(x, y2) =0. (44)

Moreover, we can characterize the functions @, ¢, @30y @4,0. Considering the respective
symmetries, we can write

@2(X, y) = djl (1 - X, y)

3 3

¢3(-xay) == ¢1 <-x_ 5’ % _y>
5 3

454()5’)’) - (pl <§—X, % _y)

Therefore, from here, we have that
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S gt1—(k—1)

. J b . R
’ 2(k—1)+1 Y
/ vq+1—k \
Y 2k+1 \
13 éd natl—k
: 2k
Sooq+1—k
- Yok
- S g2 (k=1 -  5a—k
» Va(k—1)+1 \ Vopt1
/. q—(k—1) 'quk \
7 Va(k—1)+1 2k+1 \
Lq—k
B - Yok
. q—
. ’02k

Fig.7 Vertices of Ly and L1,k € Z

— From (iii) of Theorem 3, we can conclude that @1 ¢, @20, @30 and P4 ( are not bounded.

— From (v) of Theorem 3, we can conclude that @; o, @20, P30 and @4 do not have
compact support.

— Itis possible to prove that the finite linear combinations of @1 o, @20, P30 and P4 o are
not bounded and do not have compact support.

2 Proof of the main results

Now, we will prove the main results stated in Sect. 1.2.

2.1 A canonical basis for the graphene

This subsection is devoted to the proof of Proposition 1, and its respective corollary.

For g, k € 7Z, we consider the vertices in the sets L, and L1, as Fig. 7 shows. We recall
that L is 4-periodic, for all g € Z.

To make notation simpler, we write ¥/ instead of ¥ (v!) and ¥/ instead of ¥ (3/).

Using (21), withi =2k — 1)+ 1y j =g — k,and (20), withi =2k +1y j =k —q,
we get the following equations (see Fig. 7):

gl = (g s ) (45)

B0 = (B w5 (46)

Similarly, from (20) and (21), both withi = 2k 'y j = (¢ + 1) — k, we obtain the system
By = = (D sl T gt “7)

1 = = (T s g ). 8)
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"Aq—k

» A Y2(k—1)+1
q—k
Vo(k—1)+1
\ /
' ! sa— (k1)
“ ~q—k § 59— (k+1
; - Y2(k-1) B Doy
. q—k - E ,Uqf(k‘+1) .
Va(k—1) - - 2k
o o ,Dq—l—(k-i-l)
2(k—1)+1
qg—1—k
Va(k—1)+1
\
/
\ /
e ~qg—1—k o
- - Y2(k-1) Cg—1—(k+1) 4
' Vo

Fig.8 Vertices of L, and Lg—1, keZ

Replacing (45) and (46) in (47) and (48), and factorizing we obtain (31).

We analyze now the vertices in L, (see Fig. 8). Following the same procedure as before,
from (20), withi =2(k—1)+1yj = (g —1)—k,and (21),withi =2(k—1)y j = q —k,
we get

7 g—)—k __ 79—k (g—D—k 7 (g—1)—k
Yok—1) = <W2(k—1) + 5% 0—1)+1 T l1’2(1<—1)+1> ;
(g—D—k _ q—k 74—k q—k
Yok—1)+1 = — (Wz(k—n + sy T "p2(k—1)+1) :

Using (20), withi = 2ky j = ¢ — k, and (21), withi =2k — 1)+ 1y j = (g — 1) —k,
we also obtain
5, @—D—k _ 54—k q—k | 39—k
Yol—n+1 =~ (WZ(k—l)-H T W+ ¥y )
(g—D—k __ (g—D—k £ q—1)—k q—k
Yk = - <‘1’2(k—1)+1 50— 1)+1 T Yar )

This completes the proof of Proposition 1.
If ¥ = 0 ateach vertex of L, then, from (20) and (21), we can conclude that ¥ (x) at each
vertex of Ly, for all k € Z. Thus, ¥ is zero on each edge of G, hence it is zero in all G.

2.2 Properties of the canonical basis

In this subsection, we will prove parts (i)—(vii) of Theorem 3, one by one.
(1) We will prove that (38) is true for all ¢ > 1 by induction over g.
For ¢ = 1, we have to show that

D100+ (G — DX) =Dy o(vh + jX) = Pro(dy+ jX) = Pro®l +jX)=0,Vj > 1,
1.e.,

Al—(j—1 1—j Al—j 1—j .
@10Ghy 1) = Proy; ) = Prolhy ) = Pro(y ) =0, Viz1. (49
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Using (31) with ¢ = 0 and k = j, we have that

( ¢1,0(v2_((jj__11))+1) \

A1—(j—1) ~—(j—1)
(¢1s0(”2(j—1)+1)\ P1,0(Vy;_1y41)
i .
€b1,0(v2jj) <P1,0(vzjj)
Al—j =M A
P1,0(0y; ") P1,0(v,;)
i .
k (pl,O(vzj_{J_l) ) ¢1,0(v2jj_|_1)

\ ¢1,0(f’2_]'j;|_1) /

In the right-hand side, we have the values of @1 o in L, that are given by (34), and we can
see that they are all zero when j > 0. Thus, (49) is true.

