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A B S T R A C T   

The Short-Time Fourier transform (STFT) is a helpful tool to identify muscle fatigue with clinical and sports 
applications. However, the choice of STFT parameters may affect the estimation of myoelectrical manifestations 
of fatigue. Here, we determine the effect of window length and overlap selections on the frequency slope and the 
coefficient of variation from EMG spectrum features in fatiguing contractions. We also determine whether STFT 
parameters affect the relationship between frequency slopes and task failure. Eighty-eight healthy adult men 
performed one-leg heel-rise until exhaustion. A factorial design with a window length of 50, 100, 250, 500, and 
1000 ms with 0, 25, 50, 75, and 90% of overlap was used. The frequency slope was non-linearly fitted as a task 
failure function, followed by a dimensionality reduction and clustering analysis. The STFT parameters elicited 
five patterns. A small window length produced a higher slope frequency for the peak frequency (p < 0.001). The 
contrary was found for the mean and median frequency (p < 0.001). A larger window length elicited a higher 
slope frequency for the mean and peak frequencies. The largest frequency slope and dispersion was found for a 
window length of 50 ms without overlap using peak frequency. A combination of 250 ms with 50% of overlap 
reduced the dispersion both for peak, median, and mean frequency, but decreased the slope frequency. There
fore, the selection of STFT parameters during dynamic contractions should be accompanied by a mechanical 
measure of the task failure, and its parameters should be adjusted according to the experiment’s requirements.   

1. Introduction 

Muscle fatigue is characterized by reducing the maximal capacity to 
generate force or power output (Vøllestad, 1997). It can be assessed by 
reductions in maximal force or time until task failure (Enoka and 
Duchateau, 2008). Although these assessments provide information 
when fatigue is installed, evaluating changes in muscle’s 

electrophysiological properties extracted from electromyography time- 
series helps identify fatigue or non-fatigue status (Merletti et al., 
1990). The myoelectric manifestations of muscle fatigue are indirectly 
related to reduced motor unit firing rate (Mettler and Griffin, 2016) and 
a concomitant decrease in muscle fiber conduction velocity (Rampichini 
et al., 2020). This information can be obtained by analyzing different 
spectral Short-Time Fourier Transform (STFT) patterns (Karthick et al., 
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2016). 
The variation in the EMG spectrum as a function of time can be 

estimated by applying the Fourier transform to signal segments. The 
multiple sequences of Fourier transform extracted from a signal is 
known as the STFT (Cifrek et al., 2009; Jeon et al., 2020). The STFT 
provides time-localized frequency information of how the frequency 
components of a signal vary over time. The signal segments, also known 
as window length, affect the time and frequency resolution of the STFT. 
An increase in the widow length increases the frequency resolution and 
decreases the time resolution. Meanwhile, a decrease in the window 
length decreases the frequency resolution and increases the time reso
lution (Jeon et al., 2020). Therefore, the STFT is widely used for fre
quency tracking over time (Zhang et al., 2020), and it is of particular 
interest in assessing biological signals and supporting decisions between 
fatigue or no-fatigue status (Cifrek et al., 2009; Rampichini et al., 2020). 
The relatively low computational cost allows the easy implementation of 
detection algorithms, i.e., features extraction are used to detect several 
conditions using machine learning algorithms (Wang et al., 2018b). 

