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Abstract Glucose effectiveness (SG) is the ability of glucose
per se to stimulate its own uptake and to suppress its own
production under basal/constant insulin concentrations. In an
individual, glucose tolerance is a function of insulin secretion,
insulin action and SG. Under conditions of declining insulin
secretion and action (e.g. type 2 diabetes), the degree of SG
assumes increasing significance in determining the level of
glucose tolerance both in fasted and postprandial states. Al-
though the importance of SG has been recognized for years,
mechanisms that contribute to SG are poorly understood. Re-
search data on modulation of SG and its impact in glucose
intolerance is limited. In this review, we will focus on the role
of SG in the regulation of glucose tolerance, its evaluation, and
potential advantages of therapies that can enhance glucose-
induced stimulation of glucose uptake and suppression of its
own production in conditions of impaired insulin secretion
and action.
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Introduction

Glucose tolerance in humans is dependent on a composite
interaction of insulin secretion, insulin action and glucose ef-
fectiveness (SG). In glucose intolerance states, impairment in
one of the components is compensated for, at least in part, by
greater contribution of another component to maintain
normoglycemia [1]. When combined defects in insulin action,
secretion or SG upsurge and compensatory mechanisms fail,
hyperglycemia occurs. Hyperglycemia in type 2 diabetes
(T2DM) results due to either inappropriately increased rates
of glucose production or inappropriately decreased glucose
disposal or both, in reference to prevailing glucose and insulin
concentrations [2–10]. The concept that glucose, per se, in-
creases glucose utilization and decreases glucose production
is well established [5, 11–19], but its role in the regulation of
glucose tolerance is forgotten.

SG which is defined as the effect of acute increase in glu-
cose concentrations to facilitate its own metabolism (i.e. to
stimulate glucose uptake and suppress hepatic glucose re-
lease) at fasting insulin plays a pivotal compensatory mecha-
nism to maintain normal glucose tolerance during insulin re-
sistance states in humans. Acute hyperglycemia contributes
towards restoration of normal blood glucose by mechanisms
that are both dependent and independent of accompanying
dynamic insulin response [20, 21].

Various mechanisms have been proposed which act syner-
gistically during acute hyperglycemia to normalize plasma
glucose concentrations independent of dynamic changes in
insulin concentrations. Defects in these mechanisms can lead
to impairment in SG, thus contributing to fasting and postpran-
dial hyperglycemia in the evolution of T2DM.

1. Insulin-independent mechanisms of glucose restoration
involve the mass action effect of glucose on its disposal
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and suppression of endogenous glucose production
(EGP) [11, 19, 22]. This mechanism was reported to be
impaired in T2DM [23].

2. Apart from mass action effect, acute hyperglycemia en-
hances glycogen stores in the liver via stimulation of glu-
cokinase (rate limiting) and glycogen synthase enzyme
activity and reduces glycogen phosphorylase enzyme ac-
tivity which prevents glycogenolysis and hence sup-
presses hepatic glucose release [8, 24].

3. Acute increase in plasma glucose decreases EGP by di-
minished fluxes of substrates for gluconeogenesis. In-
crease in glucose concentrations suppresses lipolysis
causing lowering in plasma FFA, thus decreasing the sup-
ply of substrate to liver for gluconeogenesis [12, 25, 26].
This effect of glucose to decrease plasma FFAwas found
to be impaired in patients with T2DM irrespective of plas-
ma insulin concentration [23].

4. In vitro and vivo experiments have suggested that glucose
enhances abundance of GLUT 4 glucose transporters on
the cell surface of skeletal muscle independent of insulin
concentrations [27] and hyperglycemia-induced glucose
transport is probably mediated via a Ca2+-dependent sig-
naling system which is insulin independent and different
from the mass action effect of glucose [28].

Methods to Assess Glucose Effectiveness

The SG can be measured/quantified by using either glucose
clamp/prandial glucose infusion technique or by minimal
model (MM) analysis.

Glucose Clamp Approach

One approach to quantitation of glucose’s role independent of
dynamic changes in insulin concentrations is the glucose
clamp method, considered by many to be the gold standard
for in vivo assessment of glucose metabolism. By the use of
somatostatin pancreatic clamp to inhibit islet hormone secre-
tion, it has been possible to examine glucose uptake under
steady-state conditions at different insulin and glucose con-
centrations [26, 29•].