Suppose now that (38) is true for ¢g. Let us see that it is also true for ¢ + 1, i.e., we will
show itforall j > g+ 1

A 1 . 1 . A 1 . 1 .
Do+ (- DX)=@1 00T + jX)=@1 0@ + jX)=P1 00! + jX)=0,
1.e.,

N H—(j—1 H—j A~ H—j H—j .
@10y T =010 T =0 05TV T =@ 0055 ) =0 Vizg+1L.

Using (31) with k = j,

g—Gi-1)
(951,0(”2(,-_1)“)\

~(g+D—(G =1 ~q—(j—1)
(¢1,0(”2(]‘—1)+1 )\ 1,003 21)41)

i .

051,0(1)53 ") ®10(v3;7)

o o
<151,0(vg§- ") ®1,0(03;7)

s ’
\ LIRS ) IRICEY

\ @108 )

Here, again the right-hand side is the null vector. Indeed, from the induction hypothesis,
the four central terms are zero, because j > ¢. The lower term is zero using the induction
hypothesis for j + 1 > g. Finally, the first term is null using the induction hypothesis for
j—1=gq.

In this way, (38) is true for all ¢ > 1.
(i1) We will prove that (39) is true for all ¢ > 1 by induction over q.

For ¢ = 1, we have to show that

D100+ (j — DX) = P10} + jX) = P1o(Bg + jX) = D1 (vl + jX) =0,
1.e.,

Al—(j—1 1—j Al—j 1—j .
D10G0y 1)) = Pro@y ) = Prolhy; ) = Pro(y ] ) =0, ¥j< -1 (50)
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Using (31) with ¢ = 0 and k = j, we have that

( ¢l,0(v2_((jj__11))+1) \

Al—(j—1) ~—(j—1)
(¢1,0(”2(j—1)+1)\ 1.0y _1)41)
L .
Cbl,o(vzjj) <P1,0(vzjj)
Al—j =M A—j
@1,0(02]. ) @170(1)2].)
i .
k (pl,O(vzj_{J_l) ) ¢1,0(v2jj_|_1)

\ ¢1,0(f72_]'j;|_1) /

In the right-hand side, we have the values of @1 ¢ in the profile Ly, that are given by (34),
and we can see that they are all zero when j < —1. Thus, (50) is true.

Suppose now that (50) is true for g. Let us see that it is also true for ¢ + 1, i.e., we will
showitforall j < —qg —1

A~ 1 . 1 . A 1 . 1 .
D@1 + (- DX)=@1 0T + jX)=@1 0@ + jX)=P1 00! + jX)=0,
1.e.,

A(g+D—(j—1 +1)—j A(g+D)—j +1)—j .
@1y T T =010 T =0y (05T ) =@ 0 (0571) ) =0, Vi<—g-1.

Using (31) with k = j.

q—0—=1)
(QI,O(vz(J’_I)_H) \

(@1,0(936_1)1)1{_]))\ ¢1,0(f)g(_j(_j1_)21)
¢1,0(v§3~+1)_j) ¢1,0(v‘21j_j)
21068 | T et

\ <151,o(vg§ill)_j) ) QDLO(”ZL)

k 4’1,0(562];11) )

Here, again the right-hand side is the null vector. Indeed, from the induction hypothesis,
the four central terms are zero, because j < —g — 1 < —¢q. The lower term is zero using
the induction hypothesis for j + 1 < —gq. Finally, the first term is null using the induction
hypothesis for j — 1 < —q.

In this way, (39) is true for all ¢ > 1 by induction over g.
(111) We will show that (40) is true for all ¢ > 1 by induction over q.

For g = 1, we have to show that

10+ — DX) =s, 1o+ jX) = —1,
®10(bg+ jX) =0, 1ol +jX) =1,

forj=q—1=0,i.e.,

D1 o(2) =5, Do) =—1, @) =0, Do} =1. (51)
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Using (31) with ¢ = 0 and k = 0, (51) comes from the following calculation

cbl,o(vl_l)\ (0)

@1 0(% ) ®10(L)) 0
®10(vy) ®10(v)) 1
oo | =M o) [T Mo | TMe
D1,0(v}) ®1,0(v)) 0
| erod |\

Suppose now that (40) is true for g. We will see that it is also true for g + 1, i.e., we will
show that

N 1 . 1 .
Do + (- DX) =5, o0l +X) = —1,
@00 + jX) =0, 0!+ jXx) =1,

forj=(@+1)—1=gq,i.e.,
¢1,o(f)%(q_1)+1) =35, ¢1,0(véq) =—1, <151,0(f);q) =0, <P1,o(v§q+1) =1. (52)

Using (31) with k = ¢,

(¢1,0(”§(q—1)+1)\

(¢1,0(f’%(q—1>+1)\ @103 1)11)

¢1,0(v§q) <1>1,o(v84)

sro6y) | =M @062 69
K ®10(v3,, 1) ) @109,

\ ®1,0(95, 1) )

From (38) with j = g wehave @1 0(D3(,_1)41) = P1.0(03,) = P10(33,) = P1o(), ) =
0. Also, from (38) with j = g + 1 we have @1,0(133(”1) = 0. Finally, using the induction
hypothesis (40) we have @1,0(”é(q_1)+1) = 1. Thus, (53) is reduced to

(!