The features median, mean, and peak frequencies extracted from the 
electromyography periodogram are commonly used to quantify the 
myoelectric manifestations of muscle fatigue (Cifrek et al., 2009, 2000; 
Merletti et al., 1990; Rampichini et al., 2020; Shair et al., 2017). These 
descriptors estimate the changes in the sum of motor units action po
tential trains (MUAPT) in response to fatigue when the spectrum shifts 
towards lower frequencies (Cifrek et al., 2009, 2000; Eken et al., 2019; 
Martinez-Valdes et al., 2016; Rampichini et al., 2020). Applying re
gressions methods to the myoelectric manifestations of muscle fatigue 
frequency parameters over time allows determining the frequency slope 
during a muscle contraction (rate of change of frequency in time) 
(Merletti et al., 1990). More negative slopes represent a larger left 
shifting of the spectrum (also known as compression of the spectrum), 
which is associated with higher muscle fatigue status (Ament et al., 
1993; Cifrek et al., 2009, 2000; Eken et al., 2019; Merletti et al., 1990). 
However, this approach has limitations due to the low sensitivity for the 
motor unit’s discharge rate (Rampichini et al., 2020), EMG amplitude 
cancelation (Cifrek et al., 2009; Rampichini et al., 2020), frequency 
leakage (Tan and Jiang, 2019), and time–frequency resolution prob
lems. The STFT time–frequency resolution limitations can be overcome 
by using more modern methods such as wavelets (Cifrek et al., 2009; 
Costa et al., 2010; Waly et al., 1996). However, physiological informa
tion is available in the periodograms to be used for muscle fatigue (Costa 
et al., 2010). Previous studies using bipolar and high-density EMG re
cordings found high variability in the chosen window length for analysis 
of isometric and dynamic contractions (Ament et al., 1993; Angelova 
et al., 2018; Cifrek et al., 2009, 2000; do Espírito Santo et al., 2018; Falla 
et al., 2017; Guzmán-Venegas et al., 2015; Hawkes et al., 2018; Hegyi 
et al., 2019; Hill et al., 2018; Jordanic et al., 2016; Jordanić et al., 2017; 
Watanabe et al., 2018; Zhu et al., 2017). Most of these studies did not 
provide details about the windows overlap (do Espírito Santo et al., 
2018; Hawkes et al., 2018; Hill et al., 2018; Lark et al., 2019). 
Furthermore, the effects of window length and overlap have mainly 
been studied for isometric contractions (Xie and Wang, 2006; Zhang 
et al., 2010), but its effects remain unclear for dynamic muscle con
tractions. The recognition of adequate parameters is essential to avoid 
bias (Jordanic et al., 2016; Waly et al., 1996). Most importantly, these 
parameters must accurately predict failure during dynamic fatiguing 
tasks (Cifrek et al., 2009). However, an improper selection of window 
length and overlap might worse the sensitivity of EMG parameters to 
assess fatigue during dynamic contractions. 

Continuous wavelet transform and STFT can provide similar muscle 
fatigue estimations, but considerably higher variability is found for STFT 
outcomes (Costa et al., 2010). Hence, we hypothesized that only a subset 
of the STFT parameters allows estimating muscle fatigue robustly. 
Recently, dimensionaity reduction technique, known as Uniform 
Manifold Approximation and Projection (UMAP), combined with 
density-based spatial clustering of applications with noise (DBSCAN) 

technique has been successfully used to find latent information of raw 
data (McInnes et al., 2018). For this reason, we considered that these 
techniques might be helpful to understand the effect of STFT on the 
estimation of muscle fatigue. Also, considering that the gastrocnemius 
medialis muscle is highly susceptible to fatigue during dynamic con
tractions (Ament et al., 1993), we selected this muscle as a appropriate 
model to investigate the effects of the STFT parameters on surface EMG 
outcomes in response to muscle fatigue. Therefore, here we aimed to 
determine the effects of STFT window length and overlap parameters on 
the frequency slope and coefficient of variation from median, mean, and 
peak frequencies from EMG data from the gastrocnemius medialis 
recorded during a fatiguing protocol until task failure. We also deter
mine which clusters of STFT parameters affect the relationship between 
the frequency slope and task failure. 

2. Material and methods 

2.1. Study design 

The study had two factors (window length and overlap) and five 
levels for window length (50, 100, 250, 500, and 1000 ms) and overlap 
(0, 25, 50, 75, and 90%). The sample included 88 healthy untrained men 
of age 22 ± 2 years, height 172.4 ± 2.5 cm, and body mass 71 ± 6 kg. 
The eligible participants were male adults, university students, with 
ages between 18 and 25 years old, and not enrolled in regular physical 
activity. They were self-reported as healthy, without a life history of 
injury to the lower extremities, no history of cardiovascular or metabolic 
alterations, no skin allergy, chronic pain, or cognitive impairments. 
Participants were requested to avoid alcohol intake and perform any 
physical exercise and keep their regular daily routine 48 h before the 
experiment. Any participant was excluded if they reported alcohol 
intake, physical exercise, or sleep alteration in the night before the 
experiment. This study was approved by the local institutional ethics 
committee IRB 23032019. All participants signed an informed consent 
form, agreeing to participate in the study. 