Under somatostatin suppression and replacement insulin
(and glucagon) infusions, near-basal fasting insulin concentra-
tions can be maintained and glucose uptake can be estimated
at different glucose concentrations. Glucose uptake represents
the effect of glucose itself to enhance glucose disposal at basal
insulin and is therefore a measure of the component of SG
related to glucose disposal. This value is known as
SGD(CLAMP), where SG stands for glucose effectiveness, the
letter D refers to disposal and CLAMP specifies that the value
was obtained through a clamp study [26]. However, whole-

body SG (SG(CLAMP)) is the sum of glucose disposal and the
decrease in EGP. This can be expressed as

SG CLAMPð Þ ¼ SGD CLAMPð Þ þ SGA CLAMPð Þ

where SGA(CLAMP) is the endogenous glucose appearance
[26].

Thus, SG(CLAMP) can be defined as the relationship between
glycemia and the rate of glucose infusion required to maintain
the clamped glycemia and can be calculated by the arithmetic
sum of SGD(CLAMP) and SGA(CLAMP) divided by the difference
between the clamped glucose concentration and the baseline
glucose concentration [26].

At higher insulin infusions, the slope of glucose uptake
versus glucose concentration relationship increases substan-
tially, increasing up to four times that of SGD(CLAMP) [26].

Minimal Model Approach

The MM is a simplistic mathematical construct that accounts
for glucose dynamics. It considers SG in its modelling. This
enhances the importance of this concept in the determination
of glucose disposal [26].

The MM, derived from the standard intravenous glucose
tolerance test (IVGTT), analyses glucose dynamics after a
single glucose bolus injection into two individual compo-
nents, one dependent on glucose per se, at basal insulin con-
centrations, i.e. SG, and the other one dependent on the β cell
insulin response (insulin sensitivity). Hence, the MM includes
measurement of whole-body SG (Fig. 1) [26, 30].

According to this model, when the dynamic insulin re-
sponse is suppressed and basal insulin maintained, the re-
sponse to g lucose in j e c t i on i s expec t ed to be
(approximately) exponential, with a time constant equal to
SG [26].

An insulin-modified IVGTT has also been used to evaluate
glucose kinetics to generate a richer dynamic for model iden-
tification [30]. In this protocol, a weight-based insulin bolus is
administered 20min after the single glucose injection. Insulin-
modified IVGTT data can be analysed with the MM [30, 31].

By means of tracer dilution technique (radioactive or a
stable isotope), the labelled or hot MM allows an enhanced
sophisticated assessment of SG (SG*), separating whole-body
SG into its peripheral and hepatic components. This approach
indicates that, at basal insulin, about two thirds of the effect of
glucose to enhance net glucose uptake is due to the disposal
effect, with the remainder accounted for by EGP suppression
[15, 26].

Since SG is a hybrid parameter that describes at the same
time the effects of glucose per se on glucose disposal and
production and the exchange kinetics between the two glucose
compartments, discrepancies are to be expected between the
different models [30]. In fact, one limitation of the MM is that
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it overestimates SG, probably because it assumes a single com-
partmental distribution of glucose [30, 32, 33]. To evaluate the
impact of the single compartment assumption on the metabol-
ic indexes of MM and hot MM, Vicini et al. proposed a
glucose-insulin reference model (RM) which is a more phys-
iological model that consists of two different glucose disposal
compartments: an insulin-independent one and a slower
insulin-dependent compartment [30]. The RM allows to gen-
erate noisy synthetic plasma concentrations of glucose, tracer
glucose and insulin during cold and the hot standard and
insulin-modified IVGTT, which are then analysed with MM
and hotMM.When comparing SG of theMM and SG obtained
from the RM, the authors demonstrated that SG from the single
compartmental MM correlates weakly with the index from the
RM and that SG of MM is most affected by the single com-
partment approximation and SG of hot MM is more robust
than the one of MM [30].

Pacini et al. compared the standard versus the insulin-
modified IVGTT in a cohort of healthy individuals. The insu-
lin sensitivity index for both techniques was the same, but SG
was highest for the insulin-modified IVGTT, probably be-
cause of the effects of the circulating insulin [31]. Lack of
correlation of SG and SG* has been described between the cold
and the hot MM [34].

Comparison Between the Glucose Clamp Approach
and the MM Approach

SG(CLAMP) and SG have the same theoretical definition as
whole-body SG and are considered analogous in spite of the
fact that they are calculated from different techniques: the
former from glucose clamp studies and the latter from the

MM. Elegant studies have compared clamp-derived and
model-derived and have found them similar and consistent
[31].