/¢1»0(f)%(q—l)+l)\ 0

@1,0(1)%(]) 0

@1,0(13%(1) =M 0 = Ma,.1.
\ ¢1,0(véq+1) ) 0

\"/
Therefore, (52) is true thanks to (33).

Thus, we proved (40) for all ¢ > 1.
(iv) We will prove that (41) is true for all ¢ > 2 by induction over g.
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For g = 2, we have to show that

@007+ (- DX) =, @100+ jX) =0,
o5+ jX) = -5, Do+ jX) =52,

forj=—q+1=-1,1e,

d>1,o(f»‘l3) =5, @100, =0,

®10(07,) = —s, P10 ) =52, G
Using (31) with ¢ = 1 and k = —1, (54) comes from the following calculation
(1007 5) )
D) 0(825) D10(525)
@100 ,) ®1,0(v,)
106y | =M eroe2y | &)
P10(v7 ) ®1,0(v2 )
\051,0(132_1))

From (50) with j = —1, @1 (3% 3) = ®@10(%,) = ®10(0%,) = ®10(v?,) = 0, from

(50) with j = =2, @1,0(1)33) = 0 and from (40) withg = 1, QD],o(sz_l) = 5. Thus, the
right-hand side of (55) is equal to

(0)

0 s

0 0
Mo =] =

0 SZ

\"/
Suppose now that (41) is true for g. Let us see that it is also true for g 4 1, i.e., we will

show that

~ 1 . 1 .
O 0@ + (- DX) =5, P1owlT +jX) =0,
G100+ jX) =—s, @10 +jX) =5,

with j =—(@+1)+1=—gq,i.e.,

2g+2 2g+1

Do 1)) =5 Pro() =0, (56)
~2g+1, 2g+1 )

Q1005 ) =—=s, P, ) =5
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Using (31) with k = —
2g+1
(@1,0(”—2(q+1)+1)\
~2g+2 ~2g+1
/‘Dl 0o(v 2(q+1)+1)\ P10V 2(q+l)+l)
2g+1 2
D1,0(v5 q+ ) q51,o(v_q2q)
= M ) (57)
"2g+1 2
o(d Z ) D10(02%,)
1 2
\ Pp0(v q;q_ﬂ) ) ¢1,0(v_q2q+1)
A2
K ¢1,0(v_q2q+1) )
From 39) with j = —q, @1 034! | ) = @100 ) = @103 ) = D100, . ) =
J=-q, LOW _2@g+n+1) = F1,0W0_2,) = ¥1,00V _5,) = 1,00V 244 1) =
0, from (39) with j = —¢q — 1, @1,0(v2_qH ) = 0 and from the induction hypothesis

2g+1)+1
41), 051,0(132_‘12(1“) = 5. Thus, (57) is reduced to

((pl O(Azqzj(quH)H)\ 0 s
Dy, o(vqu) 0 0
0@y | T Mo T

\ CDIO(U 2q+1) ) 0 s*

Therefore, (56) is true thanks to(33).
Thus, we proved (41) for all g > 1.
(v) We will prove that (42) is true for all ¢ > 2 by induction over g.
For g = 2, we will show that
@100 + (= DX) = s(s> — 1),
@1 0(v5+ jX) = —(s" = 1),
@10(05+ jX) = —
P00 +jX) =2(s> = 1),
forj=¢g—-2=0,1ie.,

@007 ) =s(s2 = 1), D1 o(3) = —(s2 — 1),
D1 0(03) = —s, ®10(v}) =2(s% — 1).
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Using (31) with ¢ = 1 and k = 0, we have

(cbl,o(vz_l)\
@1 0(7 ) @1 0(%)
D1 0(v}) D1 0(v))
®1.0(0) =M @1 .0(bp)
®10(v7) ®10(v})

\ @100 )

From (50) with j = —1 we have @1,0(v2_1) = 0, from (49) with j = 1 we have @1,0(5%) =0,
and using (51), we obtain

(0
@1 0(° ) s
D1,0(v3) —1
or06d | =M o
®1,0(v?) 1

\ ")
Therefore, (58) comes from the product between a matrix and a vector, considering the
definition of M given in (33).

Suppose now that (42) is true for g. Let us see that it is also true for g + 1, i.e., we will
show that

@103 + (j — DX) = 2g — Ds(s? = 1),
B odT +jX) = —2q — (s* - 1),
@10+ jX) = —s,
@100 +jX) =2q (2 — 1),
forj=@+1)—2=q—1,ie,
D103, 2)11) = 2q — Ds(s> = 1), @103, 1) = —(2g — (s = 1),

B 5 5 (59)
gzj1,0(')2(51_1)) = -9, 451,0(1)2(61_1)_}_1) = 2Q(S —1).
Using (31) withk =g — 1,
2
(¢1,0(”2(q—2)+1)\
A3 ~2
(102211 ) P1.0(3g-2)+1)
¢1,0(v%(q_1)) gDl,O(vé(q_l))

= M (60)

A2 Al
q§1,0(v2(q_1)) (pl,O(vz(q_l))

2 1
\¢1,0(”2(q—1)+1)) Pro@y—1)11)

| 210(2-1)+1) )
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From the induction hypothesis (42), we have <1§1,0(v%( 4-2) ) = 2qg —2) (s2 — 1). Also,

using (38) with j = g we have 451,0(135((1_1”1) = 0. Finally, thanks to (40), (60) can be
written as

(24 =2)(s> = 1))

/qbl,O(i’%(q—ZH—l)\ s
Cbl,o(v%(q_l)) -1
®1.0(D34_1)) =M 0

\‘DLO(”%@—UH)) !