2.2. Sample size 

A sample size of 80 participants was a priori estimated considering a 
difference for factorial ANOVA with two factors (window length and 
overlap) and five levels for each one, using the F-test family distribution, 
an alpha error of 5%, the statistical power of 80% (four times the alpha 
error). We considered that the EMG differences could require a small 
(0.01) to medium effect size (0.06) due to intrinsical variability and 
decided for an arbitrary ŋ2 of 0.025. Furthermore, eight additional 
participants were included to anticipate possible losses (10% of esti
mation). The sample size estimation was performed using G*Power 
software version 3.1.9.2 (Kiel University, Germany). 

2.3. Fatigue protocol 

Participants performed the one-leg heel-rise test on a plane surface 
until exhaustion (Fig. 1). During the test, they were allowed to touch two 
fingers over the wall to help keep the balance (De la Fuente et al., 2018). 
Each participant was familiarized with the task one week before data 
collection. For data collection, after performing a 10 min warm-up 
pedaling at 60 rpm on a cycle ergometer (535U, SportsArt, USA) 
without external load, the participants performed the one-leg heel-rise 
test. They continuously lifted their heels as high as possible at a rhythm 
of 45 bpm following auditory feedback provided by a metronome 
(Google, USA). Task failure was defined as the point where participants 
could no longer lift the heel. Constant visual supervision and verbal 
encouragement were given to each participant to control the heel’s lift. 
The criteria to finish the test was the drop of the cadence or the 
exhaustion of volunteers, defined as the incapacity to lift the heel from 
the floor. 
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2.4. Data acquisition and processing 

Muscle activation was recorded continuously during the perfor
mance of the one-leg heel-rise test by a wireless EMG sensor placed on 
the skin over the gastrocnemius medialis (Delsys inc., USA). The skin 
was shaved and cleaned with alcohol before the electrode placement 
according to SENIAM guidelines (Hermens et al., 2000). The EMG sig
nals were acquired using a TrignoTM electromyography amplifier (Del
sys Inc., Boston, USA) with an Avanti sensor (Delsys Inc., Boston, USA) 
with an inter-electrode distance of 10 mm (De Luca et al., 2012). Data 
were collected with a 16-bit analog–digital converter card (Vicon Mo
tion Systems, Oxford, UK) and sampled at 4 kHz, analog bandpass 
filtered (20 ± 5–450 ± 50 Hz), CMRR > 80 dB, resolution of 168 nV/bit, 
basal noise of < 0.75 µV, with hardware amplification of 1000 V/V. All 
data were recorded using the software Nexus 2.0 (Vicon Motion Sys
tems, Oxford, UK). 

2.5. Data processing and analysis 

The EMG signals were zero mean-centered, zero-padded to equal the 
length of the window used. They were filtered by a zero-lag fourth-order 
bandpass Butterworth filter with a bandpass between 20 and 450 Hz. 
The Teager-Kaiser energy operator threshold-based method was used to 
detect the individual EMG muscle contractions bursts during the heel 
test (Solnik et al., 2010), see Fig. 1. This operator is defined as Ψ[x[n] ] =
x[n]2 − x[n+ 1]x[n − 1], where the x[n] is a time series at sample n. Rest 
EMG signals used for the Kaiser energy operator threshold-based were 
extracted while standing and analyzed for 500 ms. 