However, even though clamp studies are considered the
gold standard for glucose kinetic assessment, they are elabo-
rated, and usually cumbersome, studies that require a trained
research team. The MM analysis from IVGTT studies pro-
vides a simpler approach for calculation of glucose metabo-
lism indices with reliable and comparable data.

Glucose Effectiveness in the Pathogenesis of Type 2
Diabetes

Studies have suggested that SG plays an important role in the
development of glucose intolerance and is an important deter-
minant of future progression to T2DM [35, 36]. Several stud-
ies have explored SG in first-degree relatives (FDR)/offsprings
of T2DM using MM analysis [37–39] or dynamic glucose
infusion [40, 41] and reported unaltered [40, 41], increased
[37] or decreased [38, 39] SG in FDR of T2DM.

We [42–45] and numerous investigators [46–49] have used
various methods to quantify SG in patients with T2DM; how-
ever, the results from these studies have not been consistent.
Most of these studies [46–48] reported decrease in SG in peo-
ple with T2DM assessed by MM analysis. We [44, 45], using
model-independent methods applying prandial glucose
infusion/glucose clamp technique, and others [49], using
MM analysis, have observed normal glucose-stimulated sup-
pression of hepatic glucose release but impaired glucose-
stimulated glucose disposal in individuals with T2DM. The
differences observed in these studies can be attributed to the
differences in experiment designs and limitations of the

Fig. 1 The cold minimal model
of glucose disposal [30]. NHGB
net hepatic glucose balance, q
glucose mass, V glucose volume,
G(t) glucose concentration in
plasma, I(t) insulin concentration
in plasma, D glucose dose. k
parameters are rate constants
characterizing either material
fluxes (solid lines) or control
actions (dashed lines). Flux from
k1 and k5 denotes SG (i.e. glucose
effectiveness) (adapted with
permission from [30])
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studies.Moreover,MM analysis is based on certain assumptions
which may overestimate the SG. SG measurement using tradi-
tional intravenous glucose tolerance test and cold MM results in
overestimation due to rapidly changing glucose and insulin con-
centrations [50], and the magnitude of the overestimate depends
on the prevailing insulin concentration [51]. The errors observed
may be in part caused by use of a single compartment technique
in cold MM to depict glucose kinetics [34, 52, 53].

Evidences suggest that several neuronal areas of the brain
play a role in glucose homeostasis [53–59]. There is an as-
sumption that apart from enhancing insulin secretion, GLP-1
increases SG via centrally mediated action in brain hypothala-
mus [29•, 60, 61].

Pharmacological Intervention and Glucose
Effectiveness

Studies have suggested that in glucose-intolerant individuals,
metformin decreases ATP and energy stores in liver and skel-
etal muscles and enhances glucose-mediated glucose disposal
and inhibits hepatic gluconeogenesis and EGP [62–64]. Re-
cently, a study in women with polycystic ovary syndrome has
reported improvement in SG following 12 weeks of treatment
with metformin [65••]. This further supports that adjuvant
interventions that improve SG will help to maintain glucose
homeostasis in glucose-intolerant people.

Exercise and Glucose Effectiveness

The short- and long-term beneficial effects of exercise on glu-
cose homeostasis have been demonstrated in individuals with
normal [66, 67] and impaired glucose intolerance [68, 69].
Most of the exercise-induced alterations are attributed as insulin
sensitizing with improvement in insulin actions in insulin-
resistant individuals [32, 70]. However, studies have shown
that exercise also enhances SG [26, 66, 71–77]. Although the
exact mechanism for this enhancement was not described in
these studies, it is believed that exercise induces GLUT 4 trans-
location to the plasma membrane [78] and increases AMP-
activated protein kinase (AMPK) [70, 79] which leads to an
insulin-independent increase in glucose transport following ex-
ercise. Bordenave et al. did not observe any significant change
in SG following acute bout of exercise in T2DM and concluded
that exercise-induced enhancement in SG is markedly blunted
in T2DM compared to non-diabetic individuals [32].

Conclusion

The ability of glucose to regulate its own metabolism in the
presence of basal insulin concentrations is markedly decreased

in individuals with glucose intolerance, and this decrement in
SG likely contributes significantly to fasting and postprandial
hyperglycemia in people with T2DM with compromised in-
sulin secretion and/or action. Therefore, therapeutic strategies
targeting to correct impairment in SGwill likely restore normal
glucose tolerance in glucose-intolerant individuals.
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