)

Multiplying by the matrix defined in (33), we have that (59) is true.
With this, (42) is true for all g > 2.

(vi) We will prove that (43) is true for all ¢ > 3 by induction over g.
For g = 3, we have to show that

1007 + (j — DX) =3s(s> + 1),
D100y + jX) = —s2,
®10(0g + jX) = —25(s> + 1),
@107 + jX) = 257(s> + 1),

forj=—q+2=-—1,1e.,

D100 3) = 3s(s> + 1),

D1 0(v*,) = =52,
D00, = —25(s> + 1),
D100t )) =252 + 1). (61)

Using (31) with ¢ = 2 and kK = —1, we obtain

(@1,0(013)\
@105 5) @1 0(i%5)
D1 0(v?,) D10(v3,)
o106ty | =M @106,
D1 0(?)) D007 )

\051,0(133_1))

Using (39) with ¢ = 2 and j = —2 to obtain <151,0(vf3) = 0, the equality(54) and (58) to
obtain @1,0(53_1) = s(s2 — 1), the expression above is equivalent to
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®10(0°5) s
®10(v*,) 0
sroGty | =M s
®D10(v* ) s?
\s(sz — 1))

Therefore, (61) comes from the product between a matrix and a vector, considering the
definition of M given in (33).

Suppose now that (43) is true for g. Let us see that it is also true for ¢ 4 1, i.e., we will
show that

D10+ (G- DX) = 2q — Ds(s + 1),
@100+ jX) = =57,
@10 +jX) = —(2q — s> + 1),
@100 +jX) = 20 — 257 (s> + 1),
forj=—(q+1)+2=—(qg—1),ie,

~2g+1 2
®10(07% L) = (2g — Ds(s> — 1), P10 g 1) = =52

AZ_qqu 2 2q 2.2 (62)
D105, 1y) = =g = 2)s(s™ = 1), Pro(5,,_j)1) = 29 —2)s7(s™ — D).
Using (31) withk = —(¢ — 1),
( CD1,o(v2_q2q+1) \
( @1,0(92_612:;1) ) ¢1,0(ﬁ2_q2q+1)
D10, 1) D10 % )
¢1,0(f)2_q2(q_1)) =M ¢1,0(132_qu;_1)) (©3)
\‘151,0(02_q2(q_1)+1) ) Do)
\Cbl,o(ﬁz_qz_ql_l)H))

From (38) with j = —gq, @1,0(v2_q2 q Jrl) = 0. From the induction hypothesis (43), we have

@1.0(5°%,_1),1) = (2 — 3)s(s> — 1). Finally, thanks to (41), (60) can be written as

( 0 )

( <151,0(132_q2211) \ s
fpl,o(vz_qz(q_l)) 0
451,0(132_%(,]_1)) -M —s ’

K¢1,0(v2_q2(q_1)+1)) s*

\(2(1 —3)s(s? — 1)/
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Cf =v(vih)

D} =w (05 }))
e
—1

Bl =w(v3;")

Fig.9 Definition of the constants A?, qu, C? y D?

Multiplying by the matrix defined in (33), we have that (62) is true.

With this, (43) is true for all g > 2.

(vi1) Using (38), (39) and (40), we have that the property is true for all the vertices of the
graphene with y-coordinate y = /3.

The total symmetry is obtained considering that the line composed by all the vertices of
y-coordinate y = V3/2 and y = /3 is a basis of graphene, symmetric to Lo, but with
component @1 (0, V/3) = —1. This new basis generates the same solutions found in (38)—
(43), but with opposite signs. Thus, we obtain the desired symmetry.

3 Basis with support in the semi-plane

We seek for solutions ¥ € L?(G) such that H¥ = A¥ with compact support. In this section
we use Aiq, Bl.q, Cl.q and Dl.q, i € 7 to denote the value of ¥ € L?(G) such that H¥ = AV,
at the four vertices which generate the profile L,, i.e.,

Al =g @i, Bl =w@L ", cl=wwil), DI =w@Eil). (64)

See definition of the profile L, in (26) and Fig. 9 for more details.
From (31) and (32), we can write all the values of ¥ at the vertices of L,y and L, in
terms of its values at the vertices of L, as follows. For all i € Z,

A?H _ _Cz - qu _ AlfI (65)
BT = —BY —sC - Dgf (66)
cit' = +sD!_, + A? +sBI + (s> —1)C! +sD! (67)
DI =sCl + (s = D! +5AL | + B +sCL, + DY, (68)
AT = A7 4+ sB 4+ CL, +sD! |+ (57— DAY + B! (69)
B =5AY + (s> = )B! +sC? + D! +sAL  + B!, (70)
cl™' = —A? —sB! — ! (71)
D! = —pf —sAl  —BY, (72)