The STFT provides time-localized frequency information when fre
quency components of a signal vary over time (Jeon et al., 2020; Kar
thick et al., 2016). The discrete-time form of the STFT was defined as 
X(m,ω) =

∑∞
n=− ∞x[n]w[n − mR]e− jωn. The STFT was evaluated at sample 

time m, x[n] was each EMG burst time-series at sample time n, w[n] was a 
rectangular window function, and R was the hop size that determines 
the amount of overlap. The window length used were 50, 100, 250, 500, 
and 1000 ms. The overlap, R, was 0, 25, 50, 75, and 90% (Fig. 1). 
Although there are many options for selecting the shape of the window 
function, we used a rectangular one as a fixed and controlled experi
mental factor. The effect of the window type on myoelectric manifes
tations of fatigue is outside the scope of our study, and these limitations 
have been addressed in a previous publication (Tan and Jiang, 2019). 
Finally, as X(m,ω) is a complex quantity, the assessment of fatigue was 
performed using the STFT’s magnitude|X(m,ω)| (Karthick et al., 2016). As 
a result, a Fourier transformation was determined for each contraction 
burst, which allowed the extraction of median, mean, and peak fre
quencies (frequency features) from each spectrum varying the length of 
w[n] and R, see Fig. 1. 

The three frequency features combined with the five window lengths 
and the five overlaps resulted in 75 time series containing a variation of 
the median, mean, and peak frequencies obtained from each EMG burst 
(Fig. 1). We applied a linear regression to estimate the rate of change in 
frequency (Hz s− 1) during the motor task (Horita and Ishiko, 1987; 
Priego-Quesada et al., 2019), see Fig. 1. From the same 75 time series, 
the coefficient of variation, defined as the ratio between standard de
viation and mean and expressed as a percentage, was obtained for each 
frequency feature. 

To find the window length and overlap that minimizes the over- and 
sub-estimation (outliers) of the coefficient of variation and frequency 
slope, we estimated the centroid of the plane formed by the ratio be
tween the frequency slopes and the coefficient of variation. This ratio 
reflects the capability to estimate the variation of a frequency feature 
over the time normalized by its dispersion. The centroid was the sum of 
the dot product between the ratio of the frequency slope/ coefficient of 
variation and the factor level (1, 2, 3, 4, or 5), divided by the total sum of 
the ratio of the frequency slope/ coefficient of variation, expressed as the 
number of window and overlap (Jordanic et al., 2016). 

Finally, to understand the sensitivity to the task failure for all com
binations of window length and overlap, we obtained curve patterns 
from the relationship between the frequency slope and the number of 
heel rise repetitions until task failure. These patterns were fitted using 
the non-linear least squared method with the model y = aebx + cedx, 
where y is the frequency slope for each combination of window length, 
overlap, and frequency features (a total of 75 models), x is the number of 
repetitions until task failure for each participant, and a, b, c, and d are 
model parameters (Merletti et al., 1990). Hence, one curve was fitted for 
each combination of window length, overlap, and frequency features. 
Therefore, if a homogeneous curve pattern for all combinations exists, 
there will be only one pattern. In contrast, if different patterns exist, 
different combinations would produce different patterns from the same 
sample. 

All computations were performed using Matlab 2020a software 
(Matworks Inc., USA) and its signal processing toolbox including the 
functions fft, next2power, filtfit, and butter. We also used basic math 
functions like image, surf, abs, linspace, median, fix, size, find, sum, 
polyfit, std, mean, repmat, and exp. The non-linear fitting was made 
through the curve fitting tool available on the app matlab screen to 
perform the non-linear model previously described. 

2.6. Non-linear dimensionality reduction and clustering 

We performed a non-linear dimensionality reduction to capture the 
latent data characteristics using the UMAP algorithm (McInnes et al., 
2018). It determined the pattern from the relationship between the 

Fig. 1. Experiment design. A. The figure shows the heel-rise test until task 
failure where the time series of the electromyography signal (x [n]) is wirelessly 
transmitted, collected to be zero mean centered, and filtered. B. Then, each 
burst is identified using the Taeger-Keiser Operator (TKO). On each burst, a 
window manipulation of the length and the overlap (R) of the window (w [n]) 
is performed. C. From each segmented signal, the Fast Fourier Transform (FFT) 
is applied, and the magnitude is obtained. D. From each segmented signal, the 
frequency features mean, median, and peak can be extracted from spectrum, ** 
notice that if the sample frequency increase the median and mean frequencies 
displaces towards right frequencies (right-skewed distribution). E. Finally, the 
frequency slope (FS) is extracted from linear regression, and the dispersion of 
data measured as the coefficient of variance (CoV) also is obtained. sd =
standard deviation. 
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frequency slope and the heel-rise repetitions until failure for all pa
rameters, features, and participants. The UMAP approximates a high- 
dimensional dataset (all relationships between the slope and the num
ber of heel rise repetitions until failure) by a low dimensional dataset (a 
projection of the raw data from a Riemannian manifold to a space of the 
Real numbers, which we could easily refers as the UMAP domain) by 
creating a fuzzy topological structure using the gradient of the binary 
cross-entropy as the loss function. The weights are the probability of the 
existence of 0-simplex (lowest dimensional connection) or 1-simplex, 
which is a topographic representation of the connection between 
neighbors (McInnes et al., 2018). The weight between neighbors was 
modeled as w = e− d(xi − xj)− ρi/σ ,beingρi the distance from i-th data points 
to its first nearest neighbor (Oskolkov, 2019). The binary cross-entropy 

was modeled as
∑

je∈E

[

wh(e)log(Wh(e)
Wl(e))+(1 − wh(e))log(1− Wh(e)

1− Wl(e))

]

. The 

input to UMAP was the set of 75 combinations, each one represented by 
the fitted curve evaluated for x between 1 and 88, that is a time series 
that involved a dimension of 88 heel rises until task failure. The algo
rithm reduced these 75 curves of dimension 88 into 75 points of 
dimension 3 into the UMAP domain. The parameters used for the UMAP 
algorithm were: Euclidean metric, number of neighbors set to 7, learning 
rate set to 1, local connectivity set to 1, repulsion strength set to 1, and 
minimal distance equal 0.5 (Meehan et al., 2020). 

DBSCAN was used after dimensionality reduction steps described in 
the previous paragraph. Each DBSCAN cluster represents a set of STFT 
parameters that produces a similar muscle fatigue model performed in 
the UMAP domain grouping dataset based on the density of the space. 
Then, we determined the clusters or families of parameters related to its 
capacity to identify muscle fatigue, and labeled the families of the 
pattern (clusters). The parameter for DBSCAN was an epsilon set to 5. 
Finally, the mean of the data was used to summarize the behavior for 
each cluster. The estimations were obtained using the Matlab 2020a 
software (Mathworks, Inc., USA). 

2.7. Outcomes 

The study outcomes were the frequency slope (Hz s− 1) and the co
efficient of variability (%) for the 75 possible combinations of STFT 
parameters, the number of heel-rise repetitions to failure, the clusters of 
STFT parameters (label of the cluster), and the patterns obtained from 
the relationship between the frequency slope and task failure (Hz s− 1 no. 
of repetitions− 1). 

2.8. Statistic analysis 

Results are described as mean, standard deviation, percentage, pro
portions, and coefficients. The Shapiro-Wilk test confirmed the 
normality of data distribution. Homoscedasticity and sphericity as
sumptions were confirmed using the Bartlett and Mauchly tests, 
respectively. To determine the within and between groups effects and 
interactions, we conducted a two-way ANOVA with five levels for 
window length (50, 100, 250, 500, and 1000 ms), and five levels for 
overlap (0, 25, 50, 75, and 90%) with a Bonferroni post-hoc test, 
considering a significance level set at 0.05. The proportion between 
myoelectric manifestations for each cluster was obtained using an 
adjusted-χ2 test with confidence of 99%, 10 K samples for Monte Carlo 
simulation, and 0.5 references of the proportions. To compare pro
portions, we used the Pearson’s-χ2 test for a contingency table of 3 × 5. 
All data were analyzed considering a significance level set at 0.05 using 
the trial SPSS software (IBM, USA). 