If solutions ¥ € L?(G) such that H¥ = AW with compact support exist, then there is an
ip € 7 such that

Al =B! =C! =D! =0, Vi <ip,Vq € Z. (73)

Without loss of generality, we can assume i = 0. In other words, we study the case in
which the function ¥ is zero in all the gray region of Fig. 10. In addition, we write “—n, with
n € N” instead of “i < 0, withi € Z”.
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\ / \ / \ / \ /
\ / \ / \ / \ /
) ©atl ) gl ) y
.0 @ Ch 'DS“ Oy 'D‘f“ — — —
\_/—\L/—\L/—\_/
0 1 +1
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o : . : “at : *
0 D§ DY --
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0 BY BY
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N Ap Ay
— —1
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Fig. 10 Values non-zero ofAlj, Bl.j, Cl.j y Dij, i,jeZ,i>0

To prove the results in this section and determine the structure of all functions ¥ satisfying
(73) (with ip = 0), the polynomials P,, recursively defined as follows, play a crucial role.
The family of polynomials (P,),cn is defined by the recursive relation:

Py(s) = —s (74)
n—1

Pu(s) = Pac1(s) +5 ) Pe(s)Pac1-k(s) forn = 1. (75)
k=0

For n = 1, we notice that
_ 2 _ 3 _ 2 _ 2
Pi(s) =Py+sPy =—s+s" =s(s"—1)=(s"— 1s. (76)

The degree of each polynomial P,,n € N, is 2n + 1.
Using these polynomials, we now present the main result of this section.

Theorem 4 For ¥ € L*(G) such that HY = AW, let Al.q, Bl.q, Cl-q, Dl.q be the values of ¥ at
the vertices that generate L, defined in (64). The following propositions are equivalent:

(a) Foreach q € Z it holds that
Al =B =c? =D? =0 VneN. (77)

(b) There exists qo € Z such that AY, = B, = C?), = D*, = 0 for alln € N. Moreover,

n
Bl =) Al (Pi(s) VneN,Vq e (78)
k=0
and
n
D =Y Cl  Pu(s) VneN,VqeL. (79)
k=0
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(c) There exists qo € Z such that AT, = B? = C? = D% =0 foralln € N. Moreover,

n
Bl =3 A Pi(s) VneN
k=0
and

n
D’ =% "Cl Pi(s) VneN.
k=0
(d) Foreach q € 7 it holds
Al =B! =c? =D? =0 WVneN,i<0,

n

n
Bl =Y Al Pi(s) VneN
k=0

and

n
Di =) Cl  Pu(s) VneN.
k=0

(80)

(81)

(82)

(83)

(84)

To prove this result, we will show first several previous results which combine the definition
of the polynomials P, with the conditions (20) and (21). Let us begin with an algebraic lemma.

Lemma 1 If there exists ng € N such that
n
Bl =Y Al (P(s) Vne({0.....no}
k=0
and
n
D! = Zc;’_kpk(s) Vn € {0, ..., np},
k=0

where P, are the polynomials given in (74), then

n

D (A +sBl_) Pu(s) =sAl 4+ Bl Vne{0,....ng—1)},
k=0

n
D (€l + 5D ) P(s) =sCl + D}, VYne(0.....no— 1)
k=0

and
no no+1
q q q
s Bl Pu(s) =Y Al L Pils) — B,
k=0 k=1
no+1

no
SZDzo—kPk(s) = Z C30+1_kPk(S) - Dgo-
k=0 k=1

(85)

(86)

(87)

(88)

(89)

(90)
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Proof To show (87) we use the hypothesis (85) to deduce that, for each n € {0, ..., ng}, we
have

n n n n—k
q q
DAL FSBLOP=Y AL Pets) ) AL P
k=0 k=0 k=0 r=0
n n ot
AL s Y AL P
k=0 t=0 j=0
n k
=Y Al | Pts)d PP
k=0 j=0

Now, using the recursive relation (75), we obtain

n n
D (Apy +sBL)Pc= ) AL P
k=0 =

n+l1
= Z An—l—l P O
This directly implies (90), using the hypothesis (85) on the sum of left-hand side.
To obtain (87), we restrict the range of the variable n to the set {0, ..., ng — 1}, and thus

we can use the hypothesis (85) in the sum of the right-hand side in (91), hence

n
Z(AZ—k +sB]_ ) Pc=—Al Po+ Bl
k=0
The equality (87) is consequence of the last expression and the definition (74).
Finally, interchanging the name of the variables, the equalities (88) and (90) are the same

as the ones that we have just shown. O

Lemma2 [f
Al =B! =c? =D? =0, VneN, VqeZ, (92)

then

Bl = APy, Vq €, (93)
=ClP), VqelZ, (94)
Bl = ATPy+ Al P, Vq €Z, (95)
DI =cipPy+CiP, vqel (96)

Proof Using the identity (72) for i = —1, and the hypothesis (92), we obtain
q q

which implies (93), since Py = —s.
To show (94), we begin by considering the identity (68) with i = —1, and obtain