3. Results 

Window length showed a main effect on the frequency slope and the 
coefficient of variation (p < 0.001, Fig. 2). The multiple comparisons 

showed that the smaller window lengths (50, 100, and 250 ms) elicited 
larger frequency slopes for peak frequency (p < 0.001) while larger 
window lengths (1000 and 500 ms) elicited larger frequency slopes in 
the median frequency (p < 0.001). Similarly, the largest window length 
(1000 ms) elicited larger frequency slopes for mean frequency (p <
0.001). The multiple comparisons showed that the smaller window 
length (50 and 100 ms) elicited a small coefficient of variation for peak 
frequency (p < 0.001). The larger window lengths (500 and 1000 ms) 
elicited the smaller coefficient of variation in the median frequency (p <
0.001). The smaller window lengths (50, 100, and 250 ms) elicited the 
smaller coefficient of variance for mean frequency (p < 0.001). 

Overlap showed a main effect for the coefficient of variation (p <
0.001, Fig. 2), but no effect was found for frequency slope (p = 0.1584). 
The multiple comparisons showed that the smaller overlap (0%) elicited 
the smaller coefficient of variation for peak frequency (p < 0.001). The 
overlap of 25% elicited a small coefficient of variation for peak fre
quency (p < 0.001). The smaller overlap (0%) elicited the smaller co
efficient of variation for mean frequency (p < 0.001). Interaction 
between window length and overlap was found for the coefficient of 
variation (p < 0.001) and frequency slope (p < 0.001). 

A 50 ms window length without overlap (0%) resulted in the mini
mal value for the plane ‘frequency slope - coefficient of variation’ 
(Fig. 2). A 250 ms window length and a 50% overlap were the nearest 
parameters to the location of the centroids for the plane ‘frequency slope 
- coefficient of variation’ (Table 1). 

Task failure occurred after 39.6 ± 13.3 heel-rise repetitions (median 
45; range 18 to 63 repetitions). The R-squares for the relationship be
tween the frequency slope and the number of heel rise repetitions until 

Fig. 2. STFT parameters behavior during the heel-rise test. The figure 
shows how the frequency slope obtained by linear regression and normalized 
respect for its dispersion behaves regarding the window length and overlap for 
the mean, median, and peak frequency. Main effects for window length (p <
0.0001), overlap (p < 0.0001), and interaction between have existed (p <
0.0001). The lowest value was found for the combination of 50 ms and overlap 
of 0% using the peak frequency, and the centroid for the three planes is located 
at 250 ms with 50% of overlap. For the same motor task performed until 
exhaustion, different manifestations of muscle fatigue depending on STFT pa
rameters existed. 

Table 1 
Centroids localization in the coefficient of variation – slope frequency plane.   

(Windows coordinate, Overlap 
coordinate) 

Median frequencyMean frequencyPeak 
frequency 

(3.39, 3.03)(3.09, 2.96)(2.79, 2.92)  
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failure are summarized in Table 2. There were 5 clusters of STFT pa
rameters detected by DBSCAN in the UMAP domain. (Fig. 3 and 
Table 2). The bigger cluster that includes higher slope frequencies was 
found for the fifth cluster (Fig. 3 and Table 2). The frequency features 
corresponding to each cluster are described in Table 3. The relationship 
between the frequency slope and task failure patterns is summarized in 
Fig. 3. 

4. Discussion 

Here, we show that the selection of STFT parameters affects the 
frequency slope of myoelectrical manifestations of fatigue estimated 
from the median, mean, and peak frequencies recorded from gastroc
nemius medialis. This, in turn, affects the sensitivity of muscle fatigue 
estimation. The window length and overlap directly influenced the 
relationship between slope frequency and task failure, distorting 
different myoelectrical manifestations of muscle fatigue depending on 
the parameters selected for the STFT. 

The endurance capacity varied among the participants, most likely 
due to different levels of neuromuscular adaptations to fatigue between 
the individuals (Walton et al., 2002). An early or delayed task failure 
may depend on participant tolerance to fatigue. This helps to under
stand the different sensitivity patterns for the relationship between 
slope frequency and task failure. In particular, the fitted series in each 
cluster with different frequency slopes and dispersion demonstrates 
how the STFT parameters change the frequency manifestation of 
muscle fatigue. For instance, some clusters show a higher electrical 
frequency slope for an earlier task failure, such as cluster 1 showed. 
This cluster appears to be physiological consistent with individuals 
with poor tolerance to fatigue (higher electrical frequency slope for an 
earlier task failure) and with individuals showing better tolerance to 
fatigue (negative frequency slope, but lower for a delayed task failure). 
The pattern was not observed in all clusters. For example, cluster 5 
showed a lower frequency slope for an earlier task failure in compar
ison with delayed task failure, but this cluster achieved the highest 
slope frequencies compared to the the clusters. This suggests that STFT 
parameters may introduce non-linear distortion in the electrical 
manifestation of fatigue. 

Here, we found that a window length of 50 ms with 0% overlap of the 
peak frequency resulted in a higher frequency slope. However, it is 
essential to consider that a small window length elicits a high risk of 
overestimating muscle fatigue when the peak frequency is used. In 
contrast, a large length windows had the opposing effect. This confusion 
may result from noise (outliers) that increase the dispersion and affect 
the regression outcomes. Hence, we recommended treating the outliers 
before applying the regression, especially for the peak frequency. If it is 
decided to use the mean and median frequencies extracted from raw 
signals highly sampled, a decision of the band for analysis should be 
considered because the mean and median are sensitive to a right 
displacement in a right-skewness distribution of frequencies losing 
sensitivity to muscle fatigue. STFT parameters may easily influence 
frequency slopes, but it is worthy to mention that the frequency slope 
per se does not reflect the entire fatigue process (Ament et al., 1993; 
González-Izal et al., 2010; Horita and Ishiko, 1987; Wang et al., 2018a). 
Frequency slopes mainly reflect the global electrophysiological pro
cesses accompanying the generation of fatigue, which depends on 

Table 2 
Proportion of windows and overlap combinations found in the 5 clusters and its goodness-of-fit statistics.  

Cluster Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 
Median frequencyMean frequencyPeak 

frequencyTotalAdjusted- χ2 
28% (7/25)0% (0/25) 
0% (0/25)9.3% (7/75) 
p < 0.001 

36% (9/25)0% (0/25) 
0% (0/25)12% (9/75) 
p < 0.001 

36% (9/25)12% (3/25) 
0% (0/25)16% (12/75) 
p < 0.001 

0% (0/25)52% (13/25) 
0% (0/25)17.3% (13/ 
75)p < 0.001 

0% (0/25)36% (9/25) 
100% (25/25)45.3% (34/ 
75)p < 0.001 

erson- χ2 : p < 0.001 
Goodness-of-fit: Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 
R-square 0.57 ± 0.28 0.51 ± 0.25 0.36 ± 0.22 0.38 ± 0.25 0.46 ± 0.24  

Fig. 3. Non-linear dimensionality reduction and clustering for the rela
tionship between slope frequency and task failure (number of maximal 
heel rises obtained by the sample). The figure shows the projection of the 
UMAP algorithm into a tridimensional domain measured in weights. The dots 
indicate the projected families of STFT parameters, and the gray ellipsoid 
shadow delimits the recognized cluster by DBSCAN algorithm. Each dot cluster 
is expanded, showing the pattern of sensitivity to task failure as graphs; the 
black line of these graphs illustrates the cluster’s mean pattern. 

Table 3 
Family parameters.   

Median frequency  

50 ms 100 ms 250 ms 500 ms 1000 ms 

90% 3 3 3 3 3 
75% 3 3 3 3 3 
50% 2 2 2 2 2 
25% 1 1 2 2 2 
0% 1 1 1 1 1  

Mean frequency  

50 ms 100 ms 250 ms 500 ms 1000 ms 

90% 5 5 5 5 5 
75% 4 5 5 5 5 
50% 4 4 4 4 4 
25% 4 4 4 4 4 
0% 3 3 3 4 4  

Peak frequency  

50 ms 100 ms 250 ms 500 ms 1000 ms 

90% 5 5 5 5 5 
75% 5 5 5 5 5 
50% 5 5 5 5 5 
25% 5 5 5 5 5 
0% 5 5 5 5 5  
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central and peripheral motor unit properties. However, these properties 
may be hidden by synthetic assumptions, such as we showed here, that 
affects the frequency slope. Moreover, non-physiological phenomena 
from the target muscle, such as cross-talk and volume conduction, may 
also influence the frequency slope (Farina et al., 2014). Therefore, the 
use of the frequency slope as an index of fatigue requires caution. 