0=040+sA} + B} +sC{ + DJ.
Thus, the property (94) follows from (93) and the fact that Py = —
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Since equality (93) holds for all ¢ € Z, we can write
B = Al p,. 97)
Hence, using the identities (70) and (69), for i = 0, in (97), we obtain that
SAS + (s> = DB +0+5AT + Bl = —s(0+0+0+0+ (s> — DAL +5B]), (98)
which implies that
sAT + Bl = —s(A} +sBl) — (s* = 1) - 0. (99)

Thus (95), considering that P;(s) = (s2 — 1)s (see (76)).
Finally, to obtain (96), we use (94) for g + 1, i.e.,

DIt =it p,. (100)
Hence, using the identities (68) and (67), for i = 0, in (100), we get

sC¢ + (s> = 1)D§ +sAY + B +sC{ + DY
= —s(0+0+ A} +sB{ + (s* = DC{ + sDY).
Using (99), previous equality becomes
sCL 4+ (s> =)D +5C? + DI = —s((s> — 1)CI + sDY).

Since this equation is analog to the identity (98), the proofs follows similarly to the proof of
the previous case. O

We will now see how these results can be generalized. Let us show the following lemma.

Lemma 3 Let us assume that
Al =B? =c?, =D%,=0, VneN, VqeZ. (101)

If there exists ng € N such that

n
Bl =Y Al (Pu(s) ¥YqeZVne(0,... no) (102)
k=0
and
n
Dl =% "Cl  P(s) Vg €ZVYne(0.... no}, (103)
k=0
then
no+1
Brosr = D Angir i Pi(s) (104)
k=0
and
no+1
DI =D Cl P, (105)
k=0
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Proof To show (104) we first write the hypothesis (102) for ¢ — 1y no, i.e.,

no
-1 1
Bl = Al Pi(s).
k=0

Using the identities (70) with i = ng and (69) with i = ng — k, we get

sAp, + (s> = DB +sCl + Dl +sA? i+ Bl

no
q q q q 2 q q
= Z(Ano—k—l +5B, 1+ Chi1 5Dy 1+ "= DA, +5B, )Pk

(106)
Considering the hypothesis (101), these sums can be rewritten as:
sAR, + (s> = DB, +sCjl, + Dy +sA? |+ B}
no—1
q q q q
= Z (Ano—k—l + SBn()—k—l + Cno—k—l + SDno—k—l)Pk
I)ZAnO kPk—I—sZBnO  Pe. (107)

Here, thanks to hypotheses (103)—(102), we can use Lemma 1, in the first and third sums of
the right-hand side. The second sum can be obtained directly from hypothesis (102). Thus,
we get

sAp, + (s> = DB +sCl + Dl +sA? motl + B
no+1
— B, + A% + Di, +sCl + (s> — DB, + Z Al 1k Pi(s) = Byy. (108)

Simplifying,
no+1
SAL L+ Bl =D AL L Ps). (109)
k=1

This, together with definition (74), implies.
To show (105), we write the hypothesis (103) for ¢ 4 1 in the case n = ny, i.e.,

no
1 1
D =" Cl P(s).
k=0

Replacing the identities (68), with i = ng, and (67) with i = no — k, the above expression
becomes

sCly 4 (s> =)Dy +sAl |+ B! . +sC!  +D]
Z( no—k— 1+SDn0 k— 1+A30_k +8330_k+(sz—1)Cq k+SDn0 k) Py.

(110)
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Considering the hypothesis (101), these sums can be rewritten as follows:

sCl + (s> — 1D, + sAnO+1 + Bn0+l + scn0+1 + an

no—1 no

= Z(Cno ko1 FsD 1)Pk+Z(AO ¢ +sBl O P+ (57 —1)ch0  Pr
k=0 k=0 k=0
+SZDn0  Pr. (111)

For the first and last sums on the right-hand side, we use(88) from Lemma 1, thanks to
hypothesis (103). For the second sum, we also use the same lemma, since the identity (104)
allows us to use the equality (87) up to n = ng. Finally, the third sum can be obtained directly
from hypothesis (103). Hence, we get

sCity + (s> = DD +sAL  + B! | +sC!  +DI |
no+1
=sCly + Dl +sAl .+ B! |+ (s> =)D, + Z Cl o _¢Pe— Dy (112)

Simplifying,
no+1
$SCho1 T D1 = Z Crgr1-4 P (113)
Thus, (105) is consequence of definition (74). O

Lemma 4 Suppose that there exists qo € 7 such that the following properties are satisfied in
the profile Ly, :

Al =B =Ccl"=D"=0 VieZ,i<0, (114)
n
B =3 A", Pi(s) VneN (115)
and
n
DI =3 "Cl P(s) VneN, (116)
k=0

where Py (s), k € {0, ..., n} are the polynomials defined in (74)—(75). Then, in the profiles
Lgo+1y Lgy—1 the following relations are satisfied

A0t — gt — caotl — pitl — 0 viez,i <0, (117)

Bt = Xn:AqOHPk(s) Vn € N, (118)
knO

DIt ="l P(s) VneN, (119)
k=0

AL = gl — el = p-l =0 vpeN, (120)

Bl = zn:Aqo "Pe(s) Vn eN, (121)
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p~! Zcqo "Pi(s) VneN. (122)