Fourier methods have been validated to analyze EMG signals when 
slow changes exist in the time domain (Farina et al., 2014; Srhoj- 
Egekher et al., 2011). Nevertheless, some complexities related to mus
cle fatigue, such as motor unit action potential changes in morphology, 
amplitude and/or spatial distribution, can influence spectral analysis 
(Martinez-Valdes et al., 2020). Indeed, these complexities can affect 
both time and spectrum domain characteristics (Rampichini et al., 
2020), which may lead to misinterpretation of the physiological phe
nomenon due to fixed resolution problems (Cifrek et al., 2009; Singh 
et al., 2017; Srhoj-Egekher et al., 2011). In these cases, wavelets are 
suggested by its adaptative time–frequency resolution (Costa et al., 
2010). However, Fourier decomposition methods generating a set of a 
small number of bands derived from empirical decomposition mode 
have been proposed as a better method for non-linear behavior than 
STFT or wavelet method (Singh et al., 2017). Nevertheless, more deep 
work might be required to understand and develop better techniques 
that might help dynamic muscle fatigue. 

When we compared window lengths of 50 ms, 100 ms, and 250 ms, 
the largest slopes were found when the peak frequency was considered. 
In contrast, the mean and median frequencies generated the highest 
frequency slope, with windows of 500 ms and 1000 ms. This suggests a 
negative covariance between the frequency components and the number 
of heel-rise repetitions, explaining the largest negative frequency slope 
obtained after the linear regression analysis (Cifrek et al., 2009). An 
improper parameter definition may result in statistical bias. For 
instance, the statistical type I error is induced when contractions are not 
performed to fatigue, and a negative frequency slope is found (Krzy
winski and Altman, 2013). On the other hand, considering that the 
median and mean frequencies show small frequency slopes, this could be 
associated with an under-estimation, resulting in a higher probability of 
statistical type II error (Krzywinski and Altman, 2013). 

The largest dispersion found for the peak frequency is in agreement 
with a previous report (Srhoj-Egekher et al., 2011) and expressed a large 
spread of data with respect to the mean and median frequencies. This 
behavior also means that the sum of squares is large. Therefore, to avoid 
the statistical type II error when the peak frequency is used, a larger 
number of samples is needed, compared to the mean and median fre
quencies (Krzywinski and Altman, 2013). Peak frequency may be 
affected by a small number of samples, despite its better capacity to 
generate a more negative frequency slope. 

Larger overlap increased dispersion of data for peak and mean fre
quencies. Median and peak frequencies showed similar behavior, except 
for the 0% overlap showing the highest dispersion. As we discussed for 
selecting window length, we need to be careful with the sample size to 
avoid statistical type II error due to increased data dispersion (Krzy
winski and Altman, 2013). Finally, the centroid method used here tends 
to smooth small or large values in the intensity-dispersion plane, acting 
as a low-pass filter. However, this does not guarantee the best sensitivity 
to predict task failure, being the 250 ms with 50% considered a con
servative selection of parameters. 

We acknowledge the limitation of windowing and overlapping being 
set only in a forward manner. Another limitation was our incapacity to 
consider metabolic markers of peripheral fatigue to estimate fatigue 
intensity and correlate them with different stationary parameters from 
the EMG signals. 

5. Conclusions 

A window length of 50 ms without overlap using peak frequency 
provides the highest frequency slope but generates a large dispersion of 

data. Instead, a 250 ms window length with 50% of overlap for the 
mean, median, and peak frequency reduce the data dispersion but de
creases the frequency slope during dynamic contractions. Therefore, we 
recommend that the selection of STFT parameters during dynamic 
contractions to be accompanied by a mechanical measure of the task 
failure. The STFT parameters should be adjusted according to the ex
periment’s requirements. 
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