Proof We begin by showing the properties in the profile Ly 4.
To prove (117), we consider the identities (65)—(68) with i < 0 and ¢ = ¢¢. Using the
hypothesis (114), we obtain (117) for all i, except for the case

DI = AL 4 BL 4 sl + DY,

which is also zero, thanks to the hypotheses (115)—(116) for n = 0 and the definition (74).
To show (118), we calculate the sum of the right-hand side. For each k € {0, ..., n}, we
consider the identity (65), withi = n — k and ¢ = ¢q¢. Hence, we obtain that

n

n
1
> AN Pi(s) = Z(quk [ FsDP AT ) P(s).
k=0 =

Using hypothesis (114), we can write

n n—1 n

1
> AN P(s) ==Y (CP 45D DP(s) = Y AL Pi(s).
k=0 k=0

k=0

Since hypothesis (116) holds for all n, we can use the identity (88) from Lemma 1 in the first
sum of the right-hand side. The second sum can be directly calculated using the hypothesis
(115). Then,

n
Y AL P(s) = —(sCl° + D + B).

Thus, equality (118) is consequence of previous identity and equality (66) with the respective
indices.

Similarly, to show (119), we first calculate the sum on the right-hand side. For each
k € {0, ..., n}, we use identity (67), withi = n — k and g = qo. Hence, we obtain

n n
Yt pe =3 (CP, +sDI + AL, +5BR, + (57— 1DCP, +5DX ) Py,
k=0 k=0

which, thanks to hypothesis (114), can be rewritten as

n—1 n
q +1 q q q q
ZC ’ Z(Cno—k—l +5D,% )P +Z(An0—k+SBn0—k) Py
k=0 k=0
n n
s$=1DY CI P+s) D P (123)
k=0 k=0

Since hypotheses (115)—(116) hold for all n, we can use the identities (87), (88) and (90)
from Lemma 1 in order to calculate the first, second and fourth sums of the right-hand side.
Thus, we get
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n
Zcq°+‘P =sC* + DI +5A%, + BY + (P - 1) CP P

n+1

I e
k=1

Simplifying and using hypothesis (116), we calculate the two last sums of the right-hand
side and obtain

Zcq0+1 SCqO +SAq(j{_1 + Bn+1 + (S _ l)qu + Dn+1 — CZO+1P0(S)

Since Py(s) = —s, (see (74)), reordering terms we get
n
D CI Pe=sC 4 (87 = DD+ sATL 4 BYY, +5Ci + DI
k=0
Compering this identity with (68), with i = n and ¢ = g, we obtain equality (119).
Let us now prove the properties the profile Ly, .
To show (120), we use the identities (69)—(72) with i < 0 and ¢ = g¢. Using hypothesis
(114), (120) is directly obtained for all i, except for the cases

BZOI—I — SAgO + BgO, y
DO = —5A% — BL.
However, from (93), sAg0 + Bgo = 0 and thus we get Bzol—l = Dzol_l =0.

To show (121), we begin by calculating the sum on the right-hand side. For each k €
{0, ..., n}, we use the identity (69), withi = n — k and ¢ = ¢q¢. Hence, we obtain

go—1 q
ZAO Py _Z(An k1 FSB F Ol DY,
k=0

+(s* = DAL, + 5B ) Pi(s).

Using hypothesis (114), we can write

n n—1
1
ZAqO P = Z(A L HSBY )P+ Z(CZO—k—I +sDi )P
_ k=0
n n
+ (5% — 1)ZAZ°_kPk +SZBZO_kPk(s). (124)
k=0 k=0

Since hypotheses (115) and (116) hold for all n, we can use (87) in the first sum of the
right-hand side, (88) in the second sum and (89) in the last sum. Hence,

n n+1

—1
§ AN Pe=sAL + B +5Cl°+ D +(s* — 1) § Agokpk+§ :Anﬂ P — B,
k=0

which, thanks to (115), is equivalent to

ZA"O 'Pe = AL 4+ BI +5CL + D + (s — )BP + BY,, — A%, Py — B
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Since Py = —s, reordering terms we write

n

Y AN Pe= A + (57 = DB +sCI0 + DI +5AY, + B,
k=0

This, equality (121) is a direct consequence from above identity and inequality (66) with the
corresponding indices.

Similarly, to show (122), we begin by calculating the sum on the right-hand side. For each
k € {0, ..., n}, we use the identity (71), withi = n — k and g = go. Hence, we obtain

n n
—1
D CH Pe==) (AP + 5B, +CO )P
k=0 k=0

Thanks to (87), this can be rewritten as

n n
1
Zczo—k Py = —(sA) + B ) — ZCZO—kPk
k=0 k=0

and, from (116), we get

n
-1
ZCZO—k Pi(s) = —(sAJ | + BlY ) — Dy
k=0

Thus, equality (122) is obtained directly from (72) withi = n and g = qo. O

Proof of Theorem 4 We begin by showing (a) = (b). We will prove that the identities (78)—
(79) hold for all n € N using induction over n. The case n = 0 is consequence of identities
(93)—(94) of Lemma 2. In fact, in this lemma, the case n = 1 has been explicitly studied.
Now, let us suppose that the identities (78)—(79) hold up to n € N. Then, using Lemma 3 we
can deduce that they are also true for n 4 1. Thus, we have shown that (a) = (b).

On the other hand, (b) = (c) is true because the property () is more general than property
(c).

We now show that (¢) = (d). To do that, we use double induction over ¢ € Z. First of
all, the hypothesis (c) is the case ¢ = go for which the equalities (82)—(84) are satisfied. Let
us now assume that the identities (82)—(84) hold for ¢ € Z. By using Lemma 4 we conclude
that these equalities also hold for ¢ 4+ 1 and g — 1. Hence, property (d) is true for all ¢ € Z.

Finally, (d) = (a) is true since (d) is a more general property than (a). O

Theorem 5 From the above result, the functions ¥ € L*(G) such that H¥ = AW are not
bounded and do not have compact support.

Using the properties in Theorem 4, we can deduce additional properties of the solutions
of H¥ = AV that are zeros for all i € Z,i < 0. Recursively using identities (65)—(68), we
obtain the following properties.

Theorem 6 If A7, Bl.q , Cl.q , Dl.q satisfy hypotheses (77) of Theorem 4, then

1
AR = (kAL Vg e Z,VEk € Z, (125)
CI = (“D¥(C + k(s> = DA]), Vq € Z,Vk € Z. (126)
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Proof Let k € N and show (125) by induction on k. Clearly, the base case (k = 0) is true.
We assume that (125) holds for k£ € N. In order to show that (125) is also true for kK + 1, we
consider the identity (65) with i = 0 and g + k instead of ¢, i.e.,

Aq+k+1 Cq+k sDZTk B Ag+k.

using hypothesis (77), we get

Aq+k+1 . Aq—|—k
By induction hypothesis, the above equality becomes

Ag+k+1 _(—1)kAl,
ie.,
ATEED — kAl v ez

Hence, for all £ € N,

AITE = (—nkal. (127)

To show that (127) is also true if k < 0, we take r = g + k in (127) and obtain
b= (=DFAF™,

which is the same as

AR = (=D A, (128)

Thus, (125) holds.
We now prove (126) by induction on k. The base case is clearly true. Let us assume that
(126) holds for k € N. We use the identity (67), with i = 0 and g + k instead of ¢, i.e.,

Cg—HH—l —C_|+sD_, +Ag+k +s Bq—l—k + (s _ 1)Cq+k Dg%—k.
From hypothesis (77), we get that
Cg+k+l _ Ag—l—k +ng+k + (s 1)Cq+k Dg+k
which is equivalent to
Cg+k+1 _ Ag+k _ s2A3+k ¥ (52 1)Cq+k 2Cg+k,
thanks to (93) and (94) with g + k instead of g. Thus,
k+1 k k
CIT T = (s = DAL — I
Using (125) and the induction hypothesis, we can write
CeH ! = = = D=DFAG = (=DM + k(s* = DAD),
1.e.,
CIHH = ()M + (k4 1)(s? — DAY, Vg e Z.
Then, for all k € N we get

It = (—k(C + k(s> = 1)AD). (129)
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To show that (129) is also true for k < 0, we take r = ¢ + k in (129) and obtain
Ch = (=DRCH ™ + k(s* — DA™,
which is the same as
Cp = (DX + (=DFk(s> — 1 Ap).
thanks to (128). From this expression, we get
Ch ™t = (=DM — k(s> = DAY

which allows us to conclude (126). O

4 Conclusions

We found a recursive solution for the electron wave function in a graphene-like hexagonal
lattice based on the physical conditions of wave continuity and flow incompressibility.

We defined the Hamiltonia H that describes graphene parameterizing the problem in three
edges joined by the same vertex. The eigenfunctions of H together with the conditions of
continuity and flow (15) and (16) led us to define a more convenient mathematical basis for
the problem, namely the profiles L, in (26). These profiles extend unidimensionally across
the lattice, parallel to each other, and can describe any eigenfunction in the hexagonal network
G. This means that if we know the value of the solution only in the vertices of the profile
L, then it is possible to obtain the solution in each vertex in V and in each edge in A (see
Remark 1).

This leads us to conclude that it is enough to analyze a one-dimensional problem in a
“chain” of ordinary second-order differential equations (a L, profile) to obtain the behavior
of the solution in the whole graphene, which is two dimensional.

We defined four functions that form the canonical basis of G in the Remark 2 and deduced
that these functions are unbounded and do not have compact support, as shown in Theorem 3.
The same analysis is also valid for finite linear combinations of them.

We looked for eigenfunctions of H with compact support. Then we proved Theorem 4,
which shows that the following statements are equivalent:

(1) The eigenfunctions are equal to zero in all vertices to the left of an arbitrary vertex ig
for all the profiles L, where the vertices i in different profiles are simply connected.

(i1) There exists a profile L, such that the eigenfunctions are equal to zero in all its vertices
to the left i and satisfies the recursive formulas given in (78)—(79). These formulas are
valid for all profiles L.

(ii1) There exists a profile L, such that the eigenfunctions are equal to zero in all its vertices
to the left iy and satisfies the recursive formulas given in (78)—(79) that are unique for
that profile.

(iv) The eigenfunctions are equal to zero in all vertex to the left of iy and in all profiles L,
and satisfy the recursive formulas given in (78)—(79).